
electronics

Article

A Novel Ultra-Low Power 8T SRAM-Based
Compute-in-Memory Design for Binary Neural Networks

Youngbae Kim * , Shuai Li , Nandakishor Yadav and Kyuwon Ken Choi

����������
�������

Citation: Kim, Y.; Li, S.; Yadav, N.;

Choi, K.K. A Novel Ultra-Low Power

8T SRAM-Based Compute-in-

Memory Design for Binary Neural

Networks. Electronics 2021, 10, 2181.

https://doi.org/10.3390/

electronics10172181

Academic Editors: Taeshik Shon and

Kiat Seng Yeo

Received: 27 July 2021

Accepted: 2 September 2021

Published: 6 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

DA-Lab, Department of Electrical and Computer Engineering, Illinois Institute of Technology,
3301 South Dearborn Street, Chicago, IL 60616, USA; sli97@hawk.iit.edu (S.L.); nkyadav.vlsi@gmail.com (N.Y.);
kchoi12@iit.edu (K.K.C.)
* Correspondence: ykim102@hawk.iit.edu

Abstract: We propose a novel ultra-low-power, voltage-based compute-in-memory (CIM) design
with a new single-ended 8T SRAM bit cell structure. Since the proposed SRAM bit cell uses a
single bitline for CIM calculation with decoupled read and write operations, it supports a much
higher energy efficiency. In addition, to separate read and write operations, the stack structure of
the read unit minimizes leakage power consumption. Moreover, the proposed bit cell structure
provides better read and write stability due to the isolated read path, write path and greater pull-up
ratio. Compared to the state-of-the-art SRAM-CIM, our proposed SRAM-CIM does not require extra
transistors for CIM vector-matrix multiplication. We implemented a 16 k (128 × 128) bit cell array for
the computation of 128× neurons, and used 64× binary inputs (0 or 1) and 64 × 128 binary weights
(−1 or +1) values for the binary neural networks (BNNs). Each row of the bit cell array corresponding
to a single neuron consists of a total of 128 cells, 64× cells for dot-product and 64× replicas cells
for ADC reference. Additionally, 64× replica cells consist of 32× cells for ADC reference and 32×
cells for offset calibration. We used a row-by-row ADC for the quantized outputs of each neuron,
which supports 1–7 bits of output for each neuron. The ADC uses the sweeping method using 32×
duplicate bit cells, and the sweep cycle is set to 2N−1 + 1, where N is the number of output bits. The
simulation is performed at room temperature (27 ◦C) using 45 nm technology via Synopsys Hspice,
and all transistors in bitcells use the minimum size considering the area, power, and speed. The
proposed SRAM-CIM has reduced power consumption for vector-matrix multiplication by 99.96%
compared to the existing state-of-the-art SRAM-CIM. Furthermore, because of the decoupled reading
unit from an internal node of latch, there is no feedback from the reading unit, with read static noise,
and margin-free results.

Keywords: machine-learning-based platform technology and application; binary neural networks;
BNN; compute-in-memory; AI; SRAM; SRAM-CIM; CIM

