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Abstract: This paper presents a survey on energy harvesting (EH) wireless communication networks
focusing on channel capacity, transmission schemes, and power optimization. While many network
researchers focus on energy management policies addressing the intermittency and randomness of
the EH processes, but the channel capacity, and transmission power optimization have not been
fully explored yet. In this paper, we provide a review and analysis of channel capacity, offline
and online transmission schemes, and power optimization from an information theory perspective.
By reviewing and analyzing wireless networking literature, we found that EH is a technologically
feasible and economically viable paradigm for cost-effectiveness in the design and deployment of
next-generation wireless networks. Finally, we identify open research problems and future research
directions in the emerging field of EH wireless networks. We expect this study to stimulate more
research endeavors to build energy-efficient scalable next-generation wireless network systems.

Keywords: energy harvesting; wireless network; channel capacity; transmission scheme

1. Introduction

The exponential growth of wireless networks has highlighted the issue of energy
consumption into sustainability (e.g., reducing carbon footprint) and operating expenditure
(OPEX) perspectives. Wireless energy harvesting (WEH) is one of the key techniques in
achieving energy harvesting (EH) in wireless communication networks [1]. Harvesting
energy from natural and ambient sources is a promising means of increasing energy
efficiency and improving sustainability in wireless communication systems. In effect, we
need to address the fundamental bandwidth-power and delay-power trade-off to reduce
energy consumption ensuring that network performance continues to meet the traffic
demand [2].

Energy harvesting devices (EHDs) are of great interest in the contexts of energy
efficiency in wireless communication networks. The deployment of EHDs is on the rise,
often replacing battery-operated counterparts as they offer several advantages over grid or
battery-powered systems [3]. The potential of energy self-sufficiency, self-sustainability, and
perpetual lifetime limited hardware components can improve energy sustainability. Various
alternative energy sources such as solar, vibrational, thermoelectric, and electromagnetic
can be harvested to power EHDs. Therefore, EHDs facilitate perpetual operation and
self-sustainability as far as energy efficiency is concerned [4].

The EH is a promising technique to achieve a cost-effective solution for green comput-
ing and networking [5,6]. Although there is a long history of EH focus at the device and
circuit level, it has only very recently received engineering attention at the system, commu-
nication, and network level. The availability of powerful and very low-power electronics
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provides the computational capability and operational longevity needed by EHD. Network,
system, and communication have traditionally incorporated energy consciousness as a
design discipline focusing on either minimizing energy consumption against a given per-
formance metric or optimizing performance given a fixed amount of energy. The additional
constraints due to the inherent intermittent and stochastic nature of the energy harvesting
process introduce novel dimensions of uncertainty to the wireless communication problem.
The EH system design demands a reevaluation [7,8] of the communication paradigm aimed
at maintaining reliable communication in the light of additional constraints. The research
methodology we adopted in the literature review is discussed next.

1.1. Research Methodology Adopted

To formulate this survey paper, we collected and reviewed about 35 relevant papers
in the broad field of energy harvesting wireless communication networks. These papers
were collected from various refereed journals and conference proceedings obtained from
well-known databases including IEEE Xplore, ACM, Springer, and ScienceDirect. We also
looked at industry white papers from online credible sources. We used the analysis and
synthesis approach in reviewing the literature to come to a meaningful conclusion. A
summary of related work (literature review) is presented next.

1.2. Summary of Related Research

There are various research topics related to EH such as mobile charger scheduling,
message broadcast, and optimal coverage [9–13]. In the review of literature, we mainly
focused on aspects of channel capacity, transmission schemes, and power optimization
in the context of EH. A summary of related work is presented in Table 1. The selected
published papers are listed in column 1. The scope of each survey paper, year of publication,
and remark/limitations are presented in columns 2 to 4, respectively.

Table 1. Summary of related research.

Survey Paper Scope Year Remark/Limitation

Rashidi et al. [14] Epidemic routing, delay-tolerant network,
non-sparse network. 2020 Developed an infection rate routing model for the

supercritical network as a function of time.

Thomas et al. [11] Quality of Service (QoS) in Wireless Sensor
Networks (WSNs) 2020 Energy management technique in WSNs with a focus on

node scheduling.

Wang et al. [15] Energy harvesting technologies, tools,
and techniques. 2018 Conducted a comprehensive review on EH in wireless

communication networks.

