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Abstract: Tools for Natural Language Processing work using linguistic resources, that are language-
specific. The complexity of building such resources causes many languages to lack them. So, learning
them automatically from sample texts would be a desirable solution. This usually requires huge train-
ing corpora, which are not available for many local languages and jargons, lacking a wide literature.
This paper focuses on stopwords, i.e., terms in a text which do not contribute in conveying its topic or
content. It provides two main, inter-related and complementary, methodological contributions: (i) it
proposes a novel approach based on term and document frequency to rank candidate stopwords,
that works also on very small corpora (even single documents); and (ii) it proposes an automatic
cutoff strategy to select the best candidates in the ranking, thus addressing one of the most critical
problems in the stopword identification practice. Nice features of these approaches are that (i) they
are generic and applicable to different languages, (ii) they are fully automatic, and (iii) they do not
require any previous linguistic knowledge. Extensive experiments show that both are extremely
effective and reliable. The former outperforms all comparable approaches in the state-of-the-art, both
in terms of performance (Precision stays at 100% or nearly so for a large portion of the top-ranked
candidate stopwords, while Recall is quite close to the maximum reachable in theory.) and in smooth
behavior (Precision is monotonically decreasing, and Recall is monotonically increasing, allowing the
experimenter to choose the preferred balance.). The latter is more flexible than existing solutions in
the literature, requiring just one parameter intuitively related to the balance between Precision and
Recall one wishes to obtain.

Keywords: natural language processing; machine learning; stopword identification

1. Introduction and Motivation

Natural Language Processing (NLP) is the branch of Artificial Intelligence concerned
with automatic processing of text written in natural languages, so as to improve human
fruition of its contents. Several NLP tasks are associated to the different, and increasingly
complex, levels at which natural languages may be studied and analyzed (morphology,
lexicon, grammar, syntax, semantics, and pragmatics). NLP tools typically rely on linguistic
resources (lists of words or suffixes, etc.). Since each language is different from the others,
specific resources are needed for each language. Manual development of the resources by
linguistic experts is time-consuming (it takes much study and refinement), costly (expert
time is valuable), and potentially erratic (as all human activities).

While several examples exist for the various NLP tasks, here, we will just provide one
that is representative of all of the above issues. A very famous linguistic resource, widely
exploited for many tasks, is WordNet, a semantic network/lexical taxonomy (some consider
it an ontology) that organizes concepts and English terms according to several syntactic or
semantic relationships [1]. Being manually developed, it is not free of bugs. The problem
of cost is evident in the current Webpage of the project (https://wordnet.princeton.edu/,
accessed on 31 August 2021), which states: “Due to funding and staffing issues, [. . . ]
there are currently no plans for future WordNet releases.” Moreover, the effort had to be

Electronics 2021, 10, 2169. https://doi.org/10.3390/electronics10172169 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1118-0601
https://doi.org/10.3390/electronics10172169
https://doi.org/10.3390/electronics10172169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://wordnet.princeton.edu/
https://doi.org/10.3390/electronics10172169
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10172169?type=check_update&version=2


Electronics 2021, 10, 2169 2 of 21

duplicated for many other languages, with mixed results. The EuroWordNet project [2]
considered Dutch, Italian, Spanish, German, French, Czech, and Estonian. Its homepage
(https://archive.illc.uva.nl/EuroWordNet/, accessed on 30 July 2021) reports on efforts
for Swedish, Norway, Danish, Greek, Portuguese, Basque, Catalan, Romanian, Lithuan,
Russian, Bulgarian, and Slovenic. Another work in the same direction is MultiWordNet [3],
that aligns the Italian WordNet with Princeton WordNet and also provides access to the
Spanish, Portuguese, Hebrew, Romanian, and Latin WordNets, developed by other research
groups. It demonstrates another problem in the building and development of language-
specific linguistic resources: the additional work needed to keep them aligned when new
versions are available (it is aligned with WordNet v1.6 but subsequent WordNet versions
are not backward compatible).

So, it would be desirable to automatically learn the resources from texts in a given
language, but finding effective strategies is not trivial, and often relies on statistics that
must be drawn from very large amounts of text. In fact, many good resources have
been developed for English; some, not always very reliable, resources are available for a
few major languages, but nearly nothing exists for the vast majority of non-widespread
languages, dialects, and jargons. This prevents application of NLP to the latter, which
tampers cultural diversity and might even cause extinction of languages in the long run,
with a consequent huge cultural loss.

An NLP task working at the lexical level is Stopword Identification, where “Stopwords
are terms that occur most frequently in a document and contain very little information that
is usually not necessary” [4]. Ref. [5] defines stopwords by contrast to most significant
words (‘keywords’) as follows: “Since significance is difficult to predict, it is more practical
to isolate it by rejecting all obviously non-significant or ‘common’ words, with the risk
of admitting certain words of questionable status. Such words may subsequently be
eliminated or tolerated as so much ‘noise’. ” The historical and main application that
needs stopwords is Information Retrieval (IR). It aims at indexing a corpus of texts so
as to quickly and accurately select those that may best satisfy the information needs of
users, usually expressed by queries consisting of sets of terms, e.g., effective IR may foster
cultural diversity, and keep alive languages, by making documents in those languages
easily retrievable by end-users. IR mostly works at the lexical level, and carries out
Stopword Removal to reduce the number of indexed terms. This increases speed, reduces
storage requirements, and improves accuracy (by focusing the index on meaningful terms
only). Today, a significant trend for IR is based on techniques that avoid text pre-processing
and, thus, stopword removal, as well. However, these techniques require very large
amounts of data to be applicable, which would not feasible under the small-corpora setting.
Additionally, many other applications still exist that rely on Stopword Identification, e.g., it
is still relevant or necessary for linguistic studies, or for supporting applications, such as
Diachronic Analysis (concerning lexical and semantic changes in language along time) [6]
and Sentiment Analysis (see, e.g., References [7,8]).

The linguistic resource used for Stopword Removal is known as ‘stopword list’. It
consists of the list of terms to be found and removed from the texts. Quoting, again, Refer-
ence [5], “A list of nonsignificant words would include articles, conjunctions, prepositions,
auxiliary verbs, certain adjectives”, known as ‘function words’. This approach requires
grammatical knowledge of the language, which might not be available. In addition, addi-
tional specific terms might be insignificant in domain-specific contexts (e.g., “words, such
as “report”, “analysis”, “theory”, and the like” are considered as irrelevant in the domain
indexing of technical literature [5]). So, each specific domain has its own stopwords, but
only generic stopword lists are usually developed. Even worse, an analysis revealed that
well-known and widely used stopword lists are not very accurate, which clearly affects
their effectiveness [9].

https://archive.illc.uva.nl/EuroWordNet/
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Motivated by all the considerations above, this paper proposes an integrated approach
to automatically learn stopword lists, made up of two components:

• a simple yet effective frequency-based approach to rank candidate stopwords, and
• a geometric strategy to determine the cutpoint in this ranking.

Importantly and interestingly, our approach can work under the following constraints:

1. using just plain texts (i.e., no previous linguistic knowledge): so as to deal with
languages for which no formal grammar is available;

2. being language-independent (not tailored to a specific language): so as to provide its
benefits to a whole range of languages;

3. working on very small corpora (in extreme cases, even a single text): so as to deal
with languages having limited spread or literature (to the best of our knowledge, this
setting is original; all previous works in the literature assumed huge amounts of data
to be available, which is not always true in practice); and

4. being fully automatic: so as to avoid the shortcomings of using linguistic experts.

We ran experiments on several languages of different complexity, and even on mixed
languages, proving the effectiveness of our proposal and obtaining interesting insight
about the problem in general and how to practically apply our approach.

