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Abstract: One of the major sources of power drain in smartphones is a frame rendering and display
process called graphics pipeline, in which power consumption depends largely on frame rendering
operations per second (fps), known as the frame rate, and the quantity of UI content to be rendered.
We discovered a major problem causing power consumption upon a scrolling operation: The Android
graphics pipeline renders all or a large portion of the content displayed most recently at a frame rate
of nearly 60 fps. This paper proposes a scrolling-aware rendering (SCAR) scheme to reduce the frame
rate caused by a scrolling. When rendering a frame for UI content to be displayed, SCAR pre-renders
UI content that is likely to be displayed soon in any subsequent scrolling operation. This frame is
extended to place the pre-rendered UI content contiguously with the UI content to be displayed.
Upon a subsequent scrolling, SCAR repositions the extended frame on screen by a scrolling distance
instead of rendering a new frame. Our experiments on a smartphone show that SCAR reduced frame
rates to below one fps in scrolling, thus saving power by up to 30%.

Keywords: android operating system; android graphics pipeline; smartphone; power consumption;
frame rate; frame rendering; scrolling

1. Introduction

Recently, smartphones have become equipped with high-performance CPUs, GPUs,
and display panels, but battery capacity has not yet met the increasing power demands of
the components. As display panels support higher screen resolutions and color gamuts
to improve the user experience, they become major power consumers [1,2]. Previously,
backlight scaling [3], dynamic voltage scaling [4,5] and low-power color transformation [6]
were introduced to reduce the power consumption of the display panel, but these dete-
riorated the user experience. Moreover, a frame rendering and display process, called a
graphics pipeline, renders frames for UI content (content for short) by up to 60 times per
second to smooth the user experience. The frame rate indicates the frequency of frame
rendering operations per second (fps). However, the higher the frame rate, the larger
the CPU and GPU usages of the graphics pipeline, which consequently increases power
consumption [7,8].

Power consumption in the graphics pipeline depends on the quantity of the content
to be rendered with the changes in content [9], together with the frame rate. The most
common use pattern causing changes in content is scrolling, which accounts for a high
percentage of use patterns in interactive apps [8]: the ratio of the scrolling time to the
overall time of app usage is higher than 30% and up to 60%. We found two important
problems caused by scrolling. First, the Android graphics pipeline [10] unnecessarily
changes all or a large portion of the content displayed most recently even if there are only
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changes in their on-screen location. Second, frames are frequently rendered at a frame rate
of nearly 60 fps to display the unnecessarily changed content smoothly.

There have been studies on saving power consumption from the perspective of the
content changes in the Android graphics pipeline. Lee [7] displays a previously rendered
frame instead of rendering a new frame if there was a high similarity among frames
rendered in the recent past. However, that study cannot reduce power consumption in use
patterns that cause a change in content, such as scrolling. Kim [11] dynamically lowers a
refresh rate if there is a high similarity among consecutive frames displayed in the recent
past, but it can degrade the user experience if there is a sudden change in content. Seo [9]
reduces a region in which content is changed, but deteriorates the user experience because
content outside the region is not rendered. Yu [8] adjusts frame rates upon scrolling by
predicting the minimum acceptable frame rates to avoid degrading the user experience
according to scrolling speed. However, this method can degrade the user experience if the
model is not accurate.

This paper proposes a scrolling-aware rendering (SCAR) scheme to reduce frame rates
caused by scrolling without compromising the user experience. SCAR is inspired from
an adaptive tile refresh [12] that was introduced in the early 1990s to reduce redrawing
operations upon scrolling in video games in desktop PCs. When rendering a frame for
content to be displayed on screen, SCAR pre-renders content that is likely to be displayed
soon in a subsequent scrolling action. This frame is then extended to place the pre-rendered
content contiguously with the content to be displayed. In any subsequent scrolling, SCAR
repositions the extended frame on the screen by a scrolling distance, without needing to
render a new frame. This reposition can significantly reduce frame rates resulting from
scrolling. Moreover, our scheme has an important feature to be applicable to various
display panels regardless of the type of display technology because it attempts to lessen
frame rates to reduce CPU and GPU overheads caused by frame rendering operations.

Our scheme has been implemented in the Android 9 operating system whose source
code is provided by the Android Open Source Project (AOSP) [13]. An evaluation on a
Google Pixel 3XL smartphone shows that SCAR reduced the average frame rate to below
one fps by reusing frames in scrolling. This reduction lessens CPU and GPU overheads by
up to about 65% and 100%, respectively, compared to the Android graphics pipeline, thus
reducing power by up to 30%.

The contributions of this paper are as follows. First, we discovered the problem that
scrolling causes rendering of most or all of the content displayed most recently at a frame
rate of nearly 60 fps. Second, our study is the first attempt to pre-render content in the
Android graphics pipeline to improve power consumption during scrolling. Third, we
detail the overall execution flow, including scroll-event handling, frame rendering, frame
memory management, and frame display processes, to help researchers understand the
Android graphics pipeline. Finally, our study is the first to perform a quantitative analysis
of the CPU and GPU overheads caused by scrolling and of the relationships between power
consumption and these overheads.

The remainder of this paper is organized as follows. Section 2 introduces the Android
graphics pipeline as background. Section 3 introduces related works and motivation,
respectively. Section 4 presents the design and implementation details of SCAR. In Section 5,
we evaluate the performance and overhead of SCAR. Section 6 discusses the implications
for research and practice, real-world applicability, limitations, and future work. Finally, we
conclude this paper in Section 7.

2. Background

The Android graphics pipeline [10] conducts a sequence of rendering, coordinating,
and composing operations. An app renders a frame, a system service called SurfaceFlinger
coordinates the on-screen layout of the frame, and a hardware composer (HWC) in a
display driver composes the frames of the app and system UIs into an image for display.
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2.1. Frame Rendering

As shown in Figure 1a, a screen is generally composed of three windows, the app,
status bar, and navigation bar, each of which is a rectangular region consisting of UI
elements called views (e.g., button, text). A window has a view tree, a surface, and a
buffer queue to manage views and render frames for them. A view tree manages views
hierarchically, each of which has its properties, such as height, width, and an object called
render node with drawing commands. A surface serves as a drawing canvas on which
views are drawn, containing a buffer queue, a pool of three graphic buffers in which to
store rendered frames. This triple buffering is to avoid the screen-tearing problem. The
following components in an app cooperate to perform the rendering process: a UI thread
manages views in a view tree, a render thread renders a frame for views to be displayed,
and a BufferQueue producer (BQProducer) manages a buffer queue.
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Figure 1b illustrates the frame rendering process. When user input changes views, the
UI thread invalidates the views to indicate that they need to be redrawn. The rendering
of these views starts with a V-Sync signal (step 1) that HWC generates every 16.7 ms,
60 times per second. The UI thread first traverses a view tree from a root view called
DecorView to find render nodes for views to be drawn (step 2). A render node has a display
list consisting of a sequence of drawing commands that specify how to render a view. A
drawing command is an intermediate operation mapped onto a complex set of commands
in OpenGL ES (GLES) [14], a platform for rendering 2D and 3D graphics in embedded
systems. The UI thread places display lists of the found render nodes into a rendering
request called DrawFrameTask (step 3) that tells the render thread how to render a frame.
This request is transferred to a task queue of the render thread (step 4).

The render thread starts rendering a frame when it receives a rendering request
from the task queue. It dequeues an available graphic buffer (grbuffer) into which to
store a frame, with the help of BQProducer (step 5). Drawing commands in the request
are translated into the corresponding GLES commands (step 6), which are executed to
make the GPU render a frame into the grbuffer (step 7). Upon the request to display the
frame, BQProducer puts the grbuffer into a buffer queue (step 8) and composes a message,
called buffer item, of the display information including the grbuffer number (e.g., 0). This
message is sent as a request to display the frame to SurfaceFlinger via a buffer item queue
(step 9). Note that the render thread cannot know the details of the buffer queue, such
as which grbuffer is dequeued, enqueued, or stores a rendered frame because, during
frame rendering, the enqueue/dequeue operations are invoked by GLES commands in the
GLES library, which is an external non-open-source library. This limitation is an important
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challenge in implementing our scheme of modifying graphics components that are linked
with each other via the buffer queue.