Yang & Chin [9] Energy harvesting node placement for
energy-neutral coverage and connectivity. 2017 Determined the locations to place the minimal number of

nodes used for sensing and relaying deployed nodes.

Liu et al. [10] Assuring coverage quality for rechargeable Wireless
Sensor Networks. 2017 The study endeavors to determine the minimum number of

sensor nodes to deploy to ensure a given coverage quality.

Djenouri & Bagaa [12] Communication coverage for sustainable
data forwarding. 2017 Proposed an energy-aware deployment model for Relay

Nodes (Rns).

Baroudi [13] Battery maintenance in WSN. 2017 Proposed a framework for battery maintenance in WSNs
through recharging sensor batteries using mobile robots.

Mao et al. [3] Mobile-edge computing, EH devices. 2016 Proposed a computing offloading strategy for EH devices
for a mobile-edge computing system.

Ulukus et al. [2] Information-theoretic performance limits, medium
access, network issue. 2015 Addressed the design issues of EH wireless

communication protocols.

Blasco et al. [16] Reinforcement learning technique,
transition probabilities. 2013

The assumption of independence of the stochastic
processes governing the data and energy arrivals might not
hold at a network level.

Tutuncuoglu et al. [17]

Binary noiseless channel mode, AWGN binary
channel input, Naïve IID (NIID). 2013 The achievable rate is based on mutual information

between defined channel input and output.

Equivalent timing channel, Optimized IID (OIID). 2013 Channel capacity definition is equivalent to the
state-dependent channel.

Auxiliary variable with finite cardinality, equivalent
timing channel. 2013 No provision in the scheme/method to utilize energy

packets that arrive when the battery is full.

Ozel & Ulukus [5] Energy-saving phase, save and transmit method. 2012 Delay averages out and energy fluctuates.

Energy constraints, best-effort transmit. 2012 Increased encoder/decoder complexity.

Jing & Ulukus [18] Energy causality constraint. 2012 Not applicable to applications with delay constraint as no
data arrival during transmissions.
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Table 1. Cont.

Survey Paper Scope Year Remark/Limitation

Ozel & Ulukus [19] Optimal capacity for the coding scheme 2011 The system is limited to a single access scenario.

Ozel et al. [20]

Finite battery size, static channel, point-to-point
data/energy constraints. 2011 The monotonically increasing condition on transmit

powers may be violated.

Fading channel, continuous-time model. 2011 Epoch durations are only constrained by channel fade
events and decoupled from energy arrival events.

Shuguang et al. [21] Adaptive coding and modulation scheme,
battery-powered, WSNs. 2005 Applicable for WSNs but missing for EH field.

1.3. Contribution

The main contributions of this paper are highlighted below.

• The main contribution and strength of this paper is the emphasis that energy harvest-
ing (EH) in wireless networks is crucial for the successful design and deployment of
next-generation wireless networks. To this end, we summarize recent results in EH
wireless networks focusing on aspects of data scheduling and transmission power
optimization. This necessitates analyzing communication protocols at the physical
and medium access layers from information theory, communication theory, and signal
processing perspectives.

• We present a comprehensive review and analysis of channel capacity limits of the
physical channel for various battery capacities, including infinite battery, no battery,
and finite battery scenarios.

• We provide an in-depth study on offline transmission optimization with energy causal-
ity constraint, data arrival, finite battery, and fading channels. In addition, online opti-
mization strategies are reviewed using a Markov decision process (MDP) formulation.

The rest of the paper is organized as follows: Section 2 introduces an abstraction of
a generic EH node and a mathematical model. Section 3 identifies information theory-
based efforts at modeling channel capacity for three battery capacity constraints. Section 4
surveys recent results on offline optimization of transmission policy for various constraints.
Online transmission schemes are reviewed in Section 5. Future research directions and
open research challenges are discussed in Section 6. Finally, a brief conclusion in Section 7
concludes the paper.

2. Mathematical Abstraction of Energy Harvesting

An analytic model must represent features common to all EH systems: An intermittent
energy supply, finite storage capacity, imperfections of storage devices, and complexity
constraints. We examine a mathematical abstraction for energy harvesting devices (EHDs)
that briefly introduces key concepts needed for the subsequent discussion and analysis.