In the following, after discussing related works, we will describe our approaches, our
experimental setting and the datasets used. Then, we will discuss our experimental results
on stopword extraction from very small corpora and single texts in different languages,
before concluding the paper.

2. Related Work

Since stopword removal is very relevant for IR, proposals for automatic stopword
extraction were often evaluated indirectly through the performance of IR based on the
extracted stopwords (e.g., Reference [10]). In this paper, we are mainly interested in the
linguistics perspective; thus, we will evaluate the extracted stopword lists based on their
contents, rather than on their performance on other tasks.

Some works learn the stopword lists based on external aids, such as labeled texts or
extant language-specific tools/resources, e.g., Ref. [10] uses a Vector Space Model, but
previously applies stemming. Ref. [11] also applies Porter’s algorithm for stemming the
text and adopts a supervised learning approach. In addition, Reference [12] works on
labeled corpora. Ref. [13] focuses on the task of optimizing an existing stopword list,
with an approach based on the entropy of words. Ref. [14] also adopts a supervised
approach. Ref. [15] exploits Part-of-Speech information. These approaches cannot be
directly compared to our proposal, in which we purposely start from plain text and avoid
any kind of aid or pre-processing.

Refs. [16,17] proposed two approaches purely based on frequency. Both are language-
specific (English and French, respectively), and both involve manual adjustment of the
list of stopwords extracted automatically. The former was tested on a corpus of broad
literature including more than 1 million words, while the latter was applied to two corpora
made up of small texts, including more than 4 and more than 6 million words, respectively.
In addition, Reference [12] proposes “automatic generation of domain-specific stopwords
from a large labeled corpus”. We aim at learning stopwords from much less data.

Let us now introduce some notation. We will denote by C the training corpus, in a
given language, for learning a stopword list for that language, by n = |C| the number of
texts in C, and by V = {t1, . . . , tm} the vocabulary of C, i.e., the set of distinct terms used in
C. For each term ti ∈ V, oi denotes the number of its occurrences in C, ni the number of
texts in which it occurs, and oc

i the number of its occurrences in text c ∈ C. So, o = ∑i oi
denotes the total number of tokens (i.e., occurrences of terms) in C. In the following, we will
consider C as fixed and, thus, will ignore it in the notation.
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Many techniques proposed in the literature work by ranking all terms in the col-
lection according to their degree of ‘stopwordness’, based on Zipf’s law (the relation
F(r) = C

rα with α ≈ 1, C ≈ 0.1 describes very precisely the distribution of frequency of
terms rank). Then, they select the top terms in the ranking according to Algorithm 1. Some
such techniques are supervised, e.g., Reference [11]: Information Gain, χ2 Statistic, Odds
Ratio, and F-measure Feature Ranking. We assume no information is available except the
plain text(s); thus, we cannot exploit such approaches. Instead, we turn to unsupervised
approaches in the following. Different functions f (t) used by unsupervised approaches in
the literature are:

• Term frequency (TF): the number of times a term occurs in the corpus:

f (ti) = tf(ti) = oi.

• Normalized Term Frequency (NTF): TF normalized with respect to the total number
of tokens in the corpus:

f (ti) = ntf(ti) = − log(
oi
o
).

• Inverse Document Frequency (IDF) [18]: based on the number of texts in the corpus in
which the term occurs (assuming that the more texts use a term, the less informative
it is):

f (ti) = idf(ti) = log(
n
ni
)

• Normalized IDF (NIDF): IDF normalized with respect to the number of texts that do
not contain the term (n− ni), with a 0.5 adjustment to mitigate extreme values [19]:

f (ti) = nidf(ti) = log(
(n− ni) + 0.5

ni + 0.5
).

• Entropy (H): based on the distribution of a certain term over the documents collection,
i.e., on how (un)evenly distributed it is in the corpus:

f (ti) = h(ti|C) = −∑
c∈C

P(c|ti) log P(c|ti),

where P(c|ti) = oc
i /oi (we recall that oc

i is the number of occurrences of term ti in document
c). The terms having higher entropy contain less information about the documents where
they appear, than terms with lower entropy. The maximum entropy value for a given
collection of documents is log |C|, obtained for an even distribution.

A different, and more complex, approach is Term-based Random Sampling (TRS) [20].
It randomly selects n terms, and, for each, produces a set of candidate stopwords as follows:
it samples all the texts containing the term and assesses the relevance of each term t in the
sample using the KL divergence measure [21]:

dx(t) = Px(t) · log2
Px(t)
P(t)

,

to compare its distribution within the sample and in the whole corpus, where:

• Px(t) is the normalized frequency of t within the sampled texts;
• P(t) = oi/o is the normalized frequency of t in the whole corpus.

Then, each set of candidate stopwords is shrunk to m items, and the l least informative
candidates overall are returned as stopwords. So, TRS requires 3 input parameters (n, m,
l). Note that terms rarely occurring in the collection are likely to yield a small set of terms
because few texts contain them. So, the samples obtained by selecting n should improve
the estimation of the distribution and relevance of terms. Due to its random nature, the
behavior of TRS is very variable and hard to capture.
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Ref. [20] compared the performance of TRS in supporting IR to TF, NTF, IDF, and NIDF,
reporting NIDF to be the best technique. However, Ref. [11] points out the deficiencies of
the DF-based approach in general. We further note that, for collections consisting of very
few texts, they cannot leverage enough variability and are inapplicable in the case of just
one document. Being based on the distribution of terms across texts, H alsosuffers from
the same problems and limitations. On the other hand, using TF, Ref. [9] uncovered some
flaws in standard stopword lists in the literature. Inspired by References [9,22], Ref. [23]
has shown that TF dramatically outperforms both NIDF and TRS on small corpora, as well
as extensively discussed the behavior of these techniques on different types of texts.

Given a training corpus, these approaches will typically yield different stopword lists.
As witnessed by the most recent survey paper available on Stopword Removal, Ref-

erence [4], the literature after Reference [20] mainly focused on specific and peculiar
languages, especially those using non-Latin script. A list of such works (often published
in National conferences or journals) includes Arabic [24–26], Chinese [27,28], Persian [15],
Sanskrit [29], Gujarati [30], Punjabi [31], Hindi [32–34], Bengali [35], Sinhala [36], and
Tamil [37]. Here, we aim at devising an approach that can be applied to different languages;
thus, we will not discuss these works in the following, nor can we compare our proposal to
these works, which use very tailored approaches.

Since most approaches to automatic stopword identification work according to Algorithm 1,
a relevant problem is how to determine the cutoff threshold θ. This is not trivial, due to the
typical shape of the f (t) plot providing little hints to determine the cutpoint. While not reporting
the value used to obtain the best performance, Ref. [20] proposed to determine θ using the
largest frequency difference between adjacent terms in the ranking: if it happens between
frequencies f (r) and f (r + 1), they take θ = f (r). However, this might be misleading, since the
maximum difference typically happens quite early in the ranking, and might cut away too many
stopwords. Ref. [22] used the average-based threshold θ = α

n ∑n
i=1 ti, and experimentally

found that α = 1.05 yields good results. Again, this solution does not consider the
whole shape of the frequency ranking. In other applications facing the same problem, the
derivative is used to cut the list, where the plot becomes (almost) flat. This is misleading,
too, because the plot is irregular, and (especially in short texts) it often becomes nearly flat
for a short time, with no strict relationship to the stopwords.

Algorithm 1 Ranking-based stopword identification algorithm.

