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Abstract: Performing regular physical activity positively affects individuals’ quality of life in both
the short- and long-term and also contributes to the prevention of chronic diseases. However, exerted
effort is subjectively perceived from different individuals. Therefore, this work explores an out-
of-laboratory approach using a wrist-worn device to classify the perceived intensity of physical
effort based on quantitative measured data. First, the exerted intensity is classified by two machine
learning algorithms, namely the Support Vector Machine and the Bagged Tree, fed with features
computed on heart-related parameters, skin temperature, and wrist acceleration. Then, the outcomes
of the classification are exploited to validate the use of the Electrodermal Activity signal alone to
rate the perceived effort. The results show that the Support Vector Machine algorithm applied on
physiological and acceleration data effectively predicted the relative physical activity intensities,
while the Bagged Tree performed best when the Electrodermal Activity data were the only data used.

Keywords: physical activity; electrodermal activity; wearable device; machine learning

1. Introduction

Performing regular Physical Activity (PA) positively affects individuals’ quality of
life, both in the short- and long-term, and also contributes to preventing chronic diseases.
Within the healthcare context, the regularity and intensity of performed PA has become an
essential criterion for holistically evaluating the health status of a person [1]. A minimum
weekly amount of 150 min of moderate intensity PA and 75 min of vigorous intensity
PA, performed in at least 10 min-long sessions, is recommended by the World Health
Organization (WHO) to prevent chronic diseases, such as breast and colon cancer, type-2
diabetes, depression, and cardiovascular issues [2,3].

Low levels of PA are among the most common risk factors for morbidity and mortality
from all causes. In fact, according to the World Heart Federation (WHF), physical inactivity
increases the risk of hypertension by 30 percent, and of coronary heart disease by 22 percent
[4]. The extensive scientific evidence available about the health-related benefits of PA has
prompted several public and medical health organizations to issue recommendations or
guidelines to promote people’s engagement in PA. Among the several applications in
which the assessment of the PA can be crucial, the remote human health monitoring has a
pivotal role.

As an example, the rehabilitation monitoring. Although a healthcare operator is
needed while performing the rehabilitation exercises, other activities like the so-called
exergames, that can be remotely assessed, may promote the PA [5] and improve the
perceived quality of life [6]. Moreover, other applications can employ PA coaching, in both
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hospital [7] and home-based interventions [8,9]. However, the intensity of the exerted
physical workload is subjectively perceived from different individuals.

The intensity of the exerted PA is a crucial parameter, which can be defined in either
absolute or relative terms. The absolute PA intensity considers the external workload
requested for a particular exercise or training, quantified according to its energy cost in
terms of Metabolic Equivalents (METs) [10], or multiples of the metabolism at rest, without
taking into account the real aerobic capacity of the subject.

The relative PA intensity, instead, personalizes the definition accounting for the indi-
vidual’s fitness or capacity [11]. As a consequence, at a parity of the energy expenditure
amount, subjects with different physical capacities will perceive remarkably different levels
of relative intensity. The discrepancy in absolute and relative PA intensity evaluation may
lead to erroneously evaluating if a subject meets or not the recommended PA levels or even
to potentially dangerous PA prescriptions in subjects with specific health issues.

For several years, the availability of wearable technologies has stimulated the research
on out-of-the-laboratory and automatic PA intensity classification approaches, which
should be easy to apply, without requiring any specific calibration or data input by the
user. Many studies are based on exploiting Inertial Measurement Units (IMUs) [12–15],
or surface ElectroMyoGraphy (sEMG) sensors [16,17]. These types of sensors, however,
only capture external workloads, which is useful to calculate the absolute intensity of the
exerted PA, by detecting the electric activity of muscles [13,18].

In order to account for the subjective capacity, and then come to the evaluation of the
relative PA intensity, Rating the Perceived Exertion (RPE) on self-assessed scales, such as
the Borg’s scale for adults [19] and OMNI for children [20], can be effective to validate the
classification outcomes; however, this is a difficult to automate process.

The solution relies in including physiological parameters into the classification process.
The gold standard requires to measure the subject’s oxygen uptake; however, this approach
is not compatible with the above specified constraints, as it requires complex instruments
and individual calibration. Other physiological parameters, such as the Heart Rate (HR),
the Heart Rate Variability (HRV), the Skin Temperature (SKT), and the skin conductance—
also known as Electrodermal Activity (EDA)—may be available or derived from the sensors
on board modern wrist-worn devices. For this reason, it is of interest to verify the possibility
to classify the perceived (relative) intensity of physical effort through the use of such data,
joint with proper Machine Learning (ML) classification approaches [21,22].