An EHD consists of sub-systems that implement energy harvesting and storage, data
processing, and sensing and communication, as shown in Figure 1 (top part) [22]. The
bottom part of Figure 1 represents a mathematical abstraction of an EHD. Incident ambient
energy is captured and converted by the EH module. The electrical energy is stored by
the storage element (SE), which may consist of a battery in conjunction with a capacitor.
The SE powers the microprocessor (µP), sensor, and radio. The µP implements the energy
management policy by duty cycling the sensor and radio sub-systems and managing
data storage.

The block diagram of an EHD in Figure 1 can be conceptualized as consisting of finite
energy and data queues determined by corresponding models of energy arrival process
H(t) and data arrival process I(t). The data buffer has a static capacity Dmax, while the
capacity of the energy buffer is a function of time (reflecting imperfections of the SE and
non-deterministic EH process). The µP controls the switches determining the flow of data
and energy according to a set of rules determined by the energy management policy. We
assumed that energy and data arrivals are independent of each other and described by
independent and identically distributed (i.i.d.) discrete-time stochastic processes. The
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optimal energy management policy, in turn, can be conceptualized as one that seeks the
best strategy to empty the data queue, given some H(t) and I(t) processes.

Figure 1. Block diagram of an energy harvesting device with mathematical abstraction [23].

3. Analysis of Channel Capacity

Channel capacity in a system powered by EHDs is a function of the rate at which har-
vested energy is available for data transmission, the data arrival rate along with conditions
on transmission, and the correlation between these two stochastic processes.

Energy harvesting process H(t), depends on assumptions on battery size. Every
channel use depletes the stored energy and must not violate energy causality. Generally, the
classic additive white Gaussian noise (AWGN) channel is considered for analytic tractability
with input X, zero mean unit variance Gaussian noise Z, and output Y = X + Z.

The energy arrival at the energy harvesting battery located at the transmitter is mod-
eled as an ergodic, stationary stochastic process H, with mean value P (E(H) = P). The
average power constraint per codeword in this setting is denoted by: 1

n ∑n
i=1 X2

i ≤ P. At
each channel use X2

i units of energy are depleted and Hi units arrive via the harvesting
process. The energy constraint that needs to be satisfied by codewords on every channel
use is given by

k

∑
i=1

X2
i <

k

∑
i=1

Hi (1)

where i = 1, · · · , k.
The EHD term on the right of the inequality shown in (1) determines the available

energy per-codeword. Therefore, optimal transmission policy would vary the design, rate,
and scheme of codewords, to satisfy (1). The different schemes are qualified on battery
sizes categorized as infinite, finite, and zero.

The channel input at discrete instant i occurs if H(i) ≥ X2
i . The energy constraint

satisfied per code symbol is Xi ∈ (X1, .., Xn). For equivalent AWGN channel featuring
average transmit power, the capacity-constrained by average recharge rate is given by

{ =
1
2

log(1 + P) (2)



Electronics 2021, 10, 2342 5 of 20

The above analysis is valid for ideal battery, no energy processing cost, and assumed
independence of energy arrival process.

Figure 2 shows a schema of EHD channel capacity for three battery-size scenarios.
The three battery scenarios (infinite, no battery, and finite) are discussed below.

Figure 2. Schema of EHD channel capacity for three battery size scenarios.

(A) Infinite battery scenario: Channel capacity findings with infinite battery for two
methods—namely, save and transmit, and best-effort transmit [16], are compared
based on energy arrival profile, channel coding scheme, among other features. The
arrival process is assumed to be an independent i.i.d. sequence of random variables.
The save-and-transmit method assumes an infinite battery and features an energy-
saving phase where it transmits zeros, followed by a data transmission phase. The
best-effort transmit method, on the other hand, begins transmission right away and
discards a symbol that requires more energy than is available. As a result, it requires
greater encoder/decoder complexity. The main feature of the save-and-transmit
method is that more symbols carry information than the best-effort transmit method.

(B) No battery scenario: Channel capacity findings with no battery (Emax = 0) for AWGN
channel assumes time-varying amplitude constraints (α1, α2) with causal information
available only at the transmitter [19]. The channel coding scheme, in turn, is deter-
mined by the support set for optimal cumulative distribution function (CDF) F of
energy arrivals. The channel capacity is given by

C = max
F∈Ω

IF(T; Y) (3)

where Ω is the space of compact and convex joint probability density function (pdf) over
[−a1, a1]× [−a2, a2]. The expression for mutual information IF(T; Y) in terms of a convex
optimization problem with a unique solution. The energy arrival profile independent and
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identically distributed (i.i.d) sequence with finite realizations. The code symbol amplitude
constrained to available energy at each channel use can be expressed as

X2
i ≤ Ei (4)

The energy arrival profile (Ei) is an i.i.d. Bernoulli process under the constraints of the
current state of the battery and the last channel use. The expressions are given by

Ei ∈ {0, 1} (5)

Pr[Ei = 1] = q (6)

However, the above analysis is valid for the following assumptions. Transmitter has
causal knowledge of Si and has feedback knowledge of past channels used. The receiver
does not know history or Si. The rate does not account for the energy arrival process, and
the receiver exploits the knowledge of system memory.