Require: vocabulary V for C
Require: threshold θ
Ensure: S /* set of identified stopwords */

S← ∅
for all t ∈ V do

if f (t) ≥ θ then
S← S ∪ {t}

end if
end for
return S

3. Proposed Approach

Based on its very definition, ‘stopwordness’ of a term is proportional to its frequency of
occurrence. The most straightforward interpretation of this is considering its term frequency.
In addition, indeed, the TF approach, albeit simple, demonstrated great potential, especially
in the case of very few training documents [23]. In another interpretation, the presence of a
term in many documents may also be an indication of its being irrelevant to distinguish
them. Strangely enough, however, in the literature, the Document Frequency (DF) of a
term, i.e., the number of documents in which it appears, has always been used in its inverse
form (IDF), possibly normalized (NIDF). Perhaps the inspiration for this came from the
usual weighting schemes adopted for the Vector Space Model in IR (e.g., TF*IDF), where
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the more the spread of a term in the corpus, the less its relevance to a single document.
However, using DF in the denominator decreases the weight of a term appearing in many
documents, while, in our perspective, a term occurring in many documents should increase
the degree of stopwordness for that term. In fact, the classical Vector Space Model expresses
the relevance of terms to specific documents, while, here, we are interested in its relevance
in the whole collection. In addition, it is unclear why TF, which is the parameter most
obviously associated to stopwordness, was ignored by Reference [20] when using IDF.

Based on these considerations, we purport that DF and TF can support each other in
stopword identification and propose to combine them so that DF is directly, rather than
inversely, proportional to ‘stopwordness’. So, each term will be associated with a value
equal to the product of TF and DF. We call this extension Term-Document Frequency (TDF),
defined by the following function to be used in Algorithm 1:

f (ti) = tdf(ti) = oi · ni.

To the best of our knowledge, no one investigated this approach so far.
As to the choice of the cutpoint for the list of candidate stopwords, we propose a

geometric strategy, formally described in Algorithm 2 and graphically shown in Figure 1,
where the x axis reports the term ranking positions for terms ordered by decreasing
stopwordness according to the f function, and the y axis reports the stopwordness values.
First, all different values of the stopwordness function f (t) for the terms in the corpus
are considered, ordered by decreasing value, and plotted on a Cartesian space where the
x-axis is associated to the set of different frequencies and the y-axis reports the actual
frequencies (plot in Figure 1). Considering only different values avoids plateaus, yielding a
monotonically decreasing plot and a more compact x-axis, especially on its trailing part.
The resulting diagram has an irregular hyperbole-like shape, on which the cut point is
determined geometrically as follows. Consider a line y = ax + b of given (decreasing)
slope a, and height b on the origin of the Cartesian space such that it is tangent to the
plot. Then, the y coordinate of the tangency point will be our cutpoint frequency. So, our
procedure takes the slope parameter a as the only input. Acting on a, one may obtain a
stricter or looser selection: the more the slope, the earlier the cutpoint; the less the slope,
the later the cutpoint. Of course, being the plot on the positive quadrant, we will consider
negative slopes. Since the boundaries of the plot depend on the number of words in the
vocabulary (x-axis) and on the maximum word frequency in the corpus (y-axis), the same
line slope will have different effects depending on such boundaries. To reduce the effect
of this issue, we propose to normalize the axes ranges, so that the plot becomes square.
This has a nice side-effect on the understandability of the slope setting. Indeed, parameter
a = −1 corresponds to a −45◦ slope, which should identify the cutpoint in which the plot
slope changes from vertical to horizontal. So, values a ∈ ]−1, 0] will select the cutpoint
on the right-hand side of the elbow, while a ∈]−∞,−1[ will select the cutpoint on the
left-hand side of the elbow.



Electronics 2021, 10, 2169 7 of 21

Figure 1. Geometric cutpoint assessment.

Algorithm 2 Cutpoint assessment.

Require: V : vocabulary for C
Require: a: slope of the line determining the cutpoint
Ensure: S /* set of identified stopwords */

D ← { f (t)|t ∈ V} /* all different stopwordness values */
D′ ← { d·|D|

max(D)
|d ∈ D} /* normalization to make the plot square */

L←< l1, . . . , l|S| > list of values in D in decreasing order
L′ ←< l′1, . . . , l′|S| > list of (normalized) values in D′ in decreasing order
i← 1 /* index of the cutpoint value */
continue← True
while continue do

b← l′i − a · i
j← i + 1
while j ≤ |D| ∧ l′j > aj + b /* j-th normalized bar above the line */ do

j← j + 1
end while
if j ≤ |D| then

i← j /* found new candidate cutpoint value */
else

continue← False /* all values processed */
end if

end while
S← ∅
for all t ∈ V do

if f (t) ≥ li then
S← S ∪ {t}

end if
end for
return S
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We may consider the frequency plot as composed by the top of the bars of a bar dia-
gram where the bar at the i-th position on the x-axis represents the i-th different frequency
(in decreasing order). In this representation, the tangent line we are looking for will have
the following properties:

• passing from a point (i, f (ti)) for some term (i.e., candidate stopword) ti;
• being below all bar tops in the diagram: ∀i, i 6= i : f (ti) ≥ f (ti).

It can be found by analyzing, in turn, each i, computing the corresponding b (=
f (ti) − ai), and checking that the bar top of all other i’s is above the line, i.e., f (ti) ≥
ai + b. Operationally, we proceed for increasing i’s, starting from i = 1. For each i under
consideration we scan the subsequent bar tops, and skip them while they are above the
line. If we reach the end of the plot, then the current i provides the cutpoint frequency;
otherwise, as soon as we find a bar whose top is below the line, the corresponding position
becomes our current candidate i, and we go back to the skipping step. In practice, instead of
normalizing the axes, we report the normalization on the slope, so as to avoid recomputing
all bar values, and also still having all integer values. Consider slope a for the case of equal
x and y ranges. With different x and y ranges, say [0, maxx] and [0, maxy], respectively,
the unitary increase of x corresponds to a maxy / maxx increase of y; thus, the normalized
slope to be used in practice is a ·maxy / maxx.

The procedure is shown in Figure 2 for a sample bar diagram, where the steps are
denoted by numbers in circles. The axes in Figures 2 and 3 were not labeled because they
describe our cutpoint assessment approach in general, for any monotonically decreasing
histogram, independent of its interpretation —stopwordness ranking or other (in this work,
they are to be interpreted as in Figure 1). The bars were enlarged for the sake of readability,
so that their points become squares; let us consider the centroid of each square as point
represented by the square. Circled numbers below the diagrams denote the various steps
of the procedure, and, for each step, an arrow shows the candidate cutpoint. Bars whose
top point falls below the line are filled with gray in the picture. (1) We start with the first
bar, and draw the line passing from its top point (centroid of the top square); we start
scanning the subsequent bar tops and see that the second bar top is already below the line.
(2) So, the second bar top becomes our new candidate; the line passing from it is drawn,
and scanning of subsequent bar tops starts; again, the next (third) bar top is below the line.
(3) The line passing from the third bar top is drawn, and scanning starts: the next (fourth)
bar top is above the line, so it is skipped, while the fifth bar top is below the line. So, step
(4) is not carried out and our new candidate becomes the fifth bar top. (5) The line passing
from the fifth bar top is drawn, and scanning starts: all subsequent (sixth and seventh) bars
are above the line, and then the bar diagram ends. So, the selected cutpoint corresponds to
the height of the fifth bar.

Figure 2. Steps of the geometric cutpoint assessment procedure.

Note that the lines in the various attempts all have the same slope, provided as an
input parameter. Of course, changing the slope might return different results. Figure 3
shows the tangent lines for 3 different input slopes, along with the corresponding cutpoints
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(pointed by the arrows). In addition, it may happen that the line is tangent to the plot
in more than one point (e.g., in the rightmost case in Figure 3, the tangent passes from
the top of the sixth and seventh bar). In such a case, different strategies can be applied to
determine which of these points should be selected as the cutpoint. Our strategy returns
the earliest bar for which the line is below all the bars, which yields the strictest strategy,
returning less stopwords. Other possible selection strategies are: the latest (loosest strategy,
returning most stopwords), the middle one, etc.