BQProducer and SurfaceFlinger share a grbuffer in a buffer queue through its grbuffer
number. BQProducer manages the information about grbuffers in an array called mSlots,
each entry containing the handle and state of a grbuffer indexed by a grbuffer number. A
grbuffer handle refers to an object containing a grbuffer height, width, and address that
points to a native window buffer allocated by the graphics memory allocator. BQProducer
dequeues a grbuffer with a “free” state, in the order of the grbuffer numbers, 0, 1, and 2,
and changes the state to “dequeued,” meaning that the grbuffer is being used for rendering
a frame. After this rendering, the grbuffer is enqueued with the “queued” state, meaning
that it is filled with a frame. SurfaceFlinger changes the state to “acquired” to prevent
other components from accessing the grbuffer in displaying the frame. After the frame is
displayed, the grbuffer is released with the “free state”, meaning that it is available for a
frame rendering.

2.2. Frame Coordination and Composition

SurfaceFlinger coordinates the frames of three windows for a user app, navigation
bar, and status bar according to their sizes and positions on the screen and requests HWC
to combine these frames into one image. In Figure 2a, SurfaceFlinger manages the surfaces
of several windows as layers, each of which has a depth level in the on-screen Z-order:
layer 0 and layer 2 have the lowest and highest depth levels, respectively. In Figure 2b, the
frame coordination starts with a V-Sync signal (step 1) generated after the completion of
the frame rendering process in Figure 1b. Using an array managing layers, SurfaceFlinger
searches a layer that has been asked to change its layout, such as its size or position, before
the V-Sync signal (step 2). If the layer is found, its layout changes are reflected into the
member variable mDrawingState of the layer that manages the layout information (step 3).
This variable is used hereafter to determine the size and position of the layer when HWC
composes the layer.
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It is necessary to create a GLES texture through a frame (or image data) in a grbuffer to
display the frame rendered with GLES commands. In computer graphics, a texture contains
a texture image or picture that can be mapped or painted onto the exterior of a geometric
shape, such as a polygon or flat canvas. The creation of a texture requires designating
which image data is to be used as a texture image. This designation extracts colors from
image data and copies them into dedicated GPU memory to help the GPU accelerate the
texture mapping. In contrast, the GPU and CPU share memory, due to the lack of memory
in embedded systems such as smartphones, in which GLES supports a resource called
EGLImage [15,16] to designate image data or a grbuffer to a texture without copying any
memory. In the Android graphics pipeline, SurfaceFlinger creates an EGLImage through a
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grbuffer and binds the EGLImage to a texture. This binding enables the GPU to access the
frame in the grbuffer directly.

A BufferQueue consumer (BQConsumer), a component in SurfaceFlinger, acquires a
grbuffer from a buffer queue and designates the grbuffer as a texture with the following pro-
cedure. It first receives a buffer item delivered from BQProducer to obtain grbuffer number
n (e.g., 0) (step 4), which is used as an index into an array named mImages in BQConsumer.
SurfaceFlinger implements the array in its local memory so that BQConsumer can access
a grbuffer by n. An entry in the array contains the handle and state of a grbuffer, and an
EGLImage that is created with the grbuffer. BQConsumer designates a grbuffer indexed
by n as a texture (step 5) by assigning mImages [n] to its variable mCurrentTextureImage,
which specifies a grbuffer with which to make and coordinate a texture as follows. The first
step is to create an EGLImage through the grbuffer and bind the EGLImage to a texture,
and the second is to coordinate the texture layout through the layout information in the
mDrawingState. HWC composes the texture, the navigation bar, and status bar into one
image according to their Z-order levels (step 6). Finally, the image is displayed on the
screen (step 7).

3. Related Work and Motivation
3.1. Related Work

In the early 1990s, Carmack [12] introduced an adaptive tile refresh to minimize
drawing operations for scrolling video games in PCs. The method makes a buffer wider
and taller than a screen in a video memory of a graphic card and draws content outside
the edges of the screen into the buffer, together with on-screen content. In any subsequent
scrolling, the content in the buffer is repositioned on the screen. However, the method was
not applicable to general apps other than video game apps allowing low-resolution images
because of deteriorating the user experience.

There have been many studies on reducing power consumption in mobile devices.
In the field of display panels, Dong [6] proposed color transformation to convert the
colors of content into those with low power consumption. Tan [17] inferred an on-screen
region that a user focuses on and darkens content outside the region. Dynamic voltage
scaling [4,5] adjusted the voltage supplied to a display depending on content features.
However, the studies degrade the user experience significantly when there are frequent
changes in content.

Some studies have attempted to eliminate unnecessary frame rendering for unchanged
content. Lee [7] found that frames are unnecessarily rendered even if there is no change
of content. His method compares the display lists needed to render the current frame
with those used to render the previous frame. If they are the same, the previous frame is
displayed instead of rendering a new frame. Hwang [18] solved the problem of frames
being rendered at 60 fps in mobile game apps, even if there is no change in content, by
displaying a previous frame if there is a high similarity among the frames rendered in the
recent past. These studies, however, have no effect on reducing frame rates in use patterns
such as when scrolling causing changes in content.

Some studies have saved power consumption using the features of human perception.
Egilmez [19] proposed a model that predicts a user’s satisfaction with each frame rate and
minimized the frame rate depending on that satisfaction. However, His method has a
negative impact on the user experience if there is an error in predicting the satisfaction.
He [20] proposed a model to calculate the minimum resolution that does not degrade the
user experience according to the distance to the user. With this model, the resolution is
lowered in proportion to the distance to reduce GPU overhead caused by frame rendering
at high resolution. However, a smartphone needs to be equipped with an ultrasonic sensor
to calculate the distance to a user.

There have been efforts to control the refresh rate, i.e., the speed of updating a frame
to the screen. Nixon [21] measured power consumption according to the refresh rate and
introduced a scheme to adjust the refresh rate dynamically. However, the scheme was not
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verified with an implementation. Kim [11] observed that frames are displayed at a 60-Hz
refresh rate even if there is no change among the frames. His method reduces the refresh
rate if there is a similarity among the frames displayed in the recent past, but can degrade
the user experience if there is a sudden change in content.

Yu [8] attempted to reduce the frame rate caused by scrolling. His method makes a
model of predicting a minimum frame rate that satisfies the user experience according to
scrolling speed. With this model, frames are rendered at a minimal frame rate for each
scrolling speed. However, a remote server is needed to rebuild a highly accurate model
via a user’s feedback. There can be a drop in the user experience until the model becomes
highly accurate. Unlike our study, this study fails to find which behaviors incur CPU
overhead in frame rendering because of not handling power consumption problems in
the graphics pipeline perspective. Moreover, there is no analysis on the impact of GPU
overhead on power consumption.

There were studies in adjusting CPU/GPU frequencies on game apps. One study [22]
dynamically lowered CPU/GPU frequencies as the frame rate decreased. Pathania [23]
estimated power consumption and frame rates according to CPU/GPU frequency and
predicted the optimal frequencies for each frame rate. Chen [24] monitored the execution of
GPU instructions in real time to lower GPU frequency under a low GPU workload. These
studies, however, help to reduce the power consumption only in mobile game apps.

Finally, the problem of power consumption upon scrolling has not been introduced in
the popular mobile OS, the Apple iOS whose source code cannot be analyzed due to the
non-open source policy. This policy makes it difficult to examine an impact of scrolling
on power consumption and understand how to handle the scrolling problem. The iOS
provides APIs [25] of asynchronously prefetching content to be displayed soon in scrolling
over the network. The APIs are to support displaying the content at the frame rate of 60 fps,
but not improving power consumption.