Optimal coding scheme scales with the magnitude of ±
√

Ei. SF denotes the finite
optimal support set for F. Members of SF determine the optimal rate capacity for the coding
scheme in place [19]. Though limited to a single-access scenario, this study demonstrates
the capacity for a stochastic, amplitude-constrained channel with a discrete input distribu-
tion. Furthermore, it demonstrates that an infinite battery-size assumption lends itself to
higher achievable capacity.

(C) Finite battery scenario: Channel capacity findings with finite battery for two methods—
namely, naïve i.i.d. (NIID) and optimized i.i.d. (OIID) Shannon strategy for the
state-dependent channel [17]. For binary channel input, the number of channels uses
between the transmission of successive 1’s may be used as the basis for encoding and
decoding. Let us suppose that the number of channels uses between (n − 1)th and
nth-transmitted 1 is given by

Tn ∈ [1, 2, . . .] (7)

Idle time between (n − 1)th-transmitted 1 and the next energy arrival is given by

Zn ∈ [1, 2, . . .] (8)

The number of channels uses the transmitter waits to transmit 1 after energy arrival
following (n − 1)th transmission of 1 is given by

Vn ∈ [1, 2, . . .] (9)

The equivalent timing channel can be written as

Tn = Vn + Zn (10)

The above analysis is valid for the following assumptions. Transmitter has causal
knowledge of Zn and feedback knowledge of Tn−1 outputs. The receiver can only calculate
Tn. Message: W ∈ [1, 2, ..M]. The maximum channel uses to transmit W for a given Ei.

Table 2 compares the energy arrival processes, transmit method, encoder/decoder
complexity, and achievable capacity for the three battery scenarios (infinite, no battery, and
finite). The battery condition is listed in Column 1, and the corresponding arrival process,
transmit method, encoder complexity, and achievable channel capacity are presented in
Columns 2 to 5, respectively. We observe that the infinite battery can offer high channel
capacity than the finite battery conditions. However, this high capacity is achieved at
the expense of greater encoder/decoder complexity. In case of no battery condition, the
achievable channel capacity is low, as expected.
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Table 2. Comparison of energy arrival, transmit, encoder complexity, and capacity for infinite, finite, and no battery.

Battery Condition Arrival Process Transmit Method Encoder/Decoder Complexity Achievable Capacity

Infinite Independent Save and best effort transmit Greater High
No battery Bernoulli process Casual knowledge/information Lower Low

Finite Binary arrivals Naïve and optimized i.i.d Medium Low to high

(D) Summary of Findings and Discussion

The performance superiority of this energy management scheme is demonstrated,
which is agnostic to battery degradation. We observed that battery capacity is a critical
determinant of channel capacity. The capacity for the Gaussian channel with an infinite
battery is achievable using Gaussian codebooks employing save-and-transmit and best-
effort transmit schemes. The amplitude-constraint discrete and time-varying inputs in
the case of no battery achieve a strictly smaller capacity than the former case. Simpler
assumptions of a binary, noiseless channel employed for the case of finite battery (unit
size considered) yielded a correspondence with the timing channel. The resulting single
letter capacity expression required solving for the cardinality of an auxiliary variable. The
issues with the capacity for general channel and energy arrivals in the finite battery case
are partially solved.

4. Analysis of Offline Transmission Schemes

Offline energy management of the transmission power and data rate assumes precise
knowledge of the harvested energy and data arrival processes at the transmitter before the
transmission begins [24]. The goal is to schedule the delivery of the data packets to the
destination given the available energy profile while optimizing performance metrics such as
minimum time to complete transmission, delay constraints, and throughput maximization
while incorporating practical concerns such as processing cost, channel fading, and non-
ideal battery. We reviewed recent results for single-user and multi-user scenarios. Most
solutions emerge out of a convex optimization framing of the problem. Figure 3 shows a
classic directional water-filling algorithm. It forms the basis with several variants, such as
directional, staircase, and glue-pouring that represent various combinations of energy, data,
and battery constraints. The top part of Figure 3 shows a scenario in which all the taps are
turned OFF, and the epochs are determined by the channel-fading events. The bottom part
of Figure 3 shows a scenario where all the taps are turned ON, and consequently, no energy
flow to previous epochs. However, the energy arrivals due to E1 flow into the next epoch.