In this direction, a recent study by Chowdhury et al. [23] shows how the use of
multimodal physiological signals only (i.e., by excluding the acceleration), allows for
classification of the perceived exertion with acceptable results, provided that the signals,
the features to use, and the classifier are properly selected. In details, the study gives
evidence that a ML classifier fed with features computed over the HR data only, exhibited
acceptable predictions of relative PA intensity.

In fact, the authors report a maximum F1-score of classification lower than 90%,
obtained with a Support Vector Machine (SVM) classifier on a HR-related features set. They
also conclude that adding features from other sensing modalities (EDA and SKT) does
not significantly improve performance. Evidence from the literature, however, shows that
methods using only HR-related data are effective to objectively estimate relative intensities
in the range from moderate to vigorous, while they perform poorly for low relative intensity
PA [24].

Additionally, these methods require the estimation of the subject’s maximum HR
obtained through age-related prediction equations, that are prone to relevant measurement
error [25,26]. Additionally, for people suffering from cardiac issues, the exclusive use
of HR-related indices may cause a significant underestimation of the truly perceived
relative intensity, and even put these people at risk, if additional exercise is consequently
recommended to meet the PA targets.

Based on such premises (and on the fact that currently available wearables, like the
wrist-worn multisensor device Empatica E4 [27], make it possible to obtain additional
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physiological data (along the HR as well as the already mentioned EDA and SKT) joined
with the acceleration signals of the wrist collected synchronously) in this work, we aim
to test different ML classifiers in recognising the perceived physical exertion intensity
in a cross-domain approach, i.e., by fusing either physiological- and acceleration-related
features.

A reliable classification of the PA relative intensity, provided by the wearable de-
vices used to monitor the levels of physical activity performed by subjects, would be
very important to help them checking and maintaining an appropriate compliance to the
recommended amount of moderate and vigorous intensity PA.

Features extracted from cross-domain signals measured by wearable onboard sensors,
can be combined to classify the relative PA intensity according to RPE: in this way, person-
alised predictions help individuals to maintain a safe and effective training intensity while
tracking the performed PA. Additionally, assessing the PA relative intensity with the same
RPE categories (i.e., low, moderate and vigorous) that are easy to understand by patients
and end-users, can ensure compliance and, therefore, clinical effectiveness [28].

First, the perceived physical effort is expressed by the subjects through Borg’s RPE
scale [29], to effectively categorize the measured data into three PA relative intensity classes,
namely the sedentary, moderate, and vigorous. Then, two ML algorithms, namely SVM
and Bagged Tree (BT) are used for classification, and fed with labelled features computed
on the three directional components of the acceleration, the heart rate, the IBI, and the skin
temperature. Then, the outcomes of this classification are exploited to validate the use of
the electrodermal activity signal alone to rate the subjects’ perceived effort [30].

The paper is organized as follows. Section 2 introduces the materials and methods
used to conduct the proposed study. In Section 3, the experimental results are presented
and are then discussed in Section 4. Finally, the conclusions of the work, limits, and future
developments are proposed in Section 5.

2. Materials and Methods

For the aim of the current study, based on signals collected from a wearable device and
on the use of ML classifiers, a general-purpose framework typically adopted for Human
Activity Recognition (HAR) systems [31] can be applied, which segregates the procedure
in several modules, namely the raw data acquisition, data processing, data segmentation,
feature extraction and classification. In this section, each phase shown in Figure 1 and
developed in our work is accurately described.

Figure 1. The framework of this work.

2.1. Data Acquisition Device and Modality

The Empatica E4 is a medical-grade (a Class IIa Medical Device according to CE Crt.
No. 1876/MDD-93/42/EEC Directive) wearable device worn on the user’s wrist, designed
for real-time, continuous, and comfortable monitoring in free-living conditions. In the
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datasheet, the manufacturer declares four sensors embedded in such device with their own
technical specifications, as follows:

• Photoplethysmography (PPG) sensor (sampling frequency: 64 Hz; resolution
0.9 nW/Digit), which measures Blood Volume Pulse (BVP), from which cardiovascular
parameters, namely the HR, HRV, and Inter-Beat Interval (IBI), may be derived;

• three-axis MEMS Accelerometer (sampling frequency: 32 Hz; resolution: 8 bit of the
selected range), that measures the continuous gravitational force (g) acting on each of
the three spatial directions (X, Y, and Z axes);

• Electrodermal Activity (EDA) sensor (sampling frequency: 4 Hz; resolution: 1 digit∼900
picoSiemens), that measures skin electrical changes related to Sympathetic Nervous
System (SNS) arousal;

• Infrared (IR) Thermopile (sampling frequency: 4 Hz; resolution: 0.02 ◦C), that mea-
sures the SKT values.