3.2. Motivation

We activated the “Show GPU view updates” menu in the Android Settings app to
examine how many views are drawn in a scrolling operation. This activation flashes views
that the GPU renders on the screen. The investigation in commercial apps revealed that
a large portion of the views on the screen continuously flickers even when the scrolling
distance is small. We also measured the number of views to be drawn to answer the
following question: upon scrolling, does the Android graphics pipeline really redraw many
of the views displayed most recently? This measurement is made when the UI thread
traverses a view tree, finds render nodes for views to be drawn, and obtains display lists
from the render nodes. Table 1 shows the number of views in a view tree and number of
the views to be redrawn in the view tree. We discovered the following two facts: the first is
that a view tree in an app consists of many views, reaching at least 110 views and up to
959, and the second is that scrolling forces at least 51% of all the views to be redrawn even
if there is no change except for their positions. This redrawing can cause unnecessary CPU
and GPU overheads, thus increasing power consumption.

Table 1. Number of views in a window and number of views to be redrawn in a scrolling operation.

App Name Number of Views Number of Views to Be Redrawn

Wish 959 959
Twitter 417 369

Hotels.com 391 266
News Republic 321 205

Twitch 217 115
Facebook 155 84
Tumblr 219 115

Resplash 110 56
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In Figure 3, we show the CPU and GPU utilization using the Snapdragon profiler
tool [26] when scrolling through a list of hotels in the Hotels.com app on a Google Pixel
3XL smartphone. When scrolling starts, the two utilizations suddenly increase. Until
the scrolling operation ends, the GPU utilization remains as high as approximately 12%,
because the GPU renders hundreds of views. The CPU utilization goes up and down at
approximately 5% and sometimes reaches as high as 8%. This is because the render thread
traverses a view tree to obtain display lists for views to be redrawn and translates drawing
commands in the display lists to GLES commands.
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Our motivation derived from a question: is it necessary to render previously rendered
views again even if they only move in the Y-order direction by a scrolling distance? If
we could reuse the rendered frame upon scrolling, it would be possible to reduce power
consumption by eliminating unnecessary frame rendering. In a representative scenario,
a user scrolls on a shopping app such as the Wish app to choose his shopping item. It is
assumed to pre-render images of 10 items to be displayed soon in a subsequent scrolling
when rendering images of 10 items to be displayed currently. A frame places the pre-
rendered images contiguously with the images to be displayed. There can be a decrease
in CPU and GPU overheads if the frame is reused without a frame rendering to display
the pre-rendered images upon a subsequent scrolling. Thus, our motivation is to minimize
frame rates by reusing the frame displayed most recently.

4. Scrolling-Aware Rendering
4.1. Overview

We propose the SCAR scheme to reduce the frame rate caused by scrolling on a
scrollable window including a scrollable view such as the RecyclerView and ListView. In
Figure 4, SCAR pre-renders content (pink regions) that is likely to be displayed soon in a
subsequent scrolling when rendering a frame for the current content to be displayed. The
main feature is to extend the frame size to N times the frame size (H) that is configured in
the Android graphics pipeline. We term this extended frame an exFrame. This extension
allows the frame to place the region of pre-rendered content (defined as pre-rendering
region) contiguously with that of the on-screen content. N is an extending factor to
determine the exFrame size, and its range is 1 < N ≤ 2.5, because N cannot exceed 2.5
due to system memory limitations. The pre-rendering is applicable to all the types of
views (e.g., text, image, button) in a scrollable window. After rendering an exFrame,
SCAR requests SurfaceFlinger to display only the content to be seen, excluding that of the
pre-rendering region. Upon a subsequent scrolling, SCAR decides to reuse the exFrame
instead of rendering a new frame and requests SurfaceFlinger to reposition the exFrame by
a certain scrolling distance. Such a reuse avoids rendering new frames, thus reducing GPU
and CPU overheads, which are the major causes of power consumption.
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Figure 4 shows how SCAR reuses an exFrame when a user scrolls by distance d in
pixels. Suppose that an exFrame has been rendered into grbuffer B0 prior to the scrolling.
We define a grbuffer storing an exFrame as an exFrame grbuffer. The UI thread obtains
display lists to transfer them to the render thread, which dequeues grbuffer B1 (step 1)
as in the Android graphics pipeline. SCAR skips translating drawing commands in the
display lists to GLES commands and calling these translated commands (step 2) because
it reuses the exFrame from B0. This skip prevents the GPU from rendering a valid frame
into B1, which is nevertheless put into a buffer queue (step 3). We define a grbuffer (e.g.,
B1) without a valid frame (or rendered content) as a junk grbuffer. BQProducer sends a
buffer item with the display information such as the enqueued grbuffer number (i.e., 1)
to SurfaceFlinger (step 4). SCAR differs from the Android graphic pipeline in that d and
exFrame grbuffer number 0 (yellow in Figure 4) are additionally put into the message, so
that SurfaceFlinger can reposition a frame of B0 by d.

SCAR dequeues/enqueues a junk grbuffer from/to a buffer queue even if there is
an exFrame grbuffer in a buffer queue. The render thread cannot know which grbuffer
stores an exFrame to be reused in scrolling because the GLES library prevents the render
thread from directly accessing the buffer queue. Due this limitation, we had difficulty
in finding the exFrame grbuffer at step 1 where the render thread gets a grbuffer, but
succeeded in detecting the exFrame grbuffer at step 3 where BQProducer puts a grbuffer
into a buffer queue. To trigger the detection of an exFrame grbuffer, SCAR allows a junk
grbuffer without rendered content to be put into a buffer queue in reusing the exFrame
upon scrolling.

The following actions differ from the Android graphics pipeline when SurfaceFlinger
acquires a buffer item with scrolling distance d, exFrame grbuffer number 0, and junk
grbuffer number 1 (step 5). The first is to replace the handle of B1 in mImages [1] with that
of B0 to designate an exFrame in B0 as a texture instead of an invalid frame in B1 (step 6).
This action allows B0 to be reused in a scrolling operation. The second is to change the
layout information of a texture so that HWC can reposition the texture by d in the Y-order
on the screen in composing the texture (step 7).

4.2. Scrollability and Scrolling Distance

There are two important parameters to control an exFrame rendering: scrollability
and scrolling distance. If a window has a scrollable view called scrollable container, the view
is considered as scrollable: examples are the RecyclerView, ScrollView, and ListView views.
During the creation of a window, SCAR registers a callback of checking the scrollability
into a listener of the view tree observer that is used to detect the change of a view tree
structure. When the listener detects that all the views to be drawn are added to a view
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tree, it invokes the callback of checking whether each view in the view tree is a scrollable
container. If there is at least one scrollable container, the window is considered scrollable.

SCAR extends a frame when a system component called window manager initializes the
layout of a window. The component determines the position and size of a window through
the sizes of the parent window, screen, and visible areas. If the window is scrollable, SCAR
increases the area sizes by the extending factor N times in the layout initialization to extend
both the frame and grbuffer by N times. This extension of a grbuffer increases the memory
usage of a buffer queue consisting of three grbuffers, each 17 MB in size by default. If not
scrollable, it is decided not to extend the frame and grbuffer. This decision is to prevent
unnecessary increase in the memory usage of the buffer queue.

When a user touches a screen, the touch device driver sends a touch event to the
window manager, which delivers the touch event to a foreground app. The app executes
a touch-event dispatching operation, which traverses a view tree to search a view at the
touch position and dispatches a motion event with the touch information to the view.
SCAR calculates a scrolling distance in this dispatching operation: upon successive down
and up touches, the scrolling distance is the difference in pixels between the two Y-order
positions in the motion events for the down and up touches. We define an up-scrolling, a
common use pattern in smartphones, as the positive direction.

4.3. Deciding Whether to Reuse exFrame

Figure 5 shows the policy of deciding whether to reuse an exFrame according to
scrolling distance. In the left of Figure 5a, suppose that an exFrame is initially displayed
on the screen. Upon an up-scrolling operation by distance d1, the exFrame is moved up
in the Y-order direction. A total (or accumulated) scrolling distance is defined as the sum
of scrolling distances since the rendering of an exFrame, representing a starting position
where content to be displayed at the top of the screen is located within the exFrame after
the scrolling. The sum of the starting position and the screen height H indicates an ending
position where content to be displayed at the bottom of the screen is located within the
exFrame. SCAR decides to display content between the starting and ending positions, d1
and d1 + H, in the exFrame. Upon an up-scrolling operation by distance d2 in Figure 5b,
it is decided to display content between the two positions, d1 + d2 and d1 + d2 + H, in
the exFrame.
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Figure 5c illustrates an up-scrolling overflow, where the sum of the total scrolling
distance d1 + d2 + d3 and H goes over the ending boundary of an exFrame upon a scrolling
by distance d3. The up-scrolling overflw means that it has been attempted to display
content not contained in the exFrame, as presented in the center of Figure 5c. In this
situation, SCAR renders a new exFrame consisting of content (i.e., 5 to 7) to be displayed
by the scrolling and content (i.e., 8 to 10) to be pre-rendered for a subsequent scrolling,
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as shown in the right of Figure 5c. Finally, the total scrolling distance is reset when an
exFrame is rendered.