Figure 3. Cutpoint assessment for different slopes.

4. Experimental Setting

To test our TDF and cutoff threshold assessment approaches, we devised an experi-
mental setting compliant with the constraints stated in the Introduction:

1. We consider plain texts, each associated to one language. Words or phrases from
other languages, if any, will act as noise.

2. We evaluated our proposed methods on 3 languages:

• English, as the main language for which NLP solutions have been developed in
the literature;

• Italian, as an important language with a much more complex morphology
than English (its much richer inflection might affect frequency-based stopword
identification—thus, if good results are obtained on Italian, one may expect to
obtain good results also on many other languages), for which NLP solutions are
also available;

• Squinzanese, a Southern Italy dialect already investigated in Reference [22], as
an example of a dialect for which no linguistic resources are available, and few
texts are available to learn them.

We also tested our approach in a multilingual setting, on a corpus obtained by merging
the English and Italian corpora.

3. We selected very small corpora (including up to 18 texts) for each language. This will
make learning more difficult than on a large number of texts, where the frequency of
real stopwords should easily dominate that of the other words.

4. Our approach is fully automatic.

For each language, we used narrative texts of different length from traditional liter-
ature. For English and Italian, we also selected additional texts in more specific styles
(technical, poetry, drama —these texts were aimed at stressing our approach so as to ana-
lyze its behavior under different conditions, inspired by Reference [23], while mainstream
literature typically focused on texts in the same style. Indeed, some are skeptical about the
use of mixed styles, especially when the number of texts for each style is so small. For the
dialect they were not available. Narrative texts are from the XIX or beginning of the XX
century; poetry/drama texts are from the Middle Ages; technical texts are from the late
XX century. Many selected texts contain typos because they were extracted using Optical
Character Recognition on scanned images of paper documents. This further noise in the
data makes our experimental setting more similar to real-world cases.
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Due to the different nature of the texts, differently from the dialect, we planned a
strategy for progressively incrementing the dataset in the experiment.

Tables 1–3 report the single texts and the aggregates that were used in the experiments
for each language, each associated with an identifier (ID), to be used for referencing it in the
rest of the paper, and with some statistics. Specifically, we reported their length (in number
of words as counted by a text editor), the size of their vocabulary |V| (i.e., the number of
different words a word is defined here as a sequence of alphabetic characters only, preceded
and followed by non-alphabetic characters—, as computed by our code), the number of
stopwords #s they include from the ground truth, and the recall Rmax corresponding to
such stopwords (i.e., the maximum recall that any stopword identification technique may
reach on such documents). The number of words for each text or group of texts in the
training corpus is relevant for relating them to performance.

English texts (see Table 1) are mostly novels, plus the works of Shakespeare for
poetry/drama, and the DOS manual as a technical text. The novels were collected into
2 groups: ‘Dumas’, including all serial stories by Alexandre Dumas, Père; and ‘Novels’ for
the rest. Another group (‘Tech’) included the other texts (in more ‘technical’ style): the
complete works by Shakespeare and the DOS manual. For Italian (see Table 2), the selected
texts are a subset of those in Reference [23]. Again, they include mostly narrative texts.
Italian texts are generally shorter than English ones, but their vocabulary is generally larger,
except for HeG that uses less than 900 distinct words. Again, the narrative texts were
collected into two groups: ‘PPI’ includes the 5 volumes of ‘Passeggiate per l’Italia’, a report
of travels around Italy by a foreign visitor from the XIX century; ‘Novels’ includes novels
and collections of stories from classical Italian literature. Again, another group (‘Tech’)
included the other texts (in more ‘technical’ style): Dante’s poem ‘La Divina Commedia’
and the collection of civil norms in the Italian law. Squinzanese texts (see Table 3) were
taken from a tale book [38] (one of the few available in this language). They are generally
much shorter, and with a much smaller vocabulary, than English and Italian ones, which
makes this dataset particularly challenging. Since all Squinzanese texts are in the same
style, we just collected them in 3 groups consisting of 6 tales each, in the order in which
they appear in the book table of contents.

Table 1. English corpus.

ID Text Words |V | #s Rmax

DJaMH Dr Jekyll and Mr Hyde 28,820 4287 148 0.85
CC Captains Corageous 55,943 7024 162 0.93
F Frankenstein 78,213 7268 153 0.88

TBA The Black Arrow 82,881 7381 148 0.85
ACYiKAC A Connecticut Yankee in King Arthur’s Court 121,985 10,298 169 0.97

M-D Moby-Dick 213,788 17,053 164 0.94

TCoMC The Count of Monte Cristo 466,609 15,935 162 0.93
TTM The Three Musketeers 233,250 10,529 157 0.90
TYA Twenty Years After 245,899 11,133 164 0.94

TVdB The Vicomte de Bragelonne 193,555 10,571 155 0.89
LdlV Louise de la Valliere 171,636 9320 155 0.89
TYL Ten Years Later 191,000 9917 157 0.90

TMitIM The Man in the Iron Mask 177,654 10569 158 0.91

Scw Shakespeare Complete Works 962,009 25,764 160 0.92
D33 DOS 3.3 manual 108,495 3356 132 0.76

Novels {DJaMH,CC,F,TBA,ACYiKAC,M-D} 581,630 25,739 172 0.99
Dumas {TCoMC,TTM,TYA,TVdB,LdlV,TYL,TMitIM} 1,679,603 25,464 165 0.95

Tech {Scw,D33} 1,070,504 27,350 162 0.93
noTech Novels ∪ Dumas 2,261,233 35,756 174 1.00

All noTech ∪ Tech 3,331,737 47,382 174 1.00
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Table 2. Italian corpus.

ID Text Words |V | #s Rmax

PPI1 Passeggiate per l’Italia 1 71,467 11,995 162 0.58
PPI2 Passeggiate per l’Italia 2 86,818 14,710 170 0.61
PPI3 Passeggiate per l’Italia 3 75,871 12,721 170 0.61
PPI4 Passeggiate per l’Italia 4 75,618 12,183 165 0.59
PPI5 Passeggiate per l’Italia 5 46,655 10,470 162 0.58

L’E L’Esclusa 55,846 8919 167 0.60
IPS I Promessi Sposi 220,174 19,658 226 0.81
TlN Tutte le Novelle 264,703 21,641 229 0.82
HeG Hansel e Gretel 2485 890 67 0.24

LDC La Divina Commedia 97,714 12,796 153 0.55
CCI Codice Civile Italiano 228,251 8659 128 0.46

PPI {PPI1,PPI2,PPI3,PPI4,PPI5} 288,379 30,855 215 0.77
Novels {L’E,IPS,TlN,HeG} 487,362 34,677 251 0.90

Tech {LDC,CCI} 325,965 19,900 190 0.68
noTech PPI ∪ Novels 775,741 51,062 257 0.92

All noTech ∪ Tech 1,101,706 60,427 262 0.94

Table 3. Squinzanese corpus.