L1, L2, . . . , L9 represent epochs, whereas E0, E1, E2, and E3 represent energy arrivals
per epoch. The Emax indicates the maximum size of the energy buffer (i.e., storage capacity).
More details about offline energy management strategies can be found in [24–26].

The assumptions for monotonic increase, concavity, and continuously differentiability
associated with the rate power function g(p)(r) generally hold. These assumptions imply
optimality of constant power during transmission of a single bit and the existence of g−1(r).
Assuming an AWGN setup and the associated rate power relationship R = 1

2 log(1 + hP).
Therefore, every transmission of power p and duration l sends l

2 log(1 + hP) bits of
data using lp units of energy. Our problem is to determine the optimal time-varying power
scheme P(t) that minimizes transmission time for all packets as a function of the random
energy arrival, data backlog, and fluctuating channel fading profiles. It is noted that the
transmission minimization problem is a dual of the throughput maximization [20].

We assume Bi and Ei represent the ith bit and amount of energy arrival into the data
and energy queues, respectively, of the EH transmitter at different epochs in addition
to backlogged data and already stored energy. The transmitter can adapt transmission
power and rates to suit average energy and remaining bits. Power changes occur at every
epoch [18]. The analytical models for energy and transmission power optimization are
presented next.



Electronics 2021, 10, 2342 8 of 20

Figure 3. Directional water-filling algorithm.

(A) Energy optimization: Given the power sequence p = {p1, p2, · · · , pN} and duration
l = {l1, l2, · · · , lN}.
The energy arrivals in epochs {s1, s2, · · · , sk · · ·} with amounts {E1, E2, · · · , Ek · · ·}

are given by
min

p,l
Ts.t.E(t) ∑

i:si<t

Ei (11)

B(T) = Bo0 ≤ t ≤ T (12)
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The energy causality constraint can be expressed as

k

∑
i=1

li pi ≤
k−1

∑
i=0

Ei (13)

where i = 1, 2, · · · , k.
The optimal policy can be achieved as

N

∑
n=1

g(pn)ln = Bo (14)

for n = 1, 2, · · · , N.

in = argmin
i:si≤T

(
∑i−1

j=in−1
Ej

si − sin−1

)
(15)

pn =
∑in−1

j=in−1
Ej

sin − sin−1

(16)

ln = sin − sin−1 (17)

where T = ∑N
n=1 ln.

(B) Optimization of data arrivals: At t = 0, B0 bits available and data arrive in amounts
B1, B2, · · · , BM at times t1, t2, · · · , tM.

Now the optimization problem is

min
p,l

Ts.t.E(t) ≤ ∑
i:si<t

Ei (18)

B(t) ≤ ∑
i:si<t

Bi0 ≤ t ≤ T (19)

B(T) =
M

∑
i=0

Bi0 ≤ t ≤ T (20)

(C) Finite battery optimization: The system optimization problem for finite battery con-
straint can be written as

max
pi≥0

Li
2

log(1 + pi) (21)

s.t.
l

∑
i=1

li pi ≤
l−1

∑
i=0

Ei (22)

where l = 1, 2, · · · , N + 1.
l−1

∑
i=0

Ei −
l

∑
i=1

li pi ≤ Emax (23)

where l = 1, 2, · · · , N.
The concavity of the objective function along with the linear convexity of the con-

straints implies a unique maximal and suitability to a Lagrangian formulation. Associate
Lagrange multipliers λi ∧ µi with the two constraints. Express the optimal power levels by
applying the Karush–Kuhn–Tucker (KKT) optimality conditions.

pi =
1

∑N+1
j=i λj −∑N

j=i µj
− 1 (24)

where i = 1, 2, · · · , N.
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(D) Fading channel optimization: Suppose there are N changes in power levels and M
changes in the channel transfer function during. Therefore, T = L + M + N + 1.

