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Abstract: Solar eruptive events could affect radio communication, global positioning systems, and
some high-tech equipment in space. Active regions on the Sun are the main source regions of
solar eruptive events. Therefore, the automatic detection of active regions is important not only for
routine observation, but also for the solar activity forecast. At present, active regions are manually or
automatically extracted by using traditional image processing techniques. Because active regions
dynamically evolve, it is not easy to design a suitable feature extractor. In this paper, we first
overview the commonly used methods for active region detection currently. Then, two representative
object detection models, faster R-CNN and YOLO V3, are employed to learn the characteristics of
active regions, and finally establish a deep learning-based detection model of active regions. The
performance evaluation demonstrates that the high accuracy of active region detection is achieved
by both the two models. In addition, YOLO V3 is 4% and 1% better than faster R-CNN in terms of
true positive (TP) and true negative (TN) indexes, respectively; meanwhile, the former is eight times
faster than the latter.

Keywords: detection; deep learning; solar active region

1. Introduction

A solar active region is an area with a strong magnetic field on the Sun. It is considered
the major source region of solar eruptive events. Solar eruptive events can cause severe
space weather effects, which may affect the safety of satellites, the precision of global
positioning systems and so on. Therefore, it is of great importance in routine monitoring
and the automatic extraction of active regions.

Some efforts have been made towards automatically identifying solar active regions.
Benkhalil et al. [1] determined the thresholds for an active region to obtain the initial
seeds of active regions. The noise is removed by median filtering and morphological
operations. Based on these initial seeds, a region growing algorithm is used to detect
active regions. Zhang et al. [2] designed an active region detection system by using an
intensity threshold and morphological analysis algorithm. McAteer et al. [3] combined
a region growing algorithm and boundary extraction technique to detect active regions.
Caballero et al. [4] proposed a two-step method to detect active regions from full-disk
images. In the first step, the region growing algorithm is applied to segment the bright parts
in active regions. In the second step, partition-based clustering and hierarchical clustering
are used to group together these bright parts, respectively. The hierarchical clustering
method was recommended because of its good performance. Higgins et al. [5] proposed the
solar monitor active region tracking (SMART) algorithm to detect and track active regions
throughout their lifetime. In this algorithm, the quiet Sun and some transient magnetic
features are removed, and then the region-growing technique is applied to determine the
active regions. Some magnetic properties of an active region, such as region size, magnetic
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flux emergence rate, and non-potentiality measurements, are calculated. Colak et al. [6]
proposed automated solar activity prediction (ASAP) to automatically detect, group and
classify sunspots. The intensity threshold, morphological algorithms, region growing
algorithms and neural networks are applied to determine the boundaries of sunspots.
Watson et al. [7] proposed the sunspot tracking and recognition algorithm (STARA) to detect
and track sunspots from solar white light images. Barra et al. [8] proposed a fuzzy clustering
algorithm (the spatial possibilistic clustering algorithm (SPoCA)) to automatically segment
the full-disk solar images into coronal holes, quiet Sun and active regions, respectively.
This unsupervised method can overcome the imprecision of the regions’ definition. The
SPoCA algorithm was improved in [9], and the automatic tracking of active regions was
further developed. The performance of SMART, ASAP, STARA and SPoCA was analyzed
and compared in [10]. They found that ASAP tends to detect very small sunspots, while
STARA has a higher threshold for sunspot detection, and SMART and SPoCA detect more
regions than the National Oceanic and Atmospheric Administration (NOAA) for the active
regions. The proposed detection methods are mainly based on the intensity threshold,
morphological operations, region growing algorithms and clustering methods. In these
methods, the pre-defined parameters should be determined [11]. However, it is difficult to
settle on the optimal parameters.

Deep learning algorithms can automatically extract the distinguishing features and
realize the end-to-end objective detection. Many deep learning algorithms, for example,
the convolutional neural network (CNN) [12–15], long short-term memory (LSTM) [16,17]
and generative adversarial network (GAN) [18–20], have been widely used in solar activity
forecast. However, so far, a deep learning algorithm has not been widely applied to detect
solar active regions. Here, faster R-CNN (regions with convolutional neural networks) and
YOLO V3 (you only look once, version 3) algorithms are used to detect active regions from
the full-disk solar images, and their performances are compared.