Figure 5d shows a down-scrolling overflow, where an exFrame does not contain
content (i.e., 4) to be displayed at the top of the screen when scrolling down the screen
of Figure 5c. As shown in the center of Figure 5d, it would be expected to pre-render
content (i.e., 1 to 3) in the upper region of content (i.e., 4) to be newly displayed, due to
the scrolling direction. As presented in the right of Figure 5d, however, SCAR cannot
help pre-rendering content (i.e., 7 to 9) in the lower region of content (i.e., 6) to be newly
displayed at the bottom of the screen, due to the policy of the Android graphics pipeline.
This policy composes a view tree consisting of a view to be displayed at the top of the
screen and other views meeting the following conditions: (1) views to be displayed below
the top view in the Y-order direction, (2) many views to be contained in an exFrame. In
this situation, the pre-rendered content can be reused in a subsequent up-scrolling, but
not be reused in a subsequent down-scrolling, which a user is much likely to perform
during continuous scrolling actions. Hence, pre-rendering the content not reusable in a
down-scrolling can cause unnecessary GPU and CPU overheads. To avoid this problem, we
do not modify the policy of composing a view tree, due to the complexity of the Android
graphics pipeline, but render only views to be seen on screen without the pre-rendering, as
shown in Figure 5e.

Algorithm 1 describes our algorithm for deciding whether to render or reuse an
exFrame in the method draw() of class CanvasContext, which the render thread calls to
execute the operations from step 5 to 8 in Figure 1b. This algorithm dequeues an available
grbuffer (line 2) and determines a rectangular rendering region on which to update or
render content (line 3). This rendering region indicates the screen region on a non-scrollable
window, while a scrollable window has an extended rendering region whose width and
height are the screen width and the height of N times the screen height, respectively. We
define the following two parameters to decide whether to render an exFrame, together
with scrolling distance and scrollability that the UI thread has passed to the method draw().
The first is a total scrolling distance, which is delivered to SurfaceFlinger to reposition
an exFrame on the screen by a scrolling distance, and the second is a rendering indicator
indicating whether to render an exFrame.

If a scrolling distance is negative on a scrollable window, an extended rendering
region is downsized to the screen region to avoid pre-rendering views that are not reused
in a subsequent down-scrolling. This downsizing is achieved by dividing the height of
the extended rendering region by N (line 6). The rendering indicator is set to specify the
need of rendering a frame containing only content to be displayed on the screen (line 7).
If a scrolling distance is positive, the total scrolling distance summed with the scrolling
distance is added to the screen height to calculate the ending position (line 11), which
indicates where content to be displayed at the bottom of the screen is located within an
exFrame. If the ending position does not exceed the ending boundary of the exFrame, it is
decided to reuse the exFrame containing the content to be displayed (line 12); otherwise,
an up-scrolling overflow occurs because the exFrame does not have some lower part of the
content to be displayed. In such a case, it is decided to render a new exFrame by setting the
rendering indicator (line 14). The total scrolling distance is reset regardless of the scrolling
direction due to the rendering of a new exFrame (lines 8 and 15).

If either a window is not scrollable or it is decided to render an exFrame, content is
rendered onto a rendering region (line 20). The actual frame rendering is performed by
the Skia graphics engine [27] that serves as an intermediary between the render thread
and GLES library to supports 2D graphics. This Skia rendering, however, incurs large
CPU and GPU overheads of translating display lists to GLES commands and executing
the GLES commands to make GPU render a frame into a grbuffer. Upon an up-scrolling,
our algorithm avoids the Skia rendering by reusing an exFrame, thus decreasing the two
overheads causing power consumption. Finally, a grbuffer swapping operation (line 22)
enables BQProducer to enqueue either an exFrame grbuffer if an exFrame has been rendered
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or a junk grbuffer if it has been decided to be reused. SurfaceFlinger is requested to swap
a frame in the exFrame grbuffer with one being currently displayed. Note that the two
operations in lines 2 and 22 make the Skia graphics engine execute GLES APIs, which
request BQProducer to dequeue/enqueue a grbuffer from/to a buffer queue.

Algorithm 1. Algorithm of deciding whether to render or reuse an exFrame

Input : Scrolling distance distance, scrollability of window scrollable, screen height screenHeight,
extending factor N
Output: Rendering indicator isRendered
1 // assume that totalDistance is a global variable indicating total scrolling distance
2 get Frame object frame with grbuffer grBuf
3 determine rendering region rendRegion ⊆ grBuf
4 if scrollable = true then
5 if distance < 0 then
6 height of rendRegion← height of rendRegion/N
7 isRendered← true
8 totalDistance← 0
9 else
10 totalDistance← totalDistance + distance
11 if totalDistance + screenHeight ≤ N × screenHeight then
12 isRendered← false
13 else
14 isRendered← true
15 totalDistance← 0
16 end
17 end
18 end
19 if scrollable = false or isRendered = true then
20 render content onto rendRegion for frame with the help of the Skia engine
21 end
22 swap frame with that being displayed on screen

4.4. Requesting the Display of exFrame and Designating exFrame as Texture

There is a challenge when a grbuffer swapping operation requests SurfaceFlinger to
display an exFrame to be reused upon an up-scrolling. The Android graphics pipeline
adopts a triple buffering with three grbuffers, among which BQProducer dequeues and
enqueues a different grbuffer for every rendering in the order of grbuffer numbers 0, 1,
and 2. However, the render thread executing Algorithm 1 cannot know which grbuffer
among the three grbuffers contains an exFrame due to the interference of the GLES library
to BQProducer. Moreover, BQProducer cannot know whether a grbuffer put into a buffer
queue is either a junk or an exFrame one because it expects that the grbuffer always has a
valid frame. These limitations make it difficult for BQProducer to identify exFrame grbuffer
number nex that SurfaceFlinger needs to make a texture to be displayed on the screen.

SCAR makes the decision of nex in an enqueue operation, which BQProducer conducts
to put a grbuffer into a buffer queue and send a buffer item with the information about
the grbuffer to SurfaceFlinger. For the decision of nex, we provide the enqueue operation
with the rendering indicator obtained in Algorithm 1. When BQProducer is requested to
enqueue either a junk grbuffer or an exFrame grbuffer, it executes the enqueue operation
with its grbuffer number n. In this execution, SCAR checks the rendering indicator to
determine whether an exFrame has been rendered. If rendered, n indicates nex for a
rendered exFrame, and its value is backed up to keep track of the exFrame to be reused
in a subsequent scrolling. If not rendered, n indicates a junk grbuffer number because
Algorithm 1 has decided to reuse an exFrame. In such a case, the backed-up value is used
to identify nex for the exFrame to be reused. Finally, when BQProducer sends a buffer
item with n to SurfaceFlinger, SCAR piggybacks nex and a total scrolling distance onto the
buffer item.
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In SurfaceFlinger, BQConsumer designates a grbuffer as a texture in receiving a buffer
item delivered from BQProducer. If n and nex of the buffer item are different, it means that
n indicates a junk grbuffer number, so that it is necessary to display an exFrame grbuffer to
be reused in scrolling, instead of a junk grbuffer. In such a situation, BQConsumer needs
to designate an exFrame grbuffer indexed by nex as a texture, but has been designed to
designate a grbuffer indexed by n as a texture, thus causing HWC to display an invalid
frame if n is a junk grbuffer number. To make the exFrame grbuffer into a texture, SCAR
substitutes the exFrame grbuffer handle for a junk grbuffer handle of mImages[n], which
represents entry n in the mImages array and has the handle of a grbuffer to be designated
as a texture.