1. Introduction

Recently, as AI models have become increasingly complex to improve accuracy, the
hardware that supports them is becoming heavier and more complex [1]. Such complex
and heavy hardware faces various limitations, such as increased power consumption and
reduced processing speed due to high throughput. Compute-in-memory (CIM) technology
is emerging as an alternative solution to these limitations. The basic working principle
of compute-in-memory (CIM) is to use the existing internal embedded memory array
(e.g., SRAM) instead of external memory, and it reduces unnecessary access to external
memory by calculating with internal embedded memory. In general, for AI accuracy,
countless calculations must be performed continuously, and a lot of power consumption is
wasted, as external memory must be used for each calculation. With the recent trend [2] of
increasing the number of operations as the complexity of AI models increases, these CIM
technologies are spotlighted as innovative methods in AI research [3–6].
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In CIM design, the processing speed of memory for AI calculation is an important
factor that cannot be ignored, as well as low power. To meet these requirements, various
next-generation memories such as Resistive RAM (RRAM) [7–10] and Magnetoresistive
RAM (MRAM) [11,12] are emerging; however, as shown in Table 1, their speed is still
lagging behind SRAM [13,14]. For this reason, SRAM has been considered the most
suitable memory for CIM designs in recent years. These SRAMs have several structures,
including the most basic 6T SRAM, and we have devised a new SRAM optimized for CIM.
Traditional 6T SRAM-based CIM [15,16] has the advantages of structural simplicity and
no need for additional transistors for CIM calculation, However, it has a disturbing issue
between read and write operations because read and write use the same structure, and has
the disadvantage of a narrow dynamic range. In order to secure these shortcomings, in a
recent study, researchers have devised a new 8T SRAM-based CIM based on the traditional
6T SRAM-based CIM. In the Section 2, we show the comparison of the state-of-the-art
8T SRAM-based CIM [17,18] and proposed 8T SRAM-based CIM structures for a single
neuron. The state-of-the-art 8T SRAM-based CIM includes two extra transistors for each
bitcells for vector multiplication in the traditional 6T SRAM cell. The extra two transistors
can be turned on/off by controlling weight (Q and Qb) values, and are directly connected
to RWL (input). Basically, it can be assigned a binary (i.e., 0 or 1) input using RWL for
BNN multiplication. Weights can be stored in Q and Qb in advance through a write
operation (i.e., −1 is Q = H, Qb = L). However, the increase in power consumption due to
the added transistors for each bitcell and bitline remains a concern that cannot be ignored.
There is a drawback of having to redesign the whole array structure for CIM computation
due to the extra transistors, which leads to increased power consumption and reduced
processing speed.

Table 1. Performance comparison of RAMs [13,19–21].

SRAM DRAM MRAM RRAM

Cell Size (F2) 50–120 6–8 4–20 1–10

Read Delay (ns) 1–10 10–30 5–10 5–10

Write Delay (ns) 1–10 10–30 10–20 10–30

Read Power Low Low-Medium High Low-Medium

Write Power Low Low-Medium Low-Medium Low-Medium

In this paper, we propose a novel 8T SRAM-based CIM technology for stable and
low-power CIM while securing the shortcomings of the state-of-the-art 8T SRAM-based
CIM. Furthermore, we propose a new row-by-row ADC structure that supports the CIM
structure. This column-based ADC architecture can efficiently convert analog dot-product
results into digitized neuron values without major structural changes. We implemented
128× neurons to verify the proposed techniques. We simulated this using a 16 K (128 × 128)
size SRAM-CIM for actual fabrication planed in next paper, but our proposed structure has
no chip size limitation. In other words, our proposed structure can be supported to most
sizes, including 256 × 256 or 512 × 512.

2. Proposed Compute-in-Memory Design

Figure 1a shows the column for single neuron calculation using the newly proposed
SRAM cell, and Figure 1b shows the state-of-the-art SRAM-CIM for single neuron. The
newly proposed SRAM cell has an independent structure, as the write unit and the read
unit are completely isolated. BNN multiplication can be performed in the read unit, and
weight values for BNN can be stored in Q and Qb with the write unit. We have completely
solved the disturbing issue between reading and writing by making this completely inde-
pendent of reading and writing, and the read unit can support CIM calculation without
any extra transistors.
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Figure 1. Comparison of (a) proposed 8T-based SRAM-CIM for 64× dot-product cell array and (b) the-state-of-the-art
6T-based SRAM-CIM [18].

In addition, the stacked structure of our read unit significantly reduces leakage power
for BNN calculation. Furthermore, by using a single-read bit line structure, unlike the
conventional SRAM cell, unnecessary power consumption is diminished. Furthermore,
the proposed new SRAM cell provides a high yield in the low-threshold operating region,
and can support a stable cache in Negative Temperature Coefficient (NTC)-based systems.
Our proposed new single-ended SRAM bit cell structure has the disadvantage of having
to design a special sense amplifier due to the single-read bit line (RBL), but it has many
advantages in terms of delay and power consumption.