This paper is organized as follows: Section 2 summarizes the related works, Section 3
describes the data, Section 4 describes the deep learning based objective detection algorithm,
Section 5 discusses the performance, and Section 6 presents the concluding remarks and
suggestions for future work.

2. Related Work

There have been many studies on the automatic detection of active regions; the main
algorithms include the intensity threshold, morphological operations, region growing
algorithms, clustering methods and the combination among them, shown in Table 1. It is
difficult to select parameters for different solar images in these algorithms.

Table 1. Related work.

Related Algorithms
Work Threshold Morphology Region Growing Clustering Deep Learning

[1] X X
[2] X X
[3] X
[4] X X
[5] X
[6] X X X
[8] X

Our X

There are two main branches of object detection models when using deep learning.
One is two-stage model, including R-CNN, fast R-CNN, faster R-CNN and mask R-CNN.
The other is one stage model, including the YOLO (you only look once) series.

In faster R-CNN, region proposals are firstly generated. Then, a CNN is trained to
classify proposal regions, and obtain the regressions of bounding boxes of the proposal
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regions. Unlike the R-CNN algorithm, the fast R-CNN algorithm maps CNN features
corresponding to generated region proposals; hence, the fast R-CNN detector is more
efficient than the R-CNN detector. In the faster R-CNN detector, the region proposal
network (RPN) is used to generate region proposals. RPN is faster and better than the
proposed generation method of region proposals.

Faster R-CNN is a detection algorithm with two steps. It usually has limits in the
detection speed. A one step algorithm, for example, the YOLO series algorithm, is proposed
to learn a single network for detecting the object boundary box. This detection network
is an end-to-end regression based model; hence, the detection speed of the network is
improved. However, the YOLO algorithm is not very good at detecting small targets.
Fortunately, we usually do not focus on the small active regions in solar activity prediction.

In this paper, we apply these two object detection models (one-stage algorithm of
YOLO and two-stage algorithm of faster R-CNN) to solar active region detection and
compare their performance.

3. Data

The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observa-
tory (SDO) provides the routine full-disk magnetic observation of the Sun. The National
Oceanic and Atmospheric Administration (NOAA) provides the location and extension of
active regions in the full-disk images day-by-day; one example is shown in Figure 1.

Figure 1. Full-disk magnetogram with labeled active regions (on 20 January 2015).

We downloaded the solar full-disk images and the information of active regions from
the Joint Science Operations Center (JSOC) database [21]. The location and extension of
active regions are considered the ground truth.

A total of 4645 full-disk images labeled with active regions were obtained from 2010
to 2017, and the interval was 24 h. The data from 2010 to 2015 are considered the training
dataset, and the remaining data are considered the testing dataset.
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4. Method
4.1. Faster R-CNN for Active Region Detection

Traditional object detection techniques include 3 major steps:

(1) Region proposal generation. A large number of region proposals are generated by the
selective search algorithm [22].

(2) Feature extraction. Some feature extractors are applied to obtain a fixed-length feature
vector, for example, Hog or SIFT [23,24].

(3) Classification. Based on the fixed-length feature vector, the classification model can be
learned to judge whether the region proposal is the object.

The feature extraction is critical to the success of the object detection techniques. In
traditional object detection techniques, it is difficult to design feature extractors for different
tasks. In region-based CNN (R-CNN), a convolutional neural network is proposed to learn
the features from data. To speed up the process of object detection, an end-to-end network is
used to detect different objects in faster R-CNN. A novel region proposal network (RPN) is
applied to generate region proposals, which saves time, compared to traditional algorithms,
such as selective search.

As shown in Figure 2, a faster R-CNN model is composed of 3 neural networks [25]:

(1) A convolutional neural network is used to extract the features from the solar full-disk
magnetograms. A pre-trained CNN (VGG-16 [26]) is selected.

(2) A region proposal network (RPN) is trained to generate the proposal objects, where
objects are likely to exist on the full-disk magnetograms.

(3) A fully connected neural network is applied to determine the actual class and exten-
sion of each proposal object.

Figure 2. Flow chart of faster R-CNN model.
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The whole network of a faster R-CNN is composed of a network of feature extraction
followed by a RPN network and a classification network.