Algorithm 2 describes the substitution policy implemented into a grbuffer acquiring
operation, which BQConsumer executes upon the arrival of a buffer item to initialize the
mapping between grbuffer numbers and grbuffer handles into the mImages array with
three entries. This algorithm dequeues a buffer item with grbuffer number n from a buffer
item queue (line 4). Since the creation of a layer or surface in a window, there is the
arrival of the first three buffer items, each having n value of 0, 1, and 2 in order, and the
handle of a grbuffer indexed by n. For each buffer item, an object called Image is created
to store grbuffer and EGLImage handles for n, and is stored to mImage[n] (lines 8–11).
However, the algorithm can change the grbuffer handle of the Image for n during the
texture designation (line 18), thus backing up the grbuffer handle to keep track of its
original value (line 12).

Algorithm 2. Algorithm of replacing a junk grbuffer handle of an mImages entry with an
exFrame one

Input: Buffer item queue Qitem of storing a set of buffer items
Output: Buffer item item, array mImages
1 // assume that Image is a class with grbuffer handle grbHandle and EglImage handle eglHandle
2 // assume that mImages is an array of storing a set of Image objects
3 // assume that grbOrigHandles is an array of storing a set of original grbuffer handles
4 dequeue item from Qitem
5 n← grbuffer number of item
6 grbHandle← grbuffer handle of item
7 if grbHandle 6= null then // The initialization of mImages
8 create Image object img
9 img.grbHandle← grbHandle
10 img.eglHandle← EglImage handle for n
11 mImages[n]← img
12 grbOrigHandles[n]← grbHandle
13 else
14 nex ← exFrame grbuffer number of item
15 if n = nex then // Original grbuffer handle is used for the texture designation
16 mImages[n].grbHandle← grbOrigHandles[n]
17 else // exFrame grbuffer handle is used for the texture designation
18 mImages[n].grbHandle← mImages[nex].grbHandle
19 end
20 end

Since the initialization of the mImages array, BQProducer delivers a buffer item with
a null grbuffer handle, which is dequeued from a buffer item queue (line 14) to compare
its n and nex (line 15). If they are different, the grbuffer handle of mImages[n] is replaced
with that of mImages [nex] to designate an exFrame grbuffer as a texture (line 18) because
n indicates a junk grbuffer number. If they are the same, n indices a grbuffer storing a
new exFrame, but mImages[n] can have not the original handle of a grbuffer for n, but
the handle of another grbuffer due to the replacement of the grbuffer handle in the entry.
In such a situation, the original grbuffer handle for n is restored to the grbuffer handle of
mImages[n] (line 16). With the buffer item, BQConsumer afterward designates a grbuffer
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indexed by n as a texture by assigning mImages[n] to the mCurrentTextureImage, which is
used to make the grbuffer into an EGLImage and bind the EGLImage to a texture.

4.5. Repositioning exFrame on Screen

Since the creation of a texture through an exFrame, SCAR repositions a texture on the
screen by total scrolling distance d. If a screen in Figure 6a has the upper left corner (0, 0)
and lower right corner (w, h), a texture has the upper left corner (0, 0) and lower right corner
(w, h × N). As described in Section 4.3, d indicates the Y-starting position where content
to be displayed at the top of the screen is located within a texture. For the repositioning,
SCAR specifies content between d and d + h within the texture as target content, which
is displayed to the screen region. The Android graphics pipeline displays a texture to a
different location on the screen by changing its starting position in the mDrawingState with
the layout information of a layer, but can reposition only the content currently displayed
on the screen. As shown in Figure 6b, if it is attempted to display the target content in the
texture to the screen region, only the screen content (i.e., 1 to 3) except for pre-rendered
content is moved up, and the remaining region after the movement is filled with black
instead of the pre-rendered content (i.e., 4).
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To overcome the problem in Figure 6b, SCAR conducts the cropping and mapping
operations implemented into the HWC setup routine, which initializes the geometry of
a texture and informs HWC how to coordinate the texture on the screen. As shown in
Figure 6c, the cropping operation first specifies the four lines of a rectangular region (yellow
region) to be cropped in a texture. In this region, the left and right lines are indicated by 0
and w in width, respectively, and the top and bottom lines are indicated by d and h + d in
height, respectively. The cropping of the region is achieved by assigning the four line values
into the data structure called Crop, which the Android defines in the mDrawingState for
cropping a rectangular region. The mapping operation maps the starting position (0, d) of
the cropped region into the starting position (0, 0) of the screen in the negative Y-direction
to display the cropped region to the screen region, as shown in Figure 6d. This change is
achieved by assigning −d to the Y-starting position in the data structure called transform,
which is defined in the mDrawingState for the purpose of moving a texture on the screen.
Thereafter, HWC moves the texture by d in the Y-direction by using the mDrawingState
when composing the texture, the navigation bar, and status bar into one image according
to their Z-order levels.

4.6. Implementation Issues

There are some issues in implementing SCAR into the Android graphics pipeline
due to the following architecture characteristics. First, an app consists of the UI thread in
the Java layer and the render thread in the native layer. This separation of the two layers
causes an issue in delivering a scrolling distance and the scrollability of a window from
the UI thread to the render thread. Second, the three components, app, BQProducer, and
SurfaceFlinger, run in separate processes. The non-open-source GLES library also interferes
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in the flow control where the render thread enqueues a grbuffer with a rendered frame into
a buffer queue. These characteristics made it difficult for us to deliver the scrollability and
a scrolling distance from the UI thread to the render thread, and a total scrolling distance d
and the rendering indicator from the render thread to BQProducer.

In SCAR, the scrollability and scrolling distance are added as member variables to
class DecorView in the UI thread. Because its object is shared by several components, it
serves as an intermediary to provide the two parameters for components cooperating to
implement SCAR. The UI thread calls the JNI function nSyncAndDrawFrame() to request
the render thread to render a frame. During this function call, we make the UI thread pass
the two parameters of the DecorView to the function as added arguments, which are put
into a rendering request called DrawFrameTask to the render thread. The render thread
passes the parameters to the method draw() of the CanvasContext performing Algorithm 1
because the method needs them to decide whether to reuse an exFrame.

Figure 7 shows the process of how the render thread requests SurfaceFlinger to display
a frame through the grbuffer swapping operation (line 22 in Algorithm 1), which is executed
in the method SwapBuffers() of the Skia graphics engine. We made extensive efforts to
investigate the process through a dynamic code analysis because the grbuffer swapping
operation invokes the GLES API eglSwapBuffers() [15] whose source code is not public.
It was discovered that this API invokes the method queueBuffer() of class Surface that
requests BQProducer to dequeue/enqueue a grbuffer from/to a buffer queue. This method
finds grbuffer number n by the handle of a grbuffer and executes a proxy method of
BQProducer to transfer n via Binder IPC to BQProducer running on a process. The proxy
method makes BQProducer execute the enqueue operation described in Section 4.4 by
invoking its stub method queueBuffer() with n, which enqueues the grbuffer indexed by n
into a buffer queue and sends a buffer item with n to SurfaceFlinger.
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We implement the decision policy of exFrame grbuffer number nex mentioned in
Section 4.4 into the stub method knowing the detail of the buffer queue. To send nex
and d to SurfaceFlinger, the stub method needs to obtain the two important parameters,
the rendering indicator and d, from the render thread executing Algorithm 1. However,
there were two challenges in transferring the two parameters to the stub method via the
Skia method swapBuffers() that triggers sending a buffer item to SurfaceFlinger. First,
we cannot modify the source code of the eglSwapBuffers() to pass the parameters to its
callee method queueBuffer() of the Surface because it is implemented in the GLES library.
Second, a new Binder IPC channel should be created for transferring the parameters from
the queueBuffer() to a process executing BQProducer. However, this creation requires a
complete understanding of the Binder IPC and an Android rooting that can cause a system
integrity problem.