Table 2 shows the four possible states of BNN calculation according to our proposed
cell, and the detailed operation of the vector-matrix multiplication is shown in Figure 2.
For BNN calculation, we must allocate 0 or 1 as a binary input, which can be implemented
by applying a positive pulse through RWL. The 0 state of the input is the basic low state,
and input 1 can be expressed by applying a positive short pulse. The weight value can be
stored as −1 (i.e., Q = L, Qb = H) or +1 (Q = H, Qb = L) through the write unit of SRAM
cell. When RWL is L, the transistor of the read unit connected to RWL is turned off, so
the output of RBL remains the same as the precharged state (0.45 V). Conversely, when
RWL is H, the transistor of the read unit connected to the RWL is turned on and the RBL is
discharged or charged. Due to the stacked structure of the read unit, a considerable amount
of power consumption can be reduced for discharging operations. The discharging and
charging status of RBL is controlled through the weight value stored in Qb and the inverter
of the read unit.
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(a) Weight(W) × Input(X)
−1 × 0 = 0 (No change)

(b) Weight(W) × Input(X)
−1 × +1 = −1(−∆V)

(c) Weight(W) × Input(X)
+1 × 0 = 0 (No change)

(d) Weight(W) × Input(X)
+1 × +1 = +1(+∆V)

Figure 2. Charging or discharging operation for possible four states with binary input/weight combinations of the proposed
SRAM-CIM.

Table 2. Possible four states of the proposed SRAM-CIM with binary input/weight combinations.

Weight (Q,Qb)

Input (RWL) 0

(RWL = L)

1

(RWL = H)

−1

(Q = L, Qb = H)

0

(No change)

−1

(−∆V)

+1

(Q = H, Qb = L)

0

(No change)

+1

(+∆V)

3. A Column-Based Neuron Design for BNN

Figure 3 shows the diagram of the proposed SRAM-CIM for the 16 K fully connected
Binary Neural Network (BNN). Our column-based neuron contains a total of 128 bit cells in
a single column, including 64 cells for dot-product, 32 cells for ADC reference and 32 cells
for ADC calibration. The analog result of dot-product is quantized using comparator ADC
with ADC reference cells, and the sense amplifier at the bottom is used to sequentially
quantize the dot product. Comparators are similar to OP amps, and typically used in
applications where various signal levels are compared to a fixed voltage reference. Due to
this characteristic, most comparators are used as 1-bit Analog-to-Digital Converter (ADC),
and we quantized our analog sum of the dot-product results using this principle.

2N−1 + 1 (1)

For example, if we have 64× dot-products and 32× ADC reference cells, according to
Equation (1) of the 2N−1 + 1, where N is the number of output bits, we need 27−1 + 1 = 33
cycles for ADC, as shown in Figure 3 right). When the weight values are stored in the
dot-product cells, as shown in Figure 3 right, we can calculate the sum of 64x dot-product
values according to the RBL operation (i.e., In Figure 3, the sum of dot-product results is
+30) through the charge or discharge operation of the RBL. In 33 cycles for ADC operation,
where each cycle is an ADC reference, cell values can be swept from −32 to +32 depending
on step size 2. As shown in Figure 4, the swept ADC reference value (−32∼+32) and the
sum of the dot-product results (+30) is compared according to the comparator ADC basic
operation method; if the dot-product sum (+30) is less than the ADC reference value, it
is quantized as 0. If it is larger or equal to the ADC reference value, it is quantized as 1.
After 33 cycles, 1 bit results of each cycle TH[0], TH[1], . . ., TH[32] are concatenated to
obtain 33 bits of TH[32:0] quantized value. The generated 33 bits thermometer value is
subsequently converted into a 7-bits binary output value for a single neuron by using the
one-hot coding method [22].
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Figure 3. (left) A schematic diagram of the proposed column-based SRAM-CIM corresponding to the fully-connected layer.
(64× input and 128× neurons) (right) Structure of column ADC (64× input for 7-bit output).