It is important to notice that the over-mentioned sampling frequencies, specified in
the E4 wrist-worn device datasheet, are not customizable values. The Empatica E4 works
in two distinct modalities: memory mode and streaming mode. The former allows storing
data in an internal flash memory (up to 60 h); then, as soon as the wristband is connected
via USB to a computer, the app transfers data acquired to the cloud server (E4 Connect).

Differently, when operating in streaming mode (the modality set in this study), the
E4 wristband connects to a smartphone or tablet via Bluetooth Low Energy (BLE) through
a mobile application (E4 Realtime), that allows the real-time preliminary visualization of
data being acquired; then, raw data are automatically uploaded to E4 Connect, from which
data file related to each single onboard sensor can be downloaded.

2.2. Data Acquisition Protocol

Three healthy young adults (including two females (F) and one male (M), between 25
and 29 years old), with a Body Mass Index (BMI) between 17 and 23 kg/m2, participated in
the study (Table 1). Before starting the data collection, each participant signed an informed
consent compliant to the General Data Protection Regulation (GDPR).

Table 1. Study participants’ details.

Subject Sex (M/F) Age (Years) Weight (kg) Height (cm)

1 M 28 72.5 175
2 F 25 38.5 150
3 F 29 46.0 155

Considering similar studies in the literature, involving free body exercises [23,32,33], a
specific test protocol was designed for this study. Participants were involved into two tests
per day, in the morning and in the afternoon always at the same hour, for 5 consecutive
days, resulting in a total of ten test sessions. Each session included three PA conditions
with different intensity levels (10 min for each—see Figure 2): the first test included a
sitting condition, the second a squatting period, and then the third a squatting with a high
frequency of execution. At the end of moderate activity, two minutes of rest were included
in the acquisition protocol to ensure the vital signs could return to the physiological
baseline. The overall session lasted about 32 min.

During each trial, the Empatica E4 device was placed on the subject’s non-dominant
wrist, with no restrictions on how to perform the activities. Therefore, the frequency
of squat execution was verified by visualizing the HR values displayed in the running
E4 Realtime app. In particular, HR values were between 90 beats per minute (bpm)
and 120 bpm, and between 120 bpm and 140 bpm, for moderate and vigorous activity
respectively [34]. As soon as each trial terminated, the participants rated their perceived
exertion while performing the PA session using the Borg RPE scale [29], where different
levels of exertion were categorised into sedentary, moderate, and vigorous intensity.
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Figure 2. Time arrangement of the PA experimental protocol.

2.3. Data Processing

First, data are processed in order to optimize the following steps, from the features
extraction to the classification performance obtained by the machine learning algorithms. In
this study, the three-axial acceleration, BVP, HR, EDA, and SKT signals were considered for
the analysis. After processing each data series in the MATLAB environment, meaningful
information related to each session, excluding the break period between the moderate and
vigorous exercises, was extracted.

Regarding the raw acceleration samples, the sensor was configured to measure accel-
eration in the range [−2 g, 2 g] m/s2; for analytic purposes, a conversion factor equal to
g/64 (where g = 9.81 m/s2) between the raw acceleration samples expressed as multiple of
g, and absolute acceleration values, was applied. Moreover, to remove the motion artefacts
due to the loss of contact between the E4 device and the subject’s wrist, a fourth order
Butterworth bandpass filter, with a low and high pass cut-off frequency of 0.5 Hz and 1.5
Hz, respectively, was applied [35]. As an example, Figure 3 shows how the acceleration
signals on the three directions differ, for different levels of intensity in the physical activity
performed.
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Figure 3. Raw (light grey) and filtered (black) acceleration signals in the three spatial directions and
for three different levels of physical activity exertion: (a) sedentary, (b) moderate, and (c) vigorous.