ID Text Words |V | #s Rmax

LFF Lu Fushi-Fushèi 2125 599 65 0.34
MFF Mesciu Frangiscu firraru 5126 1133 83 0.43
LMS La Maria scema 1209 405 40 0.21
LNN Lu Ndlì-ndlì 4129 939 83 0.43
LR Lu Ranarieddhru 3272 751 63 0.33
LN La Nannorca 1056 342 42 0.22

LCS Lu Cumpare Scaravashu 1844 514 60 0.31
LPZ La Pecura Zzoppa 1088 331 44 0.23
LJ Lu Jaddhru 1601 497 58 0.30

BclNeRclS Bianca comu ’lla Nive e Russa comu ’llu Sangu 911 710 71 0.37
ABA Angila Bell’Angila 1040 396 38 0.20
MS Maria Sapiente 3963 850 73 0.38

RF Rre Fiore 7980 1439 94 0.49
II Isabbella Isabbellina 3175 752 73 0.38

RS Rre Sarpente 4247 981 88 0.46
LT Lu Thriticinu 3579 780 75 0.39
LV Lu Valanieddhru 1064 353 40 0.21
LT2 Lu Tiaulu 1805 600 60 0.31

1–6 {LFF,MFF,LMS,LNN,LR,LN} 16,917 2393 111 0.58
7–12 {LCS,LPZ,LJ,BclNeRclS,ABA,MS} 10,447 1918 115 0.60

13–18 {RF,II,RS,LT,LV,LT2} 21,850 2731 125 0.65
1–12 1–6 ∪ 7–12 27,364 3298 127 0.66
All 1–12 ∪ 13–18 49,214 4547 138 0.72

As a baseline for performance evaluation, and to get an idea of its performance on the
extreme case of just one training document, the proposed approach was applied separately
to each single text. Note that, applied to one text, the TDF approach boils down to TF,
since DF = 1 for all terms. Then, the approach was applied to increasingly larger sets of
texts, selected so as to investigate the approach behavior on different kinds of texts (i.e.,
texts with homogeneous or different styles). First, it was applied to the groups specified



Electronics 2021, 10, 2169 12 of 21

above, for investigating its approach on texts of homogeneous style. Then, it was applied
to further aggregations: all narrative texts for English and Italian, and the first two groups
for Squinzanese. Finally, it was applied to the whole corpus for each language.

Concerning the automatic cutpoint identification for the candidate stopwords, we
will test the −a parameter in the [0, 1] range, denoting slopes smaller than or equal to 45◦.
The underlying rationale is that, for greater slopes, there is still a strong decay in word
frequency, while we expect non-stopwords to have a more even frequency distribution.
Specifically, we will test 3 values: a = −1, as the elbow point that distinguishes more
quickly varying frequencies from more smoothly varying ones; a = −0.5, as the middle
point in the interval, and a = −0.25, as in between the latter and the horizontal line (a = 0,
which would take all terms as candidate stopwords).

Many works in the literature, specifically focusing on the IR task, indirectly evaluated
the performance of their stopword identification approaches based on the performance of
the subsequent IR applications. Since we do not focus exclusively on IR, and we tackle the
case of very few texts, we will adopt a content-based evaluation approach, more based on
linguistics, and compare the extracted stopwords to those in golden standard stopword
lists. As the golden standard for English and Italian, we will use the stopword lists
provided by Snowball (https://snowballstem.org/, accessed on 4 September 2021), which
are well-known and currently exploited by many NLP systems. The English list includes
174 stopwords, while the Italian list consists of 279 stopwords. Since no golden standard
was available for Squinzanese, we used a list obtained by translating the stopwords in the
golden standard for Italian, resulting in 192 stopwords. Performance will be evaluated in
terms of number of returned candidate (#c) and actual (#s) stopwords, precision (P), recall
(R), and sum of precision and recall (P + R) with respect to the golden standard. Precision
is important to prevent removal of informative words when pre-processing the text. Recall,
i.e., how many stopwords from the golden standard are retrieved, allows us to understand
whether the results of the automatic technique are comparable to those of human experts.
However, we put more emphasis on precision because the very small corpora might not
include some stopwords in the golden standard. To have a single number expressing a
balance in performance between P and R, we use their sum, instead of the traditional
F-measure. This is because F-measure rewards more cases in which precision and recall
are close, while, in our case, they are always very imbalanced and, so, would yield very
low values for F-measure.

It is worth noting that the reported results can be actually considered a lower bound
on performance, since the golden standard is known to miss many stopwords (e.g., in
Italian preposition ‘fra’, an alternate form of ‘tra’, which is in the list; in English, the archaic
form ‘thou’ for ‘you’), especially most truncated forms in Italian (LDC is a poem in archaic
Italian from the 1300s, so the most frequent terms are often real stopwords, but truncated
for poetry; these truncated forms are missing in the golden standard, but are actually
very common also in everyday language, so, this is not an issue with the text, rather it
further confirms the incompleteness of the golden standard noted in Reference [9]). Indeed,
Reference [9] showed that, considering some missing stopwords, precision of the first 100
candidate stopwords (P@100) rises from 0.72 to 0.94 on the entire dataset, and even more
for some texts (see Table 4). Worth noting are the cases LDC and HeG: the former has the
best increase in precision, from 0.53 to 0.92, becoming the most effective text in the corpus;
in the latter precision also increases by 0.18, up to 0.70, in spite of its being a very short text.

Table 4. Comparison of P@100 for Snowball-based and manual evaluation on Italian texts (from Reference [9]).

Text(s) LDC CCI L’E IPS TLN PPI1 PPI2 PPI3 PPI4 PPI5 PPI HeG N-T All

Snowball 0.53 0.53 0.62 0.65 0.62 0.73 0.71 0.68 0.71 0.66 0.72 0.52 0.69 0.72
Manual 0.96 0.70 0.86 0.90 0.93 0.90 0.87 0.85 0.88 0.86 0.92 0.70 0.89 0.94

https://snowballstem.org/
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5. Experimental Results

This section reports extensive experimentation showing the effectiveness of our pro-
posals for stopword identification (both the ranking function and the cutoff assessment),
on different languages and even on mixed languages.

5.1. Comparison to State of the Art

The obvious competitor for the method we propose is TF for two reasons:

1. it proved to be the most effective approach in the state-of-the-art under the constraints
we set in our research (small corpora, no manual labeling, no use of external tools and
resources) [23]; indeed, experiments on very small corpora in Reference [23] show that
TF dramatically outperformed the best similar state-of-the-art approaches proposed
in Reference [20]: precision was basically 0 up to the first 100 candidate stopwords
identified by the other approaches;

2. in general, TDF can be seen as an extension of TF that also takes into account the
spread of terms across documents.

However, for the sake of completeness, and to confirm the findings in Reference [23],
here, we also compare it to all the most recent approaches proposed in the literature and
compatible with our constraints, and specifically: IDF, NIDF, TF*IDF, H, TRS, and NTF.

For direct comparison to the latest literature, we used the same dataset as in Refer-
ence [23], concerning Italian language. Since, as already noted, for single documents TDF
boils down to TF, and approaches based on document frequency or distribution are not
applicable to single documents, this comparison makes sense only on groups of texts. So,
from the dataset in Reference [23], we considered the sets of texts PPI (as in this paper),
NTT (Non Technical Texts), and All. We investigated performance for increasingly larger
corpora, in the case of both homogeneous (PPI and NTT) and mixed-style (All) texts.

We evaluated performance in terms of Precision (P, the ratio of a set of candidate
stopwords for a language that are actually stopwords in that language) and Recall (R, the
ratio of actual stopwords for a language that are included in a set of candidate stopwords
for a language). Not to make the evaluation dependent on a specific cutpoint, and in order
to check whether there is a correlation between the ranking and the actual stopwordness,
we actually computed P@n and R@n, meaning that P and R were computed on the top n
candidate stopwords in the ranking returned by the algorithms. Values of n were taken
as a multiples of 10. We considered up to the first 100 candidate stopwords returned by
each competitor (n = 100), except IDF, for which performance @100 could not be assessed.
Indeed, due to the small number of documents, it was unable to provide a fine-grained
ranking: the best score is shared by 2510 terms for PPI, by 382 terms for NTT, and by
160 terms for All.