The first challenge is solved using a design feature that class CanvasContext has a
member variable referencing class Surface in the Android graphics pipeline. We provide
the Surface with additional variables into which to store the two parameters, which the
method draw() of the CanvasContext reflects into the variables in executing Algorithm 1.
The queueBuffer() of the Surface retrieves the parameters from the variables of the Surface
when it is invoked in the eglSwapBuffers(). The second challenge is solved using an
argument packing scheme. When the queueBuffer() of the Surface calls the proxy method
of BQProducer with a grbuffer number of 4 bytes as an argument, the scheme divides the
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argument into three parts, which are packed with two bytes for a total scrolling distance,
one byte for the rendering indicator, and one byte for a grbuffer number whose maximum
is 64. The proxy method executes the stub method with the packed argument, the three
parts of which are unpacked into the two parameters in the stub method, along with the
grbuffer number. This scheme is simple to implement because it does not create a new
Binder IPC channel and does not modify a Binder interface.

5. Experimental Evaluations
5.1. Experimental Environment

Our experiments were conducted on a Google Pixel 3XL smartphone running AOSP
Android 9 (Pie), into which SCAR was implemented. Measurements were made using
Qualcomm Snapdragon Profiler version 2020.4 [26], a tool for analyzing the power con-
sumption and performance of smartphones with Snapdragon chipsets. The tool has been
used in previous studies [28,29] to measure power consumption in mobile devices. We
used a WiFi network in the experiments and minimized display brightness and turned
off GPS and Bluetooth to eliminate unnecessary power consumption. Eight popular apps
were selected for evaluation: Facebook, Twitter, and Tumblr (SNS), Hotels.com (hotel
booking), News Republic (news), Twitch (video streaming), Wish (shopping), and Resplash
(wallpaper). We chose these apps, first, because scrolling is a major use pattern in all the
apps, and second, because they allow us to scroll for a long enough time to ensure a highly
accurate measurement. In the apps, we scrolled for 10 min on scrollable windows.

We measured power saving over different exFrame sizes and scrolling speeds, each
defined as scrolling distance per second (pixels/s). The exFrame size was configured as
1.5, 2, and 2.5 times the frame size of the Android graphics pipeline to examine which size
best improves power consumption with minimal memory usage of a buffer queue. In a
previous study [8], an investigation on major scrolling patterns revealed that users read
content most while scrolling at a scrolling speed of approximately100 pixels/s and quickly
turn over content without reading it at scrolling speeds exceeding 1000 pixels/s. Based
on these patterns, we selected these two speeds as scrolling speeds for the evaluation and
continued to scroll at a constant speed for each scrolling speed.

5.2. Frame Rate and Power Consumption

We conducted an experiment to evaluate frame rates over different scrolling speeds
and exFrame sizes. Upon an up-scrolling operation, we measured the number of executions
of the Skia rendering operation (line 20 in Algorithm 1) that requests the GPU to render
a frame. The frame rate is calculated as the number of the Skia rendering operations for
the total scrolling time. “Original” represents the Android graphics pipeline, and three
SCARs, denoted as SCAR(1.5), SCAR(2), and SCAR(2.5), have exFrame sizes of 1.5, 2, and
2.5 times the frame size of “Original”. In Table 2, “Original” renders frames at frame rates
close to 60 fps, whereas all the SCARs render exFrames at frame rates of less than one
fps because of reusing exFrames in scrolling. We observe a slight increase in frame rates
with the increase of scrolling speed. A higher scrolling speed reduces the reuse time of
an exFrame, thus causing more frequent up-scrolling overflows. In contrast, there is little
impact of the exFrame size on the frame rate. The larger an exFrame, the longer its reuse
time, but there is not a large decrease in frame rendering operations for the total scrolling
time due to extremely low frame rates.

Figure 8 illustrates the impact of scrolling speed on power consumption. SCAR
improves the power consumption by 9% to 28% at 100 pixels/s and by 14% to 30% at 1000
pixels/s compared to “Original”. We observed 20% greater power saving in the five apps
other than Wish, Twitch, and Tumblr for the speed of 100 pixels/s, and in the six apps other
than Wish and Tumblr for the speed of 1000 pixels/s. This result indicates that extremely
low frame rates have an important role in improving the power consumption in SCAR. As
scrolling speed increases, “Original” incurs a higher increase in power consumption than
SCAR in the five apps other than Hotels.com, Tumblr, and Resplash, where the increase is
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almost the same in “Original”. As a result, it is confirmed that SCAR can minimize power
consumption in various apps, increasing in proportion to scrolling speed.

Table 2. Frame rate (fps) according to apps and scrolling speed.

App Name Facebook Twitter Hotels.com News Republic Wish Twitch Tumblr Resplash

Scrolling speed
(pixels/s) 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000

Original 56 56 56 56 56 56 56 56 54 54 55 56 57 57 57 57

SCAR(1.5) 0.05 0.35 0.05 0.37 0.05 0.35 0.05 0.35 0.05 0.37 0.05 0.36 0.05 0.36 0.05 0.35

SCAR(2) 0.05 0.35 0.05 0.37 0.05 0.35 0.05 0.35 0.05 0.37 0.05 0.36 0.05 0.36 0.05 0.35

SCAR(2.5) 0.05 0.35 0.05 0.37 0.05 0.35 0.05 0.35 0.05 0.37 0.05 0.36 0.05 0.36 0.05 0.35
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We analyzed power consumption according to exFrame size in the apps that have the
best performance on power savings. SCAR(1.5), SCAR(2), and SCAR(2.5) reduced power
consumption by up to 28%, 27%, and 26% on Facebook; 24%, 22%, and 20% on Twitter;
and 25%, 22%, and 20% on Hotels.com, respectively, for the speed of 100 pixels/s. There
were 30%, 27%, and 26% reductions in the power consumption on News Republic, and
28%, 22%, and 20% on Twitter for the speed of 1000 pixels/s. It is notable that the increase
in the exFrame size gives little opportunity to improve the power consumption due to
extremely low frame rates. SCAR(1.5) has the best power savings in all the apps for the
speed of 100 pixels/s and achieves better or almost the same power savings for the speed
of 1000 pixels/s, compared to SCAR(2) and SCAR(2.5). Therefore, it is important to select
an exFrame as small as possible if there is little difference in the power saving, because the
memory usage of a buffer queue is linearly proportional to the exFrame size.

5.3. GPU and CPU Utilization

We examined the impact of scrolling on the average GPU utilization. As shown in
Figure 9, SCAR reduces the GPU utilization by up to 100% and 99% for the speeds of 100
and 1000 pixels/s compared to “Original”. Especially, there is a 100% reduction in the
utilization on Tumblr and Resplash for the speed of 100 pixels/s. This result indicates that
a significant decrease in frame rates can greatly improve the GPU overhead that is a major
cause of the power consumption in the two apps. SCAR redraws as many views as the
exFrame size increases, thus causing large GPU overhead in rendering the views. However,
there is little impact from the exFrame size on the GPU utilization because frame rendering
occurs very occasionally. Moreover, the GPU utilization varies greatly across apps in
“Original”, but has little difference among the apps in SCAR with very low GPU overhead.
In contrast, the scrolling speed has a slight impact on the GPU utilization because scrolling
overflows occur more frequently with the increase in the scrolling speed.
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Figure 9. Average GPU utilization.