The optimization problem becomes

max
pi≥0

N+M+1

∑
i=1

Li
2

log(1 + pihi) (25)

s.t.
l

∑
i=1

li pi ≤
l−1

∑
i=0

E(i) (26)

where l = 1, 2, · · · , N + M + 1.

l−1

∑
i=0

E(i)−
l

∑
i=1

li pi ≤ Emax (27)

where l = 1, 2, · · · , N.
The Lagrange multipliers now consist of three sets: λi, µi ∧ ηi. The third multiplier

accounts for the scenario where the current fading implies an optimal policy that dictates
no transmission during that epoch.

(A) Summary of Findings and Discussion

When the transmission distances are small (typically for wireless sensor networks),
the processing energy cost needs to be considered. Youssef-Massaad et al. [27] develop
optimal rate regions for an EH transmitter considering fixed (ε) processing cost for the
single-user, multiple channels and multi-access AWGN static channels. They have found
bursty transmissions with the same average signal power for a fraction θ of an epoch are
optimal. The processing cost overhead of using a new channel in the case of multiple
parallel channels is conditioned on the signal-to-noise ratio (SNR) level of the unused
channels being lower than the channel already in use by a given threshold. They call this
“glue pouring” variant of the water-pouring algorithm (Figure 4). The multiple access case
considered for two users reduces to the single-user case when there is no contention and
the parallel channel scenario when users compete. The main results that are associated with
the offline transmission optimization schemes (glue-pouring algorithms) are illustrated in
Figure 4.

Figure 5 illustrates the energy optimizations solution using the directional glue-
pouring algorithm. It starts with defining the remaining energy maximization (REM)
problem and packet scheduling for EH transmission. Then, the problem set is defined. The
online transmission policies (heuristic solution) are then set up to deal with transmitting
all the data. The glue-pouring algorithms are executed to provide energy to transmit data
packets fulfilling the energy causality.

Orhan et al. [28] extend the results of fading channels. Optimal offline schemes are
developed for the REM, minimizing transmission completion time (TCT), and an online
heuristic using the REM solution.



Electronics 2021, 10, 2342 11 of 20

Figure 4. Transmission optimization schemes with processing cost (glue-pouring algorithm).
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Figure 5. Directional glue pouring solution for energy optimizations.

5. Analysis of Online Transmission Schemes

Online transmission policy assumes that the underlying stochastic processes are ill-
defined. Therefore, it is better to define an iterative procedure for an optimal policy on a
sequence of past decisions. A Markov decision process (MDP) permits exactly this. An
MDP is built on the state-based formalism described by a Markov chain, by first associating
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a reward function with each state transition in the Markov chain to achieve a Markov
reward process (MRP), and finally associating an action with each reward, such that a
sequence of actions determines a policy. The resulting MDP may be employed to evaluate
a fixed policy by the process of value iteration that determines the value of each state for
the policy or may be used to determine the optimal policy that maximizes the reward.

Figure 6 shows a schema of various MDP optimizations. The MDP framework is used
to associate instantaneous importance with the transmission of each packet from an EHD
to maximize long-term average reward. An i.i.d. harvesting process restricts the current
system state to the contents of the battery with state transition probabilities determined by
the set of permissible actions assigned to each state (transmit/drop and associated powers).

Sharma et al. [29] develop optimal and sub-optimal transmission policies to maximize
throughput or minimize delay and extend the results to the time-slotted media access con-
trol (MAC) level. The treatment is clear, comprehensive, and free of restricting assumptions
making it a good base for design reference.

Michelusi et al. [30] consider a threshold structure per transmission policy that de-
termines the importance of transmitting the sensed data packets. A strict deadline policy
ensures the packets that are not transmitted are dropped. EH follows a Bernoulli i.i.d.
process, independent of the stochastic process generating the importance values {Vk}. It is
assumed that the amount of energy harvested during each slot is greater than the amount
required to transmission. The transmitter assumes perfect knowledge of the battery state
of charge, and battery degradation is not considered. The evolution of the battery state Bk
over interval [k, k + 1), k ∈ Z+ is described by Bk+1 = min{[Bk − Tk] + Ek, Emax}, where Tk
represents the amount of energy utilized for transmission during slot k, Ek is the amount
harvested. The policy λ manifests as a probability measure over the binary action space
and aims to maximize the long-term throughput. Given an initial state S0 the expected
reward gathered is defined by R(λ, S0) = lim

k→∞
in f 1

K E
{

∑K−1
k=0 TkVk

∣∣∣S0

}
and λ(opt) solves

the optimization problem λ(opt) = argmax
λ

R(λ, S0).