Concerning BVP raw data, the IBI and HR values have been derived. Firstly, the BVP
local maxima were identified through an algorithm, labelled as BVP peaks, and counted as
HR values. Secondly, the IBI values were computed as temporal distances between two
consecutive BVP peaks, in order to create the corresponding tachogram commonly used
for HRV analysis. Since SKT and EDA data provide the highest content of information
regarding the physical activity intensity, in terms of skin temperature changes and sweat
secretion, no filter was applied in both cases to avoid loss of information. In particular,
for the EDA signal, it has been shown how some features may appear out of the classical
[0.25, 0.40] Hz bandwidth [36]; therefore, we preferred not to apply any pre-configured
filtering.

2.4. Data Segmentation and Features Extraction

The data segmentation phase allows dividing the data time series into segments, as
small representative units of PA, to optimise the recognition performance. Here, the signals
were split using a fixed-size sliding window of length 12 s, with 50% overlap (6 s), because
the combination of both fixed-size and overlapping sliding windows provided the highest
performance accuracy in previous similar work [37]. Moreover, the selected window size
provided enough meaningful data in each segment, resulting in high performance in HAR
in previous study [38].

After the data segmentation, from all the segments obtained, the handcrafted features
are generally computed to feed the machine learning algorithms. This step, named feature
extraction, is the phase of selecting meaningful information by retrieving key properties
from the data.

Within this context, in our study, the time and frequency-domain as well as statistical
and structural features were extracted from both multimodal physiological and acceleration
data. In detail, the statistical features exploit the quantitative data characteristics as key
properties, while the second ones consider the interrelationship among data; hence, the
structural features were used for the vital signs time series, that are characterised by a
lower variability compared with the acceleration signals (considering a short time period).

When using the structural features, generally, an arbitrary function f (i.e., linear,
polynomial, exponential, or sinusoidal) was implemented with a set of free parameters
{a0, a1 . . . , an} fitting the points of a given data time series and the coefficients of the selected
function f that represent the features. According to both Rakesh et al. [39] and Lara et al.
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[40], we implemented a third-degree polynomial, as this was the function that best fit the
vital signs time evolution.

The spectral energy was the single frequency-domain feature extracted due to the sim-
plicity and effectiveness of time-domain features for the sensor-based activity recognition
[37,41]. As listed in Table 2, a total of 50 features were computed, namely 8 features from
the acceleration signal for each axis, 7 from the IBIs, 4 from the HR signal, 11 from the SKT
signal, and 7 features from the EDA signal.

Table 2. List of extracted features from the measured signals.

Signal Domains Type of Features Features

Accx (g), Accy (g), Mean, Variance, Standard Deviation,
Accz (g) Time Statistical Correlation Axes, Interquartile Range,

Mean Absolute Deviation, and Root
Mean Square

Frequency Spectral Energy

IBI (s) Time Statistical Mean, Median, Variance, Standard
Deviation, Skewness, and Kurtosis

HR (bpm) Time Structural 3rd order polynomial coefficients

SKT (◦C) Time Statistical Mean, Median, Variance, Standard
Deviation, Skewness, and Kurtosis

Structural third order polynomial coefficients

EDA (µS) Time Statistical Mean, Median, Variance, Standard
Deviation, Skewness, and Kurtosis

In order to standardize the features to a common interval by scaling the signal ampli-
tude and to optimize the quality of input data, the Z-score normalization was used [23].
Such a method normalises the features (xi) to a zero mean and unit variance, as shown in
the following equation:

Xi =
xi − x̄

σ
, (1)

where x̄ is the corresponding mean and σ is its standard deviation.
The standardization operation avoids that the ML algorithms while performing train-

ing and testing steps and assigns greater importance to some features with larger ampli-
tudes.

In order to classify the PA intensities, each time window was labelled as a 0 (Sedentary),
1 (Moderate) or 2 (Vigorous) class activity, according to the participant’s effort perceived
expressed by filling the Borg RPE scale. After labelling the instances, the classes activity
showed a different number of samples (i.e., 2970 for Sedentary, 4851 for Moderate and 1089
for Vigorous), thus, resulting in an unbalanced dataset. This imbalance does not satisfy
the balanced endpoint hypothesis of most machine learning-based prediction models.
Therefore, the Synthetic Minority Over-Sampling Technique (SMOTE) was used to re-
sample the classes by adding synthetic data, as described in the Section 2.4.1.