Figure 10 shows the variation in GPU utilization for a time interval when scrolling up
on Hotels.com, with a great reduction in power consumption and GPU and CPU utilization.
As shown in Figure 10a, the GPU utilization for the speed of 100 pixels/s remains at about
12% in “Original” due to consecutive rendering operations, whereas it remains level at
about 0% in SCAR for the time intervals when an exFrame is reused, but rises up to 7%,
9%, and 11% in SCAR(1.5), SCAR(2), and SCAR(2.5), respectively, when an exFrame is
rendered due to scrolling overflow. A larger exFrame size causes a slight increase in the
GPU utilization due to the increase in the quantity of content to be rendered, but makes
little impact on average GPU utilization due to extremely low frame rates, as shown in
Figure 9. Figure 10b presents that there are a larger number of sudden increases in GPU
utilization at the higher scrolling speed, which leads to each exFrame being reused for a
shorter time. Such a reuse slightly increases the number of rendering operations.
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Figure 11 shows the average CPU utilization in scrolling operations. SCAR reduces
the CPU utilization by 24% to 62% for the speed of 100 pixels/s and by 26% to 65% for 1000
pixels/s, because reusing an exFrame avoids translating drawing commands in display
lists to GLES commands and calling these translated commands. This result confirms that
the CPU utilization reduction contributes greatly to reducing power consumption. We
present a detailed analysis of the CPU overhead in the next subsection to examine the root
cause of the increases in CPU utilization.
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5.4. Analysis of CPU Overhead

Figure 12 shows the execution time of the method performTraversals() of class View-
RootImpl for the speed of 100 pixels/s, which searches views to be redrawn from a view
tree and generates display lists for the found views. SCAR(1.5) increases the execution
time by 4% on Facebook and by 31% to 60% in the other apps compared to “Original”.
The frame extension increases the view tree size or the number of views in a view tree,
thus having the following negative impacts on the CPU overhead. The first is to increase
the time spent in searching views to be redrawn from a view tree, and the second is to
increase the time spent in generating display lists for views to be redrawn. Comparing
Figure 12 and Table 1, we observe the increase in the execution time with increasing view
tree sizes and increasing views to be redrawn. Facebook suffers from a larger increase
in the execution time even if the app has a smaller view tree size and a smaller number
of views to be redrawn compared to Twitch. The features of a view, such as size, shape,
type, style, and complexity, can affect the number of drawing commands composing a
display list for a view. If an app has a small number of views whose display lists have many
drawing commands, a large CPU overhead can occur in updating the drawing commands
into display lists to redraw the views.
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Figure 13 shows the execution times of the method draw() of the CanvasContext for
the speed of 100 pixels/s when “Original” and SCAR each invoke this method to render
one frame and one exFrame, respectively. SCAR increases the execution time by 82% to
403% over “Original”. Moreover, there is an increase in the execution time in proportion to
the exFrame size in an app. To analyze these results, we measured the execution time of
the Skia rendering operation (line 20 in Algorithm 1) executing the following operations,
as shown in Figure 14. The first is the command translation (CT) operation to translate
drawing commands in display lists to GLES commands. This translation causes a CPU
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overhead because the CPU generates a complex set of GLES commands through each
drawing command depending on the view feature. The second is the command execution
(CE) operation to call the translated GLES commands and make the GPU render a frame.
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Comparing Figures 13 and 14, we observe that the Skia rendering operation spends
more than 80% of the execution time of the draw() in all the apps. SCAR(1.5) increases
the CT time by 89% to 252% compared to “Original”. There is an increase in display lists
because extending a frame causes more views to be redrawn. This increase makes the
CPU translate more drawing commands to GLES commands. We observe an increase of
12% to 294% in the CE time in SCAR(1.5). As more GLES commands are generated, the
CPU executes more GLES commands to render a larger frame, thus increasing the CPU
overhead. The comparison of the CT and CE times indicates that the CT time accounts
for a large portion of the overall execution of the Skia rendering operation, thus having a
large impact on the CPU overhead. Moreover, it is notable that an app with fewer views
can have a larger execution time of the Skia rendering operation than other apps. This
results from the view features that have an impact on the number of drawing commands
for a view.

We measured the effective execution time of the method draw() in which to render
exFrames at the frame rates in Table 2, as shown in Figure 15 that includes the execution
time for the “Original” method in Figure 13. The extremely low frame rates in SCAR indi-
cate that the reusing operations of exFrames are dominant over the rendering operations
executed by the Skia rendering operation with a large CPU overhead. This leads to the
decrease of 67% to 86% in the execution time over “Original”, because the Skia rendering
operation is not executed in reusing an exFrame. This reduction surpasses the increase
in the execution time of the performTraversals() in Figure 12, thus playing a major role in
lessening the average CPU utilization, as presented in Figure 11. Moreover, there is little
difference in the execution time of the draw() among the apps due to the dominant reusing
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operations even if the Skia rendering operation has greatly different execution times across
the apps.
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The total rendering time taken to render a frame after a V-Sync signal should be less
than 16.67 ms, due to the maximum frame rate of 60 fps; otherwise, there is a screen tearing
problem where the frame cannot be updated to the screen. Figure 16 presents the total
rendering time that is the sum of the two execution times of the performTraversals() and
draw() for the speed of 100 pixels/s. The total rendering time is less than 16.7 ms in all the
apps but increases in proportion to the exFrame size. As a result, SCAR(1.5) is the most
appropriate, because it can not only avoid the screen tearing problem, but also save power,
comparable to SCAR(2) and SCAR(2.5).
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5.5. Network Traffic and Window Launching Time

In SCAR, the pre-rendering can have a negative impact on the launching time of
a scrollable window and the network traffic in scrolling on the window. The window
launching time, which is an important user-perceived performance criterion, represents the
time taken to display all the content of a window to a screen in launching the window for
the first time. We measured the window launching time through the Android accessibility
service API [30] that is used to assist users with disabilities in Android smartphones. The
Snapdragon profiler is used to measure the network traffic that is the amount of data that
an app transmits and receives with its remote server.

Figure 17 shows the network traffic in launching a scrollable window. SCAR(1.5)
increases the network traffic by up to one fold, compared to “Original” respectively. There
is also an increase in the network traffic in proportion to the exFrame size because a larger
frame size causes an app to fetch more content from its remote server for the pre-rendering.
Fortunately, SCAR slightly increases the network traffic on Twitter, Wish, and Resplash
generating large network traffic. For example, SCAR(1.5) with the best power savings leads
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to an increase of 1% to 5% in the network traffic on these three apps. On the other hand, the
other apps with small network traffic suffer from an increase of 16% to 83% in the network
traffic, but the increased amount of network traffic is very small. These results confirm that
extending a frame does not cause large network traffic in launching a scrolling window.
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Table 3 shows the network traffic per minute in scrolling on a scrollable window for
the speed of 100 pixels/s after the launching of the window. In SCAR(1.5), there is little
increase in the network traffic other than Hotels.com and Tumblr, in which the increase is
small considering the scrolling time. This result is because the apps retrieve only content to
be newly displayed to a user in scrolling. Hence, we confirm that SCAR has little impact
on the increase in the network traffic in scrolling.

Table 3. Network traffic (bytes) per minute during scrolling.

App Name Original
(×1000)

SCAR(1.5)
(×1000)

SCAR(2)
(×1000)

SCAR(2.5)
(×1000)

Facebook 126 127 127 128

Twitter 48 48 49 49

Hotels.com 284 300 380 405

News Republic 175 176 176 177

Wish 5651 5653 5658 5671

Twitch 324 325 329 354

Tumblr 580 618 635 652

Resplash 945 946 947 948

Figure 18 illustrates that SCAR(1.5) increases the window launching time by up to
3% over “Original”, but the increase is nearly negligible in the five apps other than Wish,
Twitch, and Tumblr. This result confirms that the pre-rendering has little impact on a user-
perceived latency of launching a scrollable window. In SCAR(2.5), however, there is an
increase of 3% to 24% in the window launching time due to the following two causes. The
first is an increase in the total rendering time taken to render a frame, as shown in Figure 16.
However, this increase has little impact on the window launching time that is much large
compared to the total rendering time. The second is an increase in the network traffic upon
launching a window whose size is dependent on a frame size. A larger frame size causes
a launching window to fetch more content over the network for the pre-rendering, thus
delaying when to start rendering the content. However, we expect that the high network
speed can reduce the window launching time because of lessening the time taken to fetch
content over the network.
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5.6. Power Consumption upon Down-Scrolling

We measured power consumption in scrolling down at a speed of 100 pixels/s to
investigate whether a down-scrolling operation incurs unnecessary power consumption.
Figure 19 indicates that there is little difference in the power consumption between SCAR
and “Original” regardless of the exFrame size. As shown in Figure 5d, pre-rendering the
content not reusable in a down-scrolling can cause unnecessary GPU and CPU overheads.
To avoid this problem, SCAR renders render only views to be seen on screen like “Original”
without pre-rendering views that cannot be reused in a subsequent down-scrolling, as
shown in Figure 5e. This rendering behavior can avoid incurring unnecessary power
consumption in a down-scrolling even though it does not benefit of reducing the power
consumption through the pre-rendering. As a result, it is confirmed that SCAR saves
significant power during up-scrolling without sacrificing the power consumption during
down-scrolling.
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5.7. Power Consumption in Realistic Smarptphone Usage

We evaluated benefits of SCAR in realistic smartphone usage scenarios such as device
setting and scrolling operations. First, the experimental smartphone was configured to
have a realistic device setting by turning on Bluetooth, GPS and using a 50% display
brightness, which is a typical indoor setting of a smartphone. Second, it is common that
a user conducts scrolling after reading most of the displayed content. We designated the
reading time intervals between scrolling operations as 0, 2, 5, and 10 s while scrolling
at the speed of 100 pixels/s. A scrolling operation comes to stop for the reading time
interval every time a user scrolls up from the bottom of a scrollable window to the top. The
evaluation was conducted in SCAR(1.5) that leads the best power saving, network traffic,
and window launching time.