Figure 4. Comparison method for ADC operation (64× input for 7 bit output).

Figure 5 shows the overall CIM architecture using the proposed SRAM cell. 128× bit
cells for 64× (x[0]− x[63]) inputs are connected vertically, and each column represents each
neuron. This structure aims towards 16 K SRAM-CIM, and the test chip to be considered
in the next paper will be fabricated as follows. This structure is designed by separating
the RBL for dot-product cell and RBL for ADC-ref for ADC comparator for each column,
and WBL is designed to be used across all cells. In the case of a write operation to store
the weight value, a signal is applied to the WBL through the WBL driver controlled by the
WWL driver. In other words, the WWL driver selectively controls the row for writing, and
applies a signal to the selected row through the WBL driver. Unlike the state-of-the-art
structure, we use a single bit line (WBL, RBL) structure, so there is no disturbing issue of
R/W, resulting in a lot of improvement in stability. Furthermore, there is no need for an
extra transistor for CIM calculation due to the independence of the read bitline. Therefore,
the proposed structure shows improved results in terms of delay and power consumption,
as well as in the stability of CIM. To reduce unnecessary power consumption in the pre-
charge, the pre-charge driver pre-charges only when input is applied to the input driver
through the AND gate and controller.
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Figure 5. Overall architecture of the proposed 16K SRAM-CIM (64× input and 128× neurons).

4. Performance Evaluation and Analysis
4.1. Proposed Compute-in-Memory Design

For reliable implementation, we used the same transistor size, capacitor size, voltage
source, temperature and test circuit as in the proposed CIM and the conventional CIM, and
all the conditions were identical. We used FreePDK 45 nm technology for verification of
the proposed structure and simulated it with Synopsys Hspice and Cosmoscope.

∆V = τ
Iunit

C
(2)

In our column-based neuron design, the charging or discharge level in the RBL of a
single SRAM cell is set to 0.72 mV to ensure the linearity of the accumulated work, which
increases or decreases according to the number of SRAM cells (i.e., if two SRAM cells
are discharged, the RBL discharge level becomes 0.72 × 2 = 1.44 mV). In other words,
in our column-based design, the cell’s charging or discharging result is accumulated in
the RBL to sum the multiplied (input × weight) result in each cell into one neuron value.
We applied 0.9 V as VDD of all bit cells to maintain the linearity of the result and reduce
leakage current, and set the pre-charge voltage to 0.45 V, which is half of 0.9 V for charge or
discharge of RBL. Therefore, according to our multiplication method described in Table 2,
when +1 × −1 = −1, RBL is discharged from 0.45 V to 0 V, and when +1 × +1 = +1, RBL
is charged from 0.45 V to 0.9 V, respectively. The charged or discharged range can be
calculated with Equation (2).

Tau (τ) represents the charge and discharge delay of RBL, which can be controlled by
the pulse width of RWL. We evaluated the maximum stacking range on RBL when the 64×
input results are stacked as −64 or +64. Figures 6–11 described that each bit cell is stacked
while maintaining linearity and single bit cell range ( 0.72 mV).
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Figure 6. Discharging range with a single SRAM bit cell (0.72 mV).

Figure 7. Charging range with a single SRAM bit cell (0.72 mV).

Our single bit line CIM technology is more effective in maintaining and reducing
power consumption than the conventional method, as there is only one bitline. The decou-
pled reading and writing of our new bitcell offers better low-power consumption due to the
stacking of device in the read unit, as well as achieving better readability and writability.
Table 3 shows the comparison results of dynamic power consumption of traditional SRAM-
CIM and proposed SRAM-CIM. As described in Figure 1, our proposed CIM structure
does not require extra transistors and bitlines for multiplication, so a significant amount of
power consumption has been saved.
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Table 3. Comparison of dynamic power consumption with state-of-the-art 8T SRAM-based CIM [18] for a possible four
states with binary input/weight combinations.