Table 5 shows the Precision outcomes. We first note that TF*IDF, NIDF, H and TRS (on
the All dataset) all show an undesirable non-monotonic behavior. This means that wrong
stopwords are included in the very top items of the ranking, spoiling the performance of
subsequent thresholds. This also means that the automatic cutoff method could not be
applied reliably on these approaches, since it works best with monotonically decreasing
performance. As expected, all approaches based on inverse document frequency or distri-
bution (IDF, NIDF, TF*IDF, H) improve for increasingly large datasets. However, possibly
due to the small number of texts, they are clearly the worst, with P < 0.50 (and often
P << 0.50) for all datasets and number of candidates, except NIDF on All texts, but only
for the very top candidate stopwords (up to P@50). In particular, albeit considering many
more candidate terms, IDF is clearly and by far the worst approach (P < 0.50 always, even
on the complete dataset ‘All’). Being based on the distribution of terms across documents,
H rewards even terms with very few occurrences, but evenly spread in the corpus. Note
also that H is among the most computationally expensive approaches in the comparison,
since it needs to count the frequency of each term in each single document. TRS is the
non-TF-based approach with closest performance to TF-based ones but still far from them
(interestingly, it performs worst on the complete dataset, which was somehow unexpected).
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NTF and TF have very good performance, and very similar to each other: in some cases,
NTF is slightly worse; in some others, it is slightly better, especially when considering more
candidate stopwords (P@80–100). Both show very good performance, always above 0.90
up to P@50 and always above 0.72 up to P@100 (only once TF is below, for P@100 = 0.69
on NTT).

Notwithstanding the very good performance of TF and NTF, TDF is able to further
improve over them, usually showing a smoother decay and higher precision. Only in
4 cases out of 30 (on the smallest dataset PPI @60 and @80–100) is it worse, and only
@80 significantly (more than 0.02). This is probably due to the smaller number of texts,
preventing good contribution from the DF component, and to the fact that, being the texts
in PPI similar to each other (they are different volumes of the same work), they include
many domain-specific words with very high frequency that are not stopwords. The top-
ranked candidate stopwords are almost perfect (precision is 1.00 for all groups @30, and
for ‘All’ even @40). A detailed analysis of the wrong stopwords returned by TDF reveals
that most of them might be considered, however, domain-dependent stopwords (e.g., the
abbreviation ‘art.’ for ‘articolo’—i.e., ‘law article’— in CCI). So, we are confident that it
is possible to recognize ‘meaningless’ domain words, to be considered as stopwords for
domain-specific applications.

Table 5. Precision of TDF compared to other approaches in the literature.

Group Approach P@10 P@20 P@30 P@40 P@50 P@60 P@70 P@80 P@90 P@100

PPI

IDF 0.06 (@2510)
TF*IDF 0.10 0.05 0.07 0.05 0.04 0.03 0.03 0.04 0.03 0.03
NIDF 0.50 0.25 0.20 0.15 0.12 0.10 0.09 0.07 0.07 0.06

H 0.00 0.00 0.10 0.15 0.20 0.22 0.26 0.24 0.24 0.26
TRS 0.90 0.90 0.90 0.85 0.84 0.82 0.74 0.67 0.62 0.58
NTF 1.00 1.00 0.97 0.95 0.94 0.90 0.86 0.83 0.78 0.72
TF 1.00 1.00 0.97 0.95 0.94 0.90 0.86 0.83 0.78 0.72

TDF 1.00 1.00 1.00 0.95 0.94 0.88 0.86 0.81 0.73 0.71

NTT

IDF 0.28 (@382)
TF*IDF 0.20 0.15 0.27 0.25 0.22 0.30 0.30 0.29 0.27 0.28
NIDF 0.50 0.25 0.20 0.32 0.42 0.43 0.43 0.42 0.38 0.34

H 0.00 0.10 0.07 0.05 0.10 0.13 0.17 0.19 0.18 0.17
TRS 1.00 0.95 0.90 0.85 0.82 0.75 0.73 0.71 0.67 0.63
NTF 1.00 1.00 0.97 0.95 0.90 0.87 0.86 0.80 0.76 0.72
TF 1.00 1.00 1.00 0.97 0.92 0.90 0.86 0.79 0.74 0.69

TDF 1.00 1.00 1.00 0.97 0.94 0.92 0.86 0.79 0.76 0.73

All

IDF 0.41 (@160)
TF*IDF 0.40 0.40 0.47 0.43 0.44 0.45 0.41 0.44 0.42 0.46
NIDF 0.80 0.85 0.83 0.62 0.52 0.45 0.43 0.39 0.39 0.40

H 0.40 0.45 0.37 0.35 0.34 0.28 0.27 0.25 0.24 0.26
TRS 0.60 0.95 0.53 0.70 0.76 0.41 0.44 0.40 0.38 0.33
NTF 1.00 1.00 0.97 0.95 0.90 0.88 0.81 0.80 0.74 0.73
TF 1.00 1.00 1.00 0.95 0.92 0.88 0.84 0.80 0.74 0.72

TDF 1.00 1.00 1.00 1.00 0.94 0.92 0.86 0.80 0.77 0.73

In spite of Recall performance being typically inverse to that of Precision, Table 6
confirms the same behavior also for Recall (here, we just report R@100). Again, only NTF
and TF are somehow comparable to TDF, with recall values above 0.25. The performance
of other approaches, even on all documents, is completely useless in practice. Again, TDF
is able to provide significant improvements over TF and NTF. Note that, since the golden
standard consists of 279 stopwords, the maximum R@100 for any possible approach on
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those (collections of) texts is actually 100/279 = 0.36. So, TDF reaching values 0.28 and
0.31, can be considered a really impressive result.

Table 6. Recall @100 of TDF compared to other approaches in the literature

PPI NTT All

IDF 0.58 (@2510) 0.39 (@382) 0.23 (@160)
TF*IDF 0.01 0.10 0.16

H 0.09 0.06 0.09
NIDF 0.03 0.14 0.14
TRS 0.21 0.16 0.12
NTF 0.26 0.26 0.26
TF 0.25 0.25 0.26

TDF 0.31 0.28 0.28

While it is impossible to formally prove in general the superiority of TDF against its
competitors, a comparison of its precision with the baseline consisting of random selection
of stopwords may give an idea of its discrimination power. Selecting k terms at random
from a vocabulary of m terms including n stopwords, the likelihood that all the k selected
terms are actually stopwords is given by

k

∏
i=0

n− i
m− i

.

Indeed, we have n/m chances of selecting a keyword in the first choice, which must
be combined in conjunction with the (n− 1)/(m− 1) chances of selecting one of the n− 1
remaining stopwords among the m− 1 remaining terms in the second choice, and so on
until the k-th choice. Now, let us consider the cases in Table 5 in which TDF reached
100% precision but its competitors did not, and compute the likelihood of obtaining such
precision at random. Specifically, the cases are:

• P@30 on PPI: the corresponding likelihood is 2.39 × 10−66.
• P@40 on All: the corresponding likelihood is 1.33 × 10−96.

The odds are so small that we may consider it as a practical proof of reliability of the
result and, thus, of the superiority of TDF over its competitors.

5.2. Cutoff Assessment Performance on Single Texts

Our second experiment analyzes the behavior of the automatic cutoff strategy on
single texts, where TDF = TF. While the reader may analyze the figures in more detail
and from different perspectives, here, we will comment on some aspects that we consider
more relevant.