Figure 7 illustrates the system models for online transmission policies with corre-
lated energy supply. It consists of a system model, MDP model base, continuous-time
deterministic model (CDM), and discrete-time state model (DSM).

Three classes of policy are developed including optimal (using linear programming),
balanced policy (BP), and heuristic policy. BP transmits every permissible energy state on
an average balancing the energy consumption and harvesting rates. The heuristic policy is
conservative when energy levels are low, BP-like at average energy levels, and aggressive
when stored energy approaches Emax. The research presented in [31] extends the analysis
for the case where the underlying EH process {Ak} is a two-state (Good, Bad) Markov chain.
The optimal policy is the transmission probability η(e, a) and power to depletion ratio
ρ , emax

DB
defined that determines the performance of the various algorithms developed

in the discrete and continuous time-space. The continuous-time model (CTM) involves a
deterministic EH process known to the EHD controller. The optimal policy is found to be
determined by the value of ρ.
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Figure 6. Schema of various MDP optimizations.
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Figure 7. System models for online transmission policies with correlated energy supply.

6. Open Research Problems and Future Directions

The mathematical model for EHDs needs to be augmented with statistical data from
real-world scenarios. We need a base power consumption and storage models on actual
devices as well as account for leakage, degradation, and capacity depletion. This is often
seen in storage elements and uses this information to inform energy management policies.
An intelligent energy management scheme that responds to battery capacity degradation
within the Markov chain framework is developed in [32].

6.1. Open Research Problems

There are several open research problems on EH wireless networks. First, the random
intermittency of EH along with the transmitter’s action result in uncertainty of energy
available at the transmitter. The transmitter energy is coupled with the non-availability
of energy state information at the receiver posing significant challenges in determining
the channel capacity. Certainly, the processing of the received signal and determining
energy allocations to various system components become a complicated problem. A signal
processing perspective is best suited to this problem. The problem of generic coding
schemes remains open. The information-theoretic capacity of a general channel with
a general finite-size battery remains unsolved, as does accounting for correlated side
information of communicating EHDs harvesting energy from the same source.

Second, a priori knowledge of EH and data arrival processes assumed by offline
transmission schemes are ideal and unrealistic. Furthermore, even the knowledge of future
states (online schemes) may not remain consistent over time or available during deploy-
ment. The reinforcement learning (RL) algorithms could be used to estimate stochastic
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process parameters in real-time to adapt transmission schemes. Given the state space
of EHD correlated with the transmission, the policy is not large, owing to the binary
nature of the actions. The RL techniques can be employed to evaluate the policy and
system optimization.

Third, Blasco et al. [16] employ a reinforcement learning technique called Q-learning
to learn the transition probabilities of the underlying Markov processes (fading states, EH,
data arrivals). Simulations indicate that the algorithm converges within an acceptable
learning period. An interesting research problem would be to explore such solutions and
integration of learning algorithms and sub-optimal low complexity solutions. The assump-
tion of independence of the stochastic processes governing the data and energy arrivals
might not hold at a network level. For example, in a multi-hop setting the transmissions
scheme of one node couples with the data arrival process of the receiving/relaying node.
Additionally, the energy arrivals at spatially proximate EH nodes from a common source
may be jointly distributed. Though these challenges exacerbate analytic complexity they
also present an opportunity for greater integration of local optimization schemes. Although
reference [21] derives throughput maximizing adaptive coding and modulation schemes
for lifetime extension of battery-powered WSNs, a similar treatment is missing in the
EH field.

Fourth, the efficiency of EH devices is determined by the efficiency of energy transfer
and thus with the circuits and devices that harvest, covert, and transfer the energy. Energy
harvesting devices typically operate over short distances where circuit-level energy costs
are comparable to transmission costs. We saw that with processing energy cost the optimal
transmission is bursty. However, the energy required for burstiness scales exponentially
with capacity. A detailed model of energy consumption calls for an inter-disciplinary
approach integrating communication strategy with circuit design would be a good research
problem for investigation.

6.2. Future Research Directions

Future wireless networks are expected to employ a portfolio of technologies, architec-
tures, devices, components, algorithms, and protocols targeting energy harvesting (EH)
in wireless systems. We highlight and discuss (with supporting literature) the following
four future research areas that are worthwhile to pursue: (1) energy harvesting framework
for WSNs; (2) network-wide green measures toward EH framework; (3) energy outage
probability analysis toward EH; (4) energy harvesting delay-tolerant integrated framework.
These four future research directions are discussed below.