RPN aims to obtain a set of rectangular object proposals and their objectness score.
As shown in Figure 3, the RPN is mainly composed of a convolutional layer, a classification
layer and a regression layer. Each sliding window over the output feature map of the
last layer in VGG-16 is mapped into 512-dimensional features, which represents the k
anchor box centered at this position in original images. Then, it is fed into a box-regression
layer and a box-classification layer, respectively, to obtain the category (positive sample
including detection object and negative sample for background) and position coordinate
of the corresponding anchor. VGG-16 includes the shareable convolution layers, and the
pooling layers. The convolution layers are applied to extract features, and the pooling
layers are used to reduce the dimension of the images. VGG-16 includes 13 convolutional
layers, each with Relu, and 4 max pooling layers. The pre-trained VGG-16 model is usually
used as a feature extractor in the object detection task and can be download in the PyTorch
platform [27]. In the preprocessing step, the full-disk images are resized to 1024-by-1024.
An image of dimension 1024 × 1024 is reduced to 64 × 64 feature map here. Following the
feature extraction network, a RPN is trained to generate object proposals to replace the
time-consuming selective search algorithm.

Intermediate Layer

512-dimension

4k Coordinates2k Scores

Classification Layer Regression Layer

Convolutional feature map

Sliding window

K anchor boxes

Figure 3. Structure of RPN.

In order to train RPN, we need to assign a binary class label. The positive class means
that the concerned anchor contains an object, while the negative class means that the
concerned anchor is the background. Intersection over union (IoU) between the ground
truth and the proposal object is applied to define the loss function.

IoU =
Area of overlap
Area of Union

(1)

The IoU is calculated by dividing the area of overlap between the bounding box and
the ground truth by the area of their union. The higher the IoU, the better the prediction.
The proposal object, which has an IoU overlap higher than 0.7 with a ground-truth box, is
considered to be a positive sample, while the proposal object, which has an IoU overlap
less than 0.3 with a ground-truth box, is considered to be a negative sample. Neither
positive nor negative samples contribute to the training process. After generating binary
samples, the RPN is trained by using backpropagation and stochastic gradient descent.
In the training step, random transformation is used to augment the training data. Data
augmentation can improve the network accuracy by adding variety to the training data
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without actually increasing the labeled samples. The batch size is settled to 128, in which
the ratio of positive and negative samples is 1:1.

When the object proposals are determined, the region of interest (RoI) pooling layer is
used to obtain features of the region proposal with a fixed size; then, the softmax classifier
and the bounding box regressor are trained to determine the class of the object and its
bounding box.

The proposed model is optimized, using the SGD algorithm with momentum = 0.9.
The initial learning rate is 0.001, and is then divided by 10 times after every 6 epochs.
The model is trained on a single NVIDIA Tesla P100 with a batch size of 4, and the
maximum epoch of 100.

4.2. YOLO V3 for Active Region Detection

Different from faster R-CNN, YOLO (you only look once) [28] regards detection as a
pure regression problem without the need for two stages of RPN and regression/classification
in faster R-CNN. YOLO directly predicts the image pixel as a bounding box coordinate
and classification labels. YOLO series have been continually optimized, applying more
advanced techniques for better performance and real-time applications. For example,
YOLO V2 proposes a method to jointly train on object detection and classification; residual
connections are used in YOLO V3; and YOLO V4 develops a more efficient and powerful
model, as does YOLO V5. However, YOLO V4 and YOLO V5 may be a little bit over-
optimized regarding our task, which concerns a simple binary classification. Thus, we
employ YOLO V3 as a baseline of our model, which is light-weight.

The flow chart of YOLO V3 darknet-19 is shown in Figure 4, where block-1 is composed
of conv-batchnorm-LeakyReLU-maxpool modules, and block-2 consists of conv-batchnorm-
LeakyReLU modules. The route layer concatenates features from previous layers. In our
task, we predict the coordinates of bounding box and classification confidence from the
extracted features directly, which means that each bounding box consists of five predictions:
tx, ty, tw, th and confidence. The extracted features are divided into N × N grid cells. The
YOLO detection block can predict five coordinates for each bounding box: tx, ty, tw, th
and t0. If the cell has the offset of (cx, cy) relative to the top left corner of the image,
and the bounding box prior has the width and height of pw,ph, then the YOLO block can
be predicted by the following:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwetw

bh = pheth

(2)

Here, two nonlinear functions σ and exp could make the prediction more efficiently.
In our work, we take six bounding box priors of YOLO V3, (10 × 14), (23 × 27), (37 × 58),
(81 × 82), (135,×169), (344 × 319).