Table 7 shows the results of T(D)F on the English corpus. Again, we used Precision
P and Recall R, computed on the set of candidate stopwords returned by our algorithm
using the automatic cutpoint assessment approach. As expected, the worst performance
from almost all perspectives is for D33 because it uses a less varied vocabulary and a
technical language. So, we will not discuss it further. Note from Table 1 that basically each
single text includes almost all stopwords in the golden standard, which makes the problem
quite challenging because the target recall Rmax is very high. As expected, performance
is in general proportional to the length of the text, and always very high (P + R being
always ≥1, except for TBA with a = −1 and a = −0.5, where it is slightly below 1.0).
Even for shorter texts (the shortest one being DJaMH), precision is very high up to the
loosest setting (a = −0.25): sometimes 1.0, always >0.81. The best performance is obtained
on Scw, which is the longest text but, surprisingly, not using a narrative style and in
archaic language.
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Table 8 shows the performance on Italian texts. Here, with a couple of exceptions (IPS
and TlN, which are the longest narrative texts), Rmax is less than 0.61 (see Table 2). The
worst performance, as expected, is obtained on HeG, which is actually extremely short.
For this very short text, the effect of reducing the −a parameter is much more emphasized
than for longer texts. Lower performance is obtained on non-narrative texts, but still with
P + R ≥ 0.75 in all settings. Compared to English, precision is still very high also in the
loosest setting (a = −0.25), but recall is lower than for English (perhaps due to the texts
being significantly shorter than those in the English corpus and to the maximum recall
reachable being much less than for English texts).

Table 7. Performance of cutoff assessment on single English texts.

a −1.0 −0.5 −0.25
ID #c #s P R P + R #c #s P R P + R #c #s P R P + R

DJaMH 16 16 1.00 0.08 1.08 16 16 1.00 0.08 1.08 26 16 1.00 0.13 1.13
CC 19 19 1.00 0.09 1.09 32 30 0.94 0.15 1.09 32 30 0.94 0.15 1.09
F 16 16 1.00 0.08 1.08 36 36 1.00 0.18 1.18 36 36 1.00 0.18 1.18

TBA 18 16 0.89 0.08 0.97 20 18 0.90 0.09 0.99 38 34 0.89 0.17 1.06
ACYiKAC 12 12 1.00 0.06 1.06 26 26 1.00 0.13 1.13 45 45 1.00 0.22 1.22

M-D 21 21 1.00 0.10 1.10 36 35 0.97 0.17 1.14 48 47 0.97 0.18 1.15
TCoMC 35 35 1.00 0.17 1.17 35 35 1.00 0.17 1.17 67 59 0.88 0.29 1.17

TTM 14 14 1.00 0.07 1.07 45 43 0.96 0.21 1.17 65 55 0.85 0.27 1.12
TYA 17 17 1.00 0.08 1.08 44 41 0.93 0.20 1.13 65 55 0.85 0.27 1.12

TVdB 19 19 1.00 0.09 1.09 39 36 0.92 0.18 1.10 50 47 0.94 0.23 1.17
LdlV 23 23 1.00 0.11 1.11 35 33 0.94 0.16 1.10 73 60 0.82 0.30 1.12
TYL 19 19 1.00 0.09 1.09 47 44 0.94 0.22 1.16 64 58 0.91 0.29 1.20

TMitIM 18 18 1.00 0.09 1.09 35 33 0.94 0.16 1.10 59 52 0.88 0.26 1.14
Scw 57 48 0.84 0.24 1.08 91 75 0.82 0.37 1.19 111 90 0.81 0.45 1.26
D33 16 12 0.75 0.06 0.81 31 19 0.61 0.09 0.70 41 23 0.56 0.11 0.67

Table 8. Performance of cutoff assessment on single Italian texts.

a −1.0 −0.5 −0.25
ID #c #s P R P + R #c #s P R P + R #c #s P R P + R

PPI1 23 23 1.00 0.08 1.08 31 31 1.00 0.11 1.11 41 39 0.95 0.14 1.09
PPI2 19 19 1.00 0.07 1.07 31 29 0.94 0.10 1.04 41 39 0.95 0.14 1.09
PPI3 20 20 1.00 0.07 1.07 29 27 0.93 0.10 1.03 50 45 0.90 0.16 1.06
PPI4 22 22 1.00 0.08 1.08 31 31 1.00 0.11 1.11 40 37 0.93 0.13 1.06
PPI5 20 20 1.00 0.07 1.07 36 34 0.94 0.12 1.06 39 37 0.95 0.13 1.08
L’E 23 22 0.96 0.08 1.05 40 34 0.85 0.12 0.97 40 34 0.85 0.12 0.97
IPS 35 32 0.91 0.11 1.02 37 33 0.89 0.12 1.01 54 43 0.80 0.15 0.95
TlN 31 30 0.97 0.11 1.08 52 47 0.90 0.17 1.07 52 47 0.90 0.17 1.07
HeG 5 5 1.00 0.02 1.02 18 14 0.78 0.05 0.83 171 68 0.40 0.24 0.64
LDC 17 15 0.88 0.05 0.93 37 30 0.81 0.11 0.92 56 40 0.71 0.14 0.85
CCI 38 33 0.87 0.12 0.99 57 41 0.72 0.15 0.87 66 41 0.62 0.15 0.75

Table 9 reports performance on Squinzanese texts. All the texts in this corpus are
quite short (see Table 3) and include a very small portion of the stopwords in the golden
standard, which has clear consequences on performance, and especially on recall. As for
HeG in the Italian corpus, for shorter texts taking a = −0.25 causes a significant increase
in the number of selected candidate stopwords, with no improvement in the quality of
the candidates. Nevertheless, in most of the cases, we may consider performance to be
satisfactory, given the very challenging problem.

For the sake of comparison, we may take as a baseline the approach of cutting the
list of candidate stopwords at the position where the largest weight gap between adjacent
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items in the ranking occurs. Table 10 shows, for each language (first column), which single
texts (fourth column) and groups of texts (fifth column) returned the number of stopwords
(#s) reported in the second column using this method. It is evident that the method is
useless: in most cases, it returns just 1 stopword. Only for Italian and Squinzanese does it
sometimes return more than 2 stopwords, exceptionally returning more than 3 for some
Squinzanese texts. Interestingly, groups of texts do not improve performance over single
texts. This behavior is not surprising, since, given the typical weight plots as in Figure 1,
with a very steep decay on the left, the largest difference happens very early in the ranking.
Since TDF always places correct stopwords in the top positions of the ranking, Precision is
always 1 for these few stopwords. For the reader’s reference, the third column in Table 10
reports the recall (R) corresponding to each given number of stopwords for each language.

Table 9. Performance of cutoff assessment on single Squinzanese texts.

a −1.0 −0.5 −0.25
ID #c #s P R P + R #c #s P R P + R #c #s P R P + R

LFF 12 10 0.83 0.05 0.88 16 14 0.88 0.07 0.95 167 63 0.38 0.34 0.72
MFF 16 12 0.75 0.06 0.81 16 12 0.75 0.06 0.81 26 21 0.81 0.11 0.92
LMS 8 8 1.00 0.04 1.04 12 10 0.83 0.05 0.88 92 39 0.42 0.21 0.63
LNN 13 11 0.85 0.06 0.91 15 12 0.80 0.06 0.86 25 21 0.84 0.11 0.95
LR 11 11 1.00 0.06 1.06 13 12 0.92 0.06 0.98 20 15 0.75 0.08 0.83
LN 8 8 1.00 0.04 1.04 17 11 0.65 0.06 0.71 92 42 0.46 0.22 0.68
LCS 9 9 1.00 0.05 1.05 15 11 0.73 0.06 0.79 140 57 0.41 0.31 0.72
LPZ 9 9 1.00 0.05 1.05 11 9 0.82 0.05 0.87 88 43 0.49 0.23 0.72
LJ 8 8 1.00 0.04 1.04 19 17 0.89 0.09 0.98 122 57 0.47 0.30 0.77

BclNeRclS 12 12 1.00 0.06 1.06 15 13 0.87 0.07 0.94 26 20 0.77 0.11 0.88
ABA 7 7 1.00 0.04 1.04 15 13 0.87 0.07 0.94 75 38 0.51 0.20 0.71
MS 13 11 0.85 0.06 0.91 13 11 0.85 0.06 0.91 26 23 0.88 0.12 1.00
RF 13 10 0.77 0.05 0.82 14 11 0.79 0.06 0.85 34 27 0.79 0.14 0.93
II 10 10 1.00 0.05 1.05 16 14 0.88 0.07 0.95 23 18 0.78 0.10 0.88

RS 17 13 0.76 0.07 0.83 17 13 0.76 0.07 0.83 27 20 0.74 0.11 0.85
LT 6 6 1.00 0.03 1.03 15 12 0.80 0.06 0.86 17 12 0.71 0.06 0.77
LV 10 10 1.00 0.05 1.05 10 10 1.00 0.05 1.05 95 40 0.42 0.21 0.66
LT2 11 10 0.91 0.05 0.96 11 10 0.91 0.05 0.96 125 59 0.47 0.31 0.78

Table 10. Performance of baseline cutoff assessment.