2.4.1. Balance of Data

SMOTE is one of the oversampling methods used to tackle the data imbalance in
a dataset, and to balance the class distribution [42]. The SMOTE algorithm is based on
four main steps: (i) select the minority class a, (ii) randomize the related instances, (iii)
calculate the k-nearest neighbours b for each instance, and (iv) produce synthetic instances
by connecting a and b to form a line in the features space.

In this study, the number of neighbors (k) was set to five, and the Euclidean distance
was used as the metric in order to obtain the balanced classes, as shown in Figure 4.
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2.5. Classification Algorithms

As mentioned above, among the most common ML algorithms used to predict the PA
intensity and based on literature analysis [43–45], the SVM and BT were selected to test the
performance of a supervised learning approach. This approach is a learning tool, facilitating
the classification processes, which maps each input to a specific output variable [46], hence,
creating the model based on the relationships between the desired output and the input
features, and then making predictions of the response values for a new unknown dataset.

SVM is a supervised ML algorithm mainly implemented for classification (especially
binary one) purposes. The idea is to find the optimal hyperplane separating all the attributes
of one class from those of other classes. The hyperplane dimension depends on the number
of attributes [47]. In this study, according to the distribution of the multimodal physiological
and acceleration signals, the cubic kernel was selected as separator, excepting for the EDA,
the Gaussian kernel (kernel scale set at 0.61) was chosen [48].

On the other hand, the BT is a bagging ensemble algorithm, where the term “bagging”
means a bootstrap aggregation, used to reduce the variance of a common Decision Tree (DT).
Generally, the BT involves several weak DTs to produce a better predictive performance.
After obtaining results from each single tree, the final prediction is based on the voting of
acquired outcomes, namely the Majority-Voting rule [49]. In this study, a total of 30 DTs
classifiers were involved in the bagging system.

2.6. Performance Evaluation Metrics

The ML classifiers were implemented using the Leave-One-Subject-Out (LOSO) cross-
validation. As the name suggests, the analysis is performed by training the algorithms on
data from all the subjects—1, and by testing the algorithms on data from the previously
excluded subject. This procedure is repeated until samples of each subject are used for both
training and testing steps. Then, the classifiers’ performance was evaluated in terms of
different metrics, namely the model accuracy, the area under the curve (AUC), the confusion
matrix, the sensitivity, the specificity and the F1-score. According to the literature [50], the
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former is defined as the number of correctly classified PA instances over the total number
of instances considered, or:

Accuracy = (1− ErrorRate)× 100, (2)

where:

ErrorRate =
|Ncci − Nti|

Nti
(3)

with Ncci as the number of correctly classified instances, and Nti as the number of total in-
stances considered by each classification algorithm. The Receiver Operating Characteristic
(ROC) curve is a graphical representation of the trade-off between true positive (TP) and
false positive (FP) rates; hence, to assess the overall algorithm performances, the AUC can
be quantified (value closer to 1 indicates a stronger recognition algorithm). To visualize the
measuring performance, the confusion matrix is an additional graphical representation,
where each column of the matrix represents the instances in a predicted class, while each
row represents the instances in a true class. Sensitivity refers to the positive class that was
correctly recognized, defined as:

Sensitivity =
TP

TP + FN
, (4)

whereas the Specificity refers to the negative class correctly recognized, computed as:

Speci f icity =
TN

TN + FP
. (5)

The harmonic mean of both the parameters is named the F1-score:

F1-score =
2TP

2TP + FP + FN
. (6)

The values assumed by the above-defined performance metrics are typically given in
percent form, with the exception of the AUC.

3. Results
3.1. PA Exertion Classification by Cross-Domain Signals

This section presents the results obtained with a set of features extracted from cross-
domain signals, namely the directional acceleration signals, the HR, the IBI, and the SKT,
with data labelled via the Borg scale.

Figure 5a,b show the confusion matrices obtained using the SVM classifier and BT
classifier on both physiological and acceleration data, respectively. As mentioned before,
there are three classes to be recognised: 0, 1, and 2 related to sedentary, moderate, and
vigorous activity, respectively. The blue cells (i.e., principal diagonal) indicate the positive
class that is correctly identified, i.e., the number of instances that have obtained a predicted
class equal to the true class. The bluer the colour, the more correct the obtained previsions.
The cells in a range of pink identify the prediction errors, and they are represented by
values outside the diagonal.