Energy harvesting framework for WSNs: Yang and Chin [9] present a study for WSN
to determine the locations to place the minimal number of nodes used for sensing and
relaying deployed nodes. In Liu et al. [10], given a set of locations, the study endeavors
to determine the minimum number of wireless sensor nodes required for good coverage.
Thomas et al. [11] discuss energy management techniques in WSNs focusing on node
scheduling and deployment. For WSNS, Djenouri and Bagaa [12] present a study within
the context of communication coverage for sustainable data delivery. Baroudi [13] pro-
poses a framework for battery maintenance and recharging in WSNs using mobile robots.
Developing an energy harvesting framework for WSNs is suggested as future research.

Network-wide green measures toward the EH framework: Figure 8 shows an
overview of the network-wide green measures EH framework. There may be various
future research projects that can be derived from Figure 8. Examples of new research
projects include green network architecture, energy harvesting, and monitoring, and
system-level modeling for energy consumption.

Wireless sensor networks (WSNs) form a subset of the overall architecture yet there
is a wide variety of MDPs applied to different aspects [33]. Figure 9 shows various
applications of Markov decision processes related to WSNs. A hybrid approach combining
centralized and distributed control facilitated by the separation of data and control planes
powered by software-defined networking (SDN) and network function virtualization
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(NFV). These technological realizations are needed to manage the anticipated uncertainties
and performance requirements that emerge from the system-level integration of EH.

Figure 8. Network-wide green measures toward an EH Framework.

Energy outage probability analysis toward EH: Existing literature on EHD restricts
evaluating performance measures such as energy outage probability (EOP) to the device
level. There is a gap in policies examining the reconfiguration of topology and routing to
minimize the impact of individual device-level energy outages on system EOP. The weather
systems form part of a larger eco-sphere of balanced energy exchanges that determine
climatic patterns. If all of the significant energy needs of wireless systems [34,35] are
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derived from natural sources, one can expect a downstream effect on the encompassing
systems the energy is depleted from, especially given the scale and pervasiveness of
wireless communication systems. Research on energy outage probability modeling and
analysis would a good one to pursue.

Figure 9. Applications of Markov decision processes in various wireless sensor networks.

Energy harvesting delay-tolerant integrated framework: References [36–38] are some
examples of research that have been analyzed routing in delay tolerant networks (DTNs). A
multi-paradigm approach to routing and system design that switches to a DTN typesetting
in the event of transient/long-term energy depletion or failure of EH nodes leading to
disconnected sub-graph topologies. A mobile (aerial/terrestrial) sink can be deployed for
periodic data collection from the sub-graphs. Such means decouple network lifetime from
individual node failures while accounting for temporary energy shortages, extending the
utility of deployments. EH has the potential to produce clean and renewable energy [15],
but at the same time, it presents novel theoretical challenges that need to incorporate
challenges emanating from practical considerations. Research on developing an efficient
EH delay-tolerant integrated framework using an interdisciplinary approach (informa-
tion theory, coding, and wireless communication with practical considerations) would be
worthwhile to pursue.
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7. Concluding Remarks

The energy harvesting (EH) wireless networks focusing on channel capacity, transmis-
sion schemes, and power optimization were surveyed. We explored recent advances in
EH approaches for wireless communication systems. We looked at information-theoretic
frameworks describing channel capacity at the physical protocol layer for different scenar-
ios of battery capacity. Algorithmic formulations relating to energy and data constraints,
as well as processing costs, were considered in the offline energy optimization schemes.
The energy feasibility tunnel and various flavors of the water-filling algorithms were
discussed. Online frameworks employing Markov decision process variants were also
explored. Various research issues in the design of EH wireless networks and channel
capacity were discussed. New research programs are required to create an EH Reference
model, architecture, and protocols for addressing issues and design challenges of green
wireless communication systems. Hence, we need a concerted effort among industry and
academia and close cooperation with various government agencies including energy and
communication sectors, and regulatory bodies. Thus, EH can be the next technological
shifting paradigm that provides technologically feasible and economically viable solutions
for next-generation wireless network systems. The integration of EH algorithms for a
sub-optimal low complexity solution is suggested as future work.
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