Language #s R Single Texts Groups of Texts

English

1 0.00 DJaMH, CCE, F, TBA, MD, TCoMC,
TTM, TYA, TVdB, LdlV, TYL,
TMitIM, d33

Novels, Dumas,
Tech, noTech

2 0.01 ACYiKAC, Scw —

Italian

1 0.00 PPI1, PPI2, PPI3, PPI4, TlN,
HeG, CCI

PPI, Novels

2 0.01 PPI5, LDC Tech, noTech, All
3 0.01 IPS, L’E —

Squinzanese

1 0.01 MFF, LMS, LNN, LR, LCS, LPZ,
ABA, MS, RF, RS, LV

1–6, 7–12, 13–18,
1–12, All

2 0.01 LN —
3 0.02 LJ, BclNeRclS, LT —
6 0.03 II —
7 0.04 LFF —
8 0.04 LT2 —
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5.3. Performance on Sets of Texts

Given the good performance of the cutoff threshold assessment and of TDF on Italian
compared to the state-of-the-art, reported in previous subsections, we now focus on the
joint performance of TDF and of the cutoff threshold assessment on different languages.
Table 11 shows the experimental results for the various languages at various values of the
slope parameter a.

The worst precision in the entire table is 0.66, which ensures applicability of the ap-
proach to very different languages and experimental settings. As expected, for all languages,
the maximum number of correct stopwords is obtained for the loosest slope (a = −0.25)
and for the complete set of texts (‘All’). It is worth noting that the number of stopword
selected for English and Italian in this setting (171 and 122, respectively) is surprisingly close
to the number of stopwords of these languages, as assessed in Reference [39] (174 and 134,
respectively). Except for Squinzanese with a = −1 on group ‘All’, the number of candidate
and correct stopwords retrieved increases for larger groups of texts. Interestingly, for all
groups of texts and languages, the rate of increase in number of returned candidate stop-
words for smaller |a| is much more than the corresponding rate of decrease in precision.
The most cautious slope setting (a = −1) ensures very high precision, obviously at the
expenses of recall. The loosest slope setting (a = −0.25) doubles recall without dramatically
dropping precision. In fact, P + R is quite stable, and always >1.00, except for some cases
in Italian (which is a complex language). English achieves the best results in all metrics for
all values of the slope parameter (albeit, of course, the datasets in different languages are
not comparable), consistently with its being the easiest case (syntactically simpler and with
more text in the dataset). Especially recall is very high (0.62) on ‘All’ with slope a = −0.25.
Squinzanese retrieved the smallest number of stopwords, but it was the more complex case
(dataset with less text and including the smallest percentage of stopwords in the golden
standard). Partly unexpected, technical texts (‘Tech’) reach good performance both on
English and on Italian, comparable to that of narrative texts or even better (in English for
looser slopes), notwithstanding their shorter texts and more peculiar styles.

Table 11. TDF outcomes on sets of texts.

a −1.0 −0.5 −0.25
ID #c #s P R P + R #c #s P R P + R #c #s P R P + R

English

Novels 39 39 1.00 0.19 1.19 46 46 1.00 0.23 1.23 80 74 0.93 0.37 1.30
Dumas 62 56 0.92 0.28 1.20 74 65 0.88 0.32 1.20 87 75 0.86 0.37 1.23

Tech 44 42 0.95 0.21 1.16 73 67 0.92 0.33 1.25 108 87 0.81 0.44 1.25
noTech 64 60 0.94 0.30 1.24 84 77 0.92 0.38 1.30 117 98 0.84 0.49 1.33

All 67 63 0.94 0.31 1.25 112 99 0.88 0.49 1.37 171 125 0.73 0.62 1.35

Italian

PPI 35 34 0.97 0.12 1.09 53 49 0.92 0.18 1.10 61 55 0.90 0.20 1.10
Novels 36 33 0.92 0.12 1.04 67 51 0.76 0.18 0.94 67 51 0.76 0.18 0.94

Tech 38 33 0.87 0.12 0.99 52 40 0.77 0.14 0.91 75 51 0.68 0.18 0.86
noTech 48 44 0.92 0.16 1.08 81 64 0.79 0.23 1.02 118 80 0.68 0.29 0.97

All 58 53 0.91 0.19 1.10 87 68 0.78 0.24 1.02 122 81 0.66 0.29 0.95

Squinzanese

1-6 17 16 0.94 0.08 1.04 33 29 0.88 0.15 1.03 47 38 0.81 0.20 1.01
7-12 19 19 1.00 0.10 1.10 24 23 0.96 0.12 1.08 41 37 0.90 0.20 1.10
13-18 16 16 1.00 0.08 1.08 27 24 0.89 0.13 1.02 54 43 0.80 0.23 1.03
1-12 26 24 0.92 0.13 1.05 38 34 0.89 0.18 1.07 59 45 0.76 0.24 1.00
All 23 21 0.91 0.11 1.02 43 36 0.84 0.19 1.03 63 48 0.76 0.25 1.01

Multilingual — All (English) ∪ All (Italian)

93 90 0.97 0.18 1.15 137 123 0.90 0.26 1.15 191 155 0.81 0.32 1.13

Very interesting is the multilingual case, run on the merger of all English and all Italian
texts (and of their golden standards). For all settings of parameter a, the results of precision
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and of number of candidate stopwords (overall and correct) retrieved is larger than those
of the ‘All’ datasets for the single languages. This was not obvious, since merging different
languages might spoil the frequencies of each of them and make their stopwords not
recognizable. On the contrary, this result shows that, even for corpora that mix several
languages, our proposed approach may be effective. In addition, recall is consistent with
what was obtained on the single languages, in spite of the nearly doubled number of
stopwords in the golden standard.

6. Conclusions

Many languages lack the linguistic resources needed by Natural Language Processing
(NLP) approaches because they are language-specific, and manually building them is
difficult. In particular, Stopword lists, i.e., lists of terms not carrying significant information
for the texts in a corpus, are fundamental to improve effectiveness and efficiency of many
tasks (Information Retrieval or Diachronic Analysis applications, linguistic studies, etc.).
This paper concerned the automatic extraction of stopword lists from plain texts, proposing
(i) a simple frequency-based approach to assign a degree of ‘stopwordness’ to each term in
a corpus, and (ii) a geometric strategy to automatically determine the cutoff point in the
ranking of candidate stopwords. Specifically, it focused on the case of very small corpora
and of independence from language.

Extensive experiments have shown that both strategies (ranking and cut-off) are effec-
tive. Both proved to be effective on different languages and under different experimental
settings (amount of training text, different styles, mixed languages). In particular, the
approach for cutoff assessment is based on a very intuitive parameter that can be set by
the experimenter, instead of the fixed strategies used so far in the literature, that may not
be consistent with the frequency values of candidate stopwords. The stopword weighting
approach is very simple; still, it significantly outperforms all comparable state-of-the-
art solutions. Given these outcomes, we plan to investigate possible applications of the
TDF techniques to other NLP tasks that may be carried out statistically, perhaps real-life
scenarios of language modeling or machine translation.
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