The SVM classifier correctly predicted 5266 instances out of the 5344 actual instances in
the class 0 (sedentary); in the moderate class, 4724 instances were predicted correctly, while
5219 instances were correctly predicted in the vigorous intensity class, as shown in Figure
5a. In the confusion matrix of Figure 5b, it is possible to see that the BT classifier correctly
predicted 5208 instances out of the 5344 actual instances belonging to the sedentary class;
in the moderate class, 4823 instances were correctly predicted, whereas, for the vigorous
class, 5065 instances were predicted correctly.
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Figure 5. Confusion matrix for (a) SVM classifier, (b) BT classifier, applied on cross-domain physio-
logical and acceleration data.

The SVM classifier attained an overall accuracy of 94.5% in classification, versus the
93.9% overall accuracy of the BT.

The relative performances of the two classifiers on the three classes were evaluated
according to the metrics previously introduced, and the results are summarized in Table 3.

Table 3. Relative performance evaluation of the SVM and BT classifiers on the three classes, with
cross-domain data.

Classifiers Class AUC Specificity (%) Sensitivity (%) F1-Score (%)

SVM
0 1.00 98.67 98.54 98.15
1 0.99 97.79 88.41 91.69
2 0.99 95.23 96.83 93.88

BT
0 0.99 99.29 97.46 98.01
1 0.99 95.90 90.27 90.95
2 0.99 95.65 93.97 92.77

3.2. PA Exertion Classification by EDA Signals

EDA signals are affected by a significant intra- and inter-subject variability, so their
use in classification approaches is typically reinforced by fusion with other signals, such as
the HR [5]. In this study, as we aimed for testing the classification performance obtained by
using the EDA signals alone, and they were collected synchronously with the acceleration
and the physiological signals used in Section 3.1, we based the labelling of EDA instances
on the classification obtained from the previous experiments.

Figure 6a,b show the confusion matrices obtained using SVM classifier and BT classi-
fier on EDA data, respectively. It is possible to see that the SVM classifier correctly predicted
4977 instances belonging to the class 0 (sedentary activity) while the BT classifier correctly
predicted 4232 instances of the same class. For the moderate intensity class, the SVM
classifier correctly predicted 1121 instances, versus the 2976 instances correctly classified
by the BT. For the last class (vigorous activity), the SVM classifier correctly predicted 4380
instances while the BT was correct on 4727 instances.

Similarly to the previous analysis, Table 4 reports the relative AUC, specificity, sen-
sitivity and F1-score values obtained by the two classifiers on the three classes. In terms
of the overall accuracy, it was evaluated equal to 65.8% for SVM and 73.8% for BT. As
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reasonably expected, the results obtained exhibit lower performances than those obtained
from the classification exploiting cross-domain physiological and acceleration data.

Figure 6. Confusion matrix for the (a) SVM classifier, and (b) BT classifier, applied on EDA data.

Table 4. Relative performance evaluation of the SVM and BT classifiers on the three classes, with
EDA data only.

Classifiers Class AUC Specificity (%) Sensitivity (%) F1-Score (%)

SVM
0 0.99 65.65 94.19 71.26
1 0.98 93.55 21.30 31.66
2 0.99 88.67 79.20 78.88

BT
0 0.99 87.17 80.09 77.64
1 0.99 85.79 56.55 60.88
2 0.99 85.43 85.48 82.37

4. Discussion

For both the classifiers, the set of features extracted from HR, IBI, skin temperature,
and acceleration data provided the best performance in recognising the exerted intensity
in physical activity, compared to features extracted only from EDA. More specifically,
by looking at Figure 5a,b, the instances correctly predicted for the moderate class were
always less than those related to the sedentary or vigorous intensities. This is evident also
considering the high number of misclassified instances (e.g., class 1 classified as class 2 in
503 instances for SVM, and class 1 classified as class 2 in 449 instances for the BT classifier).

This means that the features extracted from the moderate activity were often confused
for either a sedentary or a vigorous intensity activity. Regarding the sedentary and vigorous
activities, the number of instances misclassified was quite low for both the classifiers.
Considering a real-time algorithm implemented on a consumer wearable device, these
findings have a great impact on a correct definition of both the sedentary and vigorous PA
relative intensity and, consequently, on the values read by the users.

In accordance with previous studies, our results show that the features derived from
the combination of acceleration and physiological data provide a better prediction of the
perceived PA intensity compared with a single signal [23].