We use the sum of squared error and threshold of 0.5 for bounding box regression.
For classification, we simply use logistic classifiers. From the Figure 4, we can find that
the model predicts boxes at two different scales. The YOLO prediction module can predict
bounding box, objectness (confidence in being an active region or not). In this work, we
predict three boxes at each scales. Thus, the tensor is n × N × [3 × (4 + 1)] for the four
bounding box offsets, and one objectness prediction (being active region or not). We take
the feature map from the two previous layers and upsample it by 2×. We also take a feature
map from the previous layers in the network and concatenate it with our upsampled
features. We then add more convolutional layers to process this combined feature map,
and finally predict a similar tensor for the final outputs. We follow the original loss function
of YOLO V3 to optimize our model. We train the network for 300 epochs on the training
and validation data sets. The batch size is 64 through training. During training, we use
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standard data augmentation tricks, including random crops, rotations, and hue, saturation,
and exposure shifts.

Figure 4. Flowchart of YOLO V3 model.

5. Results
5.1. Evaluation Index

There are two types of regions on the Sun: active regions and quiet regions. The active
regions should be detected from the solar full-disk images.

Four possible measures could be defined in the contingency table (Table 2). The active
region is considered to be a positive sample, and the quiet region is considered to be a
negative sample. The number of samples that are correctly detected as positive are true
positive (TP), while the number of samples that are correctly detected as negative are
true negative (TN). The number of samples that are wrongly detected as positive are false
positive (FP), while the number of samples that are wrongly detected as negative are false
negative (FN).

Table 2. Contingency table for active region detection.

Detected Active Region Detected Quiet Region

Active region True Positive (TP) False Negative (FN)
Quiet region False Positive (FP) True Negative (TN)

The output of the object detector is the detected bounding box. Depending on the
overlapping amount between the bounding box and the ground truth object, the bounding
box is determined to be true or false. Two metrics, the true positive rate (TP rate) and
true negative rate (TN rate), are defined to measure the performance of positive class and
negative classes, respectively.

TP rate =
TP

TP + FN
(3)

The TP rate is the percentage of active regions correctly detected.

TN rate =
TN

TN + FP
(4)

The TN rate is the percentage of quiet regions correctly detected.

5.2. Performance

Figure 5 shows an example of faster R-CNN detection of active regions on 4 May 2016.
We can find that two active regions are missed, and one quiet region is falsely detected as
an active region.
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Figure 5. Example of the faster R-CNN detection of active region.

Figure 6 shows an example for YOLO V3 detection of active regions in the same period.
There are no missed or falsely detected active regions.

Figure 6. Example for the YOLO V3 detection of active region.

A total of 572 magnetograms, labeled 601 active regions from 2016 to 2017, are used
to test these two detection models, respectively. For the faster R-CNN model for active
region detection, the TP rate is 90%, while the TN rate is 98%. Usually, small active regions
or active regions at the edge of the solar disk are more likely to be missed because the
active regions at the edge of the solar disk could be influenced by the projection effect of
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the Sun. For the YOLO V3 model for active region detection, the TP rate and TN rate are
both improved, with a TP rate of 94% and TN rate of 99%.

There is a two-stage training process for the faster R-CNN algorithm, so it is slow and
hard to optimize. YOLO V3 is extremely fast since it is a one-stage regression problem. The
average time to process a single image for YOLO V3 is 10 ms, and it is 80 ms for the faster
R-CNN model.

6. Conclusions

An active region detection dataset is built from 2010 to 2017. The dataset consists of
solar full-disk images, bounding boxes of active regions. The dataset is chronologically
divided: the data from 2010 to 2015 are used for training, and the data from 2016 to 2017
are used for testing. Based on the training data, two deep learning detection model (faster
R-CNN and YOLO V3) are trained, and their performance is evaluated and compared by
using the same testing data. We can find that YOLO V3 performs better than faster R-CNN
in not only detection accuracy, but also computing speed. The TP rate and TN rate increase
by 4% and 1%, respectively, and the average computing speed of YOLO V3 is 8 times faster
than that of faster R-CNN. From the above analysis, active regions at the edge of solar disk
are most likely to be missed. Thus, in the future, we will collect more active regions located
at the edge of the solar disk to update the dataset.
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