Weight (Q,Qb)
Input (RWL)

0 (RWL = L) 1 (RWL = H)

−1
(Q = L, Qb = H)

0 (No change) −1 (−∆V)

State-of-the
-art CIM [18]

Proposed
CIM

Improvement State-of-the
-art CIM [18]

Proposed
CIM

Improvement

7.825 × 10−5 2.479 × 10−8 99.96% 9.887 × 10−5 7.566 × 10−6 92.34%

+1
(Q = H, Qb = L)

0 (No change) +1 (+∆V)

State-of-the
-art CIM [18]

Proposed
CIM

Improvement State-of-the
-art CIM [18]

Proposed
CIM

Improvement

7.825 × 10−5 2.912 × 10−8 99.96% 9.887 × 10−5 1.266 × 10−6 98.71%

Figure 8. Comparison of read bitline (RBL) discharging range with a different number of SRAM
bitcells (1 cell–3 cells).

Figure 9. Comparison of read bitline (RBL) charging range with a different number of SRAM bitcells
(1 cell–3 cells).

We reduced power consumption by 92.34% in operation for bitline charging and
98.71% in operation for discharging, respectively. In the operation for −1 × 0 and +1 × 0



Electronics 2021, 10, 2181 9 of 14

calculations, the power consumption has been reduced by up to 99.96% compared to the
state-of-the-art SRAM-CIM.

Figures 10 and 11 show the accumulation results of multiplication results. Since our
CIM has a total of 64× inputs from X[0] to X[63], the maximum value of the sum of binary
multiplication results can be +64 or −64. The discharging or charging range of a single cell is
0.72 mV which can indicate −1 or +1. Therefore, the sum of the multiplication results of 64×
cells is 0.00072 V (0.72 mV) × 64 = 0.046 V, which can be charged or discharged at the reference
point (0.45 V) for representing the +64 or −64. In other words, a value of −64 can be expressed
as 0.45 V − 0.046 V = 0.404 V, and a value of +64 can be expressed as 0.45 V + 0.046 V = 0.495 V.
The results are simulated in detail in Figures 10 and 11, and it can be confirmed that our results
maintain the linearity of the accumulated work.

Figure 10. Comparison of read bitline (RBL) discharging range with different number of SRAM
bitcells (4 cells–64 cells).

Figure 11. Comparison of read bitline (RBL) charging range with different number of SRAM bitcells
(4 cells–64 cells).

4.2. Proposed SRAM Bit Cell Design

In SRAM bit cell power consumption, switching power consumption occupies a larger
portion than other power consumption, which cannot be ignored. In order to reduce
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this switching power consumption, We proposed a new SRAM bitcell that eliminates the
switching of weak inverters [23]. In addition, as described in the previous section, our
bitcell solves the disturbing issue between reading and writing as read and write operations
are completely separated as shown in Figure 1. Decoupled R/W operation is very effective
at reducing power consumption and is also very advanced in delaying CIM calculation.
Unlike the conventional bitcell, our access transistors MN1 and MN5 are separate for read
and write operations. In other words, the MN1 transistor is used for the operation for
writing and the MN5 transistor is used for the operation for reading. We set the size of
driver transistors MN2 and MN3 to the strongest for the read and write stability of the cell,
and set the load transistor to the smallest. The access transistor is set to a smaller size than
the driver transistor, in consideration of the bit line voltage. Table 4 shows the transistor
size and the ratio for bit cell configuration.

Table 4. Transistor size and ratio for bit cell configuration.