Figure 20 shows the impact of the reading time interval on power consumption. In
the realistic smartphone setting, SCAR(1.5) improves the power consumption by 9% to
23% at the reading time interval of 0 having no reading time, compared to “Original”. This
improvement is slight less than that in Figure 8 presenting the result in the experimental
setting that turned off Bluetooth, GPS and minimized the display brightness. This is
because the display panel, Bluetooth, and GPS persistently consume a specific amount of
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power upon scrolling, thus offsetting the power consumption improved by SCAR(1.5). As
the result, we confirm that SCAR has the advantage of saving the power even in a realistic
operating scenario that uses a higher display brightness and turns on Bluetooth and GPS,
compared to “Original”.
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As the reading interval time increases, there is a decrease in the power consumption in
“Original” and SCAR(1.5) because the reading time interval reduces frame rates by lowering
a frequency of scrolling operations. This decrease in the frame rates gives SCAR(1.5) less
opportunity to improve the power consumption because SCAR(1.5) has a large advantage
on scrolling operations causing high frame rates. Fortunately, SCAR(1.5) improves the
power consumption by 9% to 21% and by 8% to 18% at the reading time intervals of 2 and
5 s respectively, compared to “Original”. Moreover, there is the improvement of 7% to 15%
even at the large reading time interval of 10 s. This result confirms that our scheme can
improve the power consumption in the realistic smartphone usage scenario even if frame
rates become lower due to the reading time interval.

6. Discussion

The implication for research is that our scheme has the advantage of improving power
consumption in commercial apps by reducing frame rates upon scrolling in the Android
graphics pipeline that has an important problem of rendering a frame at every scrolling
movement. The implication for practice is that the core algorithms of our scheme are
simple and effective because they do not incur additional CPU overhead in reusing an
exFrame upon scrolling and are simply implemented in the Android graphics pipeline. Our
research is efficiently applicable to real-world environments, but has the limitations in apps
handling dynamic content and the recent mobile smartphones with a higher refresh rate.

Dynamic content can be displayed during scrolling: streaming or embedded videos
might play, animated objects (e.g., progress status, GIFs, and emojis) might be updated, or
pages of content might flip (or slide) left and right. There is an issue in reusing an exFrame
with display dynamic content: during scrolling, the reusing repositions the stationary
image of the dynamic content on screen, thus deteriorating the user experience. To solve
this issue, SCAR detects the change in dynamic content to deactivate the reuse of an
exFrame. This deactivation allows rendering a new exFrame during the change, similar to
the process in the Android graphics pipeline.

SCAR cannot reduce frame rendering if dynamic content is played or updated upon
scrolling, thus having little advantage of improving the power consumption. However,
there is a benefit in saving the power upon scrolling a scrollable window where dynamic
content such as embedded video and progress status is frozen without the update. We
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inquired into 80 popular apps from 13 categories in the Korean Google Play Store to
evaluate how many apps display dynamic content during scrolling. This inquiry was
conducted on a main window appearing when the app launches. We found that 45 apps
display no dynamic content, and 27 apps present a ViewPager for page flipping once at the
launch but do not display dynamic window content after the view is passed by scrolling.
In contrast, eight apps automatically play streaming videos during scrolling but provide
a setting to disable the automatic play. A user can disable automatic play to save mobile
network usage. This result of the inquiry indicates that our scheme is highly applicable to
a significant percentage of all apps for reducing frame rendering.

SCAR might cause a screen tearing in the recent smartphones with the high refresh
rate of 120 Hz due to the increase in the total rendering time. The total rendering time
taken to render a frame should be less than 8.33 ms because a V-Sync signal occurs every
8.33 ms in the high refresh rate, but is larger than 8.33 ms in some apps. Fortunately,
the recent smartphones with the 120 Hz refresh rate have become equipped with much
higher performance CPUs than those with the 60 Hz refresh rate [31]. This is because
the high refresh rate needs a powerful processor to make games come alive without a
screen tearing, make animations smoother, and make high-resolution videos played at the
frame rate of 120 fps [32]. For example, the Galaxy S21 series and the OnePlus 9R have
two times higher CPU performance than that of our experimental smartphone. Thus, we
expect that the recent powerful processors make it possible for SCAR to work in advanced
mobile environments efficiently. Furthermore, the Android graphics pipeline conducts
more frequent rendering at a higher refresh rate upon scrolling, thus causing a larger power
consumption. SCAR significantly reduces frame rates even at a higher refresh rate because
it does not conduct a frame rendering until the ending of an exFrame reaches above the
screen bottom upon scrolling. Thus, we expect that there is a wider gap of the power
consumption between the Android graphics pipeline and SCAR in the recent smartphone
supporting the high refresh rate of 120 Hz.

Currently, we cannot evaluate SCAR in smartphones with the 120 Hz refresh rate due
to the following two reasons. First, the Google has not still released a reference phone
supporting the high refresh rate. We need the reference phone to implement SCAR into
the Android graphics pipeline because only a reference phone can run the Android OS
with modified source code. Second, it takes a long time for the Google to release low-level
software such as device drivers and firmware even if the reference phone is launched in
the near feature. In the future, we will verify SCAR on a reference phone with the 120 Hz
refresh rate and optimize its performance.

The GUI development practice and cross-platform app development can have an
impact on power consumption in the user interaction with an app. Some studies [33–35]
introduced that the design and implementation of UI element (i.e., view) layout are impor-
tant factors in UI performance and power consumption. The more complex view hierarchy
(or tree structure) and higher UI overdraw indicating that the same pixels are redrawn
for multiple times in a frame rendering, the larger the CPU and GPU overheads of the
Android graphics pipeline. As shown in Table 1, the Android graphics pipeline redraws
many of views displayed most recently, upon scrolling. In such a behavior, we expect that
the Android graphics pipeline can incur a larger power consumption upon scrolling if a
scrollable window consists of a view layout with more complex view hierarchy and higher
UI overdraw. In future work, we will investigate the influence on power consumption
of the GUI development practices, including a method of minimizing redrawing opera-
tions of views displayed most recently upon scrolling. Moreover, a study [36] introduced
that the cross-platform app development such as React and Ionic causes a performance
penalty due to unoptimized frame rendering and redrawing operations in some simple
UIs, compared to native Android and iOS apps. However, the study did not investigate
power consumption in common UI designs and use patterns such as scrolling. We confirm
that the cross-platform frameworks have an impact on power consumption upon scrolling,
thus planning to scrutinize the impact as the further work.
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7. Conclusions

This study showed that scrolling makes the Android graphics pipeline render most
or all of the previously rendered content at a frame rate of nearly 60 fps. Our scheme,
called SCAR, when rendering a frame for content to be displayed, prerenders any content
that is likely to be displayed soon in a subsequent scrolling. In the subsequent scrolling,
SCAR reuses the most recently rendered frame instead of rendering a new frame. We
implemented SCAR into the complicated Android smartphone environment to evaluate
the power savings. Our evaluation demonstrated the efficiency of reducing frame rates
and reducing power consumption. As a result, we expect that SCAR will be applied into
the Android graphics pipeline in the near future.
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