Nevertheless, the EDA signal reflecting how the Sympathetic Nervous System acts
on the sweat glands and causes changes of the skin conductance, can be quite effective in
discriminating the different exerted PA if the proper classifier is chosen. In fact, by using
the EDA signal alone for the classification, it is possible to appreciate an accuracy decrease
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smaller than the 30%: 28.7% and 20.1%, for SVM and BT, respectively. In particular, the
accuracy of PA exertion classification decreased from 94.5% to 65.8% for the SVM, and
from 93.9% to 73.8% for the BT classifier, when considering only EDA data instead of the
cross-domain ones.

For the SVM, the relative F1-score obtained was higher than the one reported in [23],
with the exception of class 1; for the BT, relative F1-score values were consistently higher
that those given by SVM. Thus, among the two ML algorithms tested, SVM provided a
slightly better accuracy when fed with the cross-domain physiological and acceleration
features, while BT performed better when using the EDA features.

As shown in Table 3, the lowest result in the sensitivity (88.41%) was obtained from the
SVM classifier on the moderate activity, while the highest values of AUC (1.00), sensitivity
(98.54%) and F1-score (98.15%) were visible for the sedentary class from the SVM classifier,
while the highest specificity (99.29%) was achieved for the sedentary class from the BT
classifier.

Unexpectedly, the performance evaluation metrics related to the vigorous activity
were mostly lower than those in the classes 0 and 1. In particular, for both classifiers, an
AUC value equal to 0.99 was obtained. The sensitivity results were similar, with 95.23%
for SVM and 95.65% for BT. Instead, the SVM performed better in terms of the specificity
(96.83%) and F1-score (93.88%) with respect to the BT (specificity equal to 93.97% and
F1-score of 92.77%), again for class 2.

Even by looking at the confusion matrices obtained on EDA signals using SVM and BT
(see Figure 6), most of the sedentary and vigorous relative intensity samples are classified
correctly. Contrarily, the moderate intensity is highly misclassified (e.g., class 1 classified as
class 0 in 2962 instances for SVM, and class 1 classified as class 0 in 1192 instances for BT
classifier), reflecting as expected in the lowest values of both relative sensitivity (21.30% for
SVM and 31.66% for BT) and F1-score (56.55% for SVM and 60.88% BT, respectively).

The present work aims at the classification of physical activity intensity in a post-
processing phase. This can be considered as a preliminary step, whose future development
could also include a real-time detection, after the evaluation of the technical characteristics
of the wearable devices used. This means to provide the required information needed to
run the ML algorithms for the physical activity intensity recognition in real-time.

5. Conclusions

This study considered the use of two ML algorithms (SVM and BT) (trained and tested
first on cross-domain physiological and acceleration features) to classify the perceived
relative intensity of PA; then, the same algorithms were fed with features extracted only
from EDA signals. The former features were labelled through the Borg’s RPE scale: the
user’s perceived exertion provided the ground truth measure of the relative PA intensity. In
the second study, the EDA responses were labelled according to the classification outcomes
obtained from the cross-domain data. The Empatica E4 multi-sensor device was used to
synchronously collect all the data from three individuals, while they were performing PA
sessions ranging from sedentary to vigorous intensity.

From the overall results discussed above, on the one hand, the vigorous intensity class
obtained the best classification performance and was associated to clear differences in the
signals (e.g., the amplitude of the acceleration data), with respect to those acquired during
the moderate and the sedentary activities. On the other hand, the moderate intensity class
was the most often misclassified, being an intermediate class that may include feature
values that may be either low and/or high and, hence, attributable to the sedentary and
vigorous PA intensity classes, respectively.

This fact may also depend on the PA effort perception assessed by the subject when
evaluating the Borg’s RPE scale. As an example, a subject may feel vigorous activity
as moderate and vice versa. Regarding a potential real-life application of the proposed
approach, the misclassification between moderate and sedentary classes may have a great
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impact on the information reliability received for the user’s self-tracking evaluation and
particularly for the healthcare operators’ assessment [4].

In order to validate and generalise the proposed approach, some limitations need
to be addressed in future work. First, a wider population, in terms of different physical
training and different ages should be involved in the study, along with additional PAs to
be performed. Moreover, different combinations of physiological and acceleration signals
could be tested to assess the best predictors or the most relevant ones for PA intensity (e.g.,
electrodermal activity, IBI, and acceleration data).
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