No. Transistors Ratio Size of Transistors

1 MN1 2 180 × 10−9 m
2 MN2 4 360 × 10−9 m
3 MN3 4 360 × 10−9 m
4 MN4 4 360 × 10−9 m
5 MN5 2 180 × 10−9 m
6 MP1 1 90 × 10−9 m
7 MP2 1 90 × 10−9 m
8 MP3 1 90 × 10−9 m

Table 5 shows that our proposed bitcell improves the write operation speed by up to
91.2% due to the optimized transistor size, ratio and the structural characteristics of the
writing part. This write delay supports a fast storage capability for storing weight values
in the CIM. In addition to the low power and fast writing ability, our proposed bitcell
supports high stability, as analyzed in the next section.

Table 5. Delay comparison of proposed 8T SRAM bit cell with state-of-the-art 8T SRAM bit cell [23].

Delay(s) State-of-the-Art 8T
SRAM Bit Cell

Proposed 8T SRAM Bit
Cell Improvement

Write 0 4.255 × 10−10 3.736 × 10−11 91.2%
Write 1 5.643 × 10−10 1.586 × 10−10 71.9%
Read 0 1.511 × 10−9 1.418 × 10−9 6.2%
Read 1 1.640 × 10−9 1.637 × 10−9 0.2%

4.2.1. Hold Static Noise Margin (SNM)

Hold Static Noise Margin (SNM) is a standard for evaluating the stability of a cell
against noise when data are stored. In other words, Hold SNM shows the noise tolerance
that prevents the cell from losing ‘stored’ bits. Therefore, it is necessary to secure the SNM
that can be represented in a square shape, as shown in Figures 12 and 13 to the maximum
for stable cell data storage.
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Figure 12. Hold Static Noise Margin (SNM) of the Proposed 8T SRAM bit cell.

Figure 13. Hold Static Noise Margin (SNM) of the state-of-the-art 8T SRAM bit cell.

To plot the SNM, we firsty plot the Vin and Vout DC characteristics. By swapping the
X/Y axis of either Vin or Vout, we can create the largest square, which fits the continuous
DC characteristic representing the SNM. Compared to the state-of-the-art 8T SRAM bitcell,
our proposed 8T SRAM bitcell not only supports low power consumption and high-
throughput, it also shows an 88% improvement in Hold SNM. This means that our proposed
8T SRAM has a lower risk of lost ‘memorized’ bits of memory than traditional SRAM. We
have focused on maintaining the maximum SNM in the SRAM structure and providing
the maximum low-power and high-throughput effect for AI calculation.

Furthermore, because of the decoupled reading unit from an internal node of latch,
proposed our SRAM has no feedback from the reading unit, resulting in its being read
static noise margin (RSNM)-free.
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4.2.2. Write Noise Margin (WNM)

Write ability is measured using Write Trip Point (WTP) analysis. On increasing the
BL voltage 0 to Vdd, the BL voltage where Q and Qb flip is WTP. As can be seen in
Figures 14 and 15, the write trip point of the proposed and traditional SRAM cells are 0.28 V
and 0.59 V, which make the write noise margin (WNM) 0.62 and 0.31, respectively. Therefore,
the proposed bitcell is more stable for write operation.

Figure 14. Write Noise Margin (WNM) of the proposed 8T SRAM bit cell.

Figure 15. Write Noise Margin (WNM) of the state-of-the-art 8T SRAM bit cell.

5. Conclusions

In this paper, we propose a novel 8T SRAM-based ultra-low-power compute-in-
memory (CIM) design. To compute the vector-matrix multiplication of the binary weight
and input, we use dot-products based on the voltage-mode accumulation. By using the
decoupled read, write unit, and single bitline (RBL), the disturbing issue between read and
write operation has been eliminated. For the simulation, each column including 128× bit
cells consist of 64× cells for dot-product and 32× cells for ADC reference, and additionally,
32× cells for offset calibration have been added. Our row-by-row ADC can support 1–7 bits
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output for the quantized single neuron value. Based on the simulation results, the proposed
SRAM-CIM saves up to 99.96% of total power consumption for computing the vector-
matrix multiplication of the binary weight and input compared with the state-of-the-art
SRAM-CIM.
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