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Abstract: In this research paper, a nonlinear autoregressive with exogenous input (NARX) model
of the nonlinear system based on neural network and time series analysis is proposed to deal with
the one-month forecast of the produced power from photovoltaic modules (PVM). The PVM is a
monocrystalline cell with a rated production of 175 watts that is placed at Heliopolis University,
Bilbéis city, Egypt. The NARX model is considered powerful enough to emulate the nonlinear
dynamic state-space model. It is extensively performed to resolve a variety of problems and is
mainly important in complex process control. Moreover, the NARX method is selected because
of its quick learning and completion times, as well as high appropriateness, and is distinguished
by advantageous dynamics and interference resistance. The neural network (NN) is trained and
optimized with three algorithms, the Levenberg–Marquardt Algorithm (NARX-LMA), the Bayesian
Regularization Algorithm (NARX-BRA) and the Scaled Conjugate Gradient Algorithm (NARX-
SCGA), to attain the best performance. The forecasted results using the NARX method based on the
three algorithms are compared with experimentally measured data. The NARX-LMA, NARX-BRA
and NARX-SCGA models are validated using statistical criteria. In general, weather conditions have
a significant impact on the execution and quality of the results.

Keywords: neural network; forecasting; photovoltaic modules; NARX model; optimization

1. Introduction
1.1. Background

Recently, forecasting renewable energy sources or solar radiation has become a major
challenge for numerous researchers [1]. Forecasting photovoltaic temperature and power
output and optimizing the injected power to the grid play vital roles in the smart grid
and in the stability of the network. Moreover, supplying the network or isolated system
with sufficient electricity can be key in a photovoltaic generator. It is important to analyze
and study the performance of the injected power from the photovoltaic system to ensure
the stability of the network. A photovoltaic panel has a non-linear and complex electrical
equivalent circuit, which imposes serious instability in the generated power. Photovoltaic
structures are essentially variable, unstable and are greatly affected and dependent on
several factors, such as meteorological parameters, shading conditions, dust, sand and
soiling deposition, wind speed and orientation and cable losses [2]. Any problems occurring
on the photovoltaic panels, such as hot-spots, shading and dust, can be transferred to
the grid, affecting the produced power output and also affecting the used inverter and
converter. These instabilities and disturbances can be transferred to the network and
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influence its stability. In order to inject stable power to ensure the stability of the network,
forecasting of a photovoltaic system will be necessary for monitoring the consumption
of the power system [3]. In this instance, a number of studies have proposed various
strategies and methods to forecast several parameters in a photovoltaic system. The
selected technique depends mainly on different parameters and available data, which
depend on weather conditions [4,5]. It is classified into (i) very short-term, (ii) short-term,
(iii) medium-term and (iv) long-term forecasting.

The existing forecasting methods and techniques can be classified into physical meth-
ods, statistical methods and hybrid methods. The physical methods are mostly dependent
on meteorological variables that influence electricity generation. These methods are mainly
based on mathematical equations, which use several parameters to transform solar radia-
tion into electricity. The above models can be simple and depend on sunlight, or they can
be complex and include further parameters such as ambient temperature, soiling, cable
losses and humidity [6]. The statistical modeling techniques are supported by data that
have been tested for repeatability and reproduced at periodic intervals [7]. They are based
on previous experimental data that have been analyzed by applying time-series data and
measured parameters correlated with meteorological information based on the assumption
that historical data will reappear in the future [8]. Hybrid methods are a combination of the
aforementioned methods [9]. The objectives are to combine several techniques to overcome
the limitations of a simple technique and to improve the outcomes’ effectiveness.

1.2. Literature Review

In the research literature, numerous papers predicting the generated output power
of photovoltaic systems have been published, applying different techniques and methods.
An artificial neural network (ANN) calibration methodology has been used to forecast
the day-ahead of photovoltaic power in Milan, Italy [10]. The approach was used to
determine the optimum network settings in terms of layer number, neurons and trials. The
results were validated by using different statistical indexes, particularly the normalized
mean absolute error (NMAE%), with low values. Another study used a Radial Belief
Neural Network (RBNN) to forecast power generated by large photovoltaic plants in
India [11]. The performance of the RBNN was compared with deep and machine learning
techniques in terms of the different statistical indexes. The results showed that the RBNN
generates low errors compared with the other techniques. The Internet of Things (IoT)
was implemented to collect different natural factors in the environment to forecast the
generated energy from a photovoltaic module using ANN [12]. The technique reduced the
mean square error (MSE) while improving the forecasting effectiveness. The investigation,
on the other hand, failed to offer the necessary data for appropriate model training. This
resulted in the inability to train ANNs adequately due to the lack of some crucial features.
A combination of the WRF-solar model with multi-layered urban canopy and building
energy models was utilized to provide an integrated physical approach. A fuzzy c-means
optimized by Whale Optimization Algorithm (WOA) and Least Squares Support Vector
Machine (LSSVM) were used to forecast the day ahead for a photovoltaic power station
with 2.2 MW capacity [13]. The results showed that the forecasting accuracy using WOA-
LSSVM outperformed LSSVM, long short-term memory (LSTM), and Particle Swarm
Optimization-Backpropagation (PSO-BP) in terms of root mean square error (RMSE) under
different climatic conditions. A hybrid model combining Wavelet Transform (WT), PSO
and support vector machines (SVMs) was implemented to forecast short-term photovoltaic
power [14]. The results using the WT-PSO-SVM outperformed seven different models,
namely a Back Propagation Neural Network (BPNN), Hybrid Genetic Algorithm and
Neural Network (HPNN), SVM, Hybrid Genetic Algorithm (HGS), hybrid PSO–SVM and
Hybrid Hilbert–Huang Transform (HHT). On the other hand, a Moth Flame Optimization
Algorithm (MFOA) was proposed to optimize the SVM parameters in order to forecast the
photovoltaic power output [15]. This methodology led to enhanced forecasting accuracy,
according to the conclusions. These investigators primarily used classical optimization
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approaches to achieve the forecasting performance of SVM by optimizing the parameter
values. The optimized genetic algorithm has been proposed to optimize Bidirectional Long
Short-Term memory (BiLSTM) to forecast multiple photovoltaic power outputs [16]. The
results demonstrate the importance of adjacent photovoltaic system power series, and the
suggested model performs adequately in ultra-short-term forecasting.

The acquisition of photovoltaic power data has stationary points, and to overcome
this problem, a statistical method has been developed for the short-term (0–6 h) forecasting
of the power output of a photovoltaic system [17]. The paper presented a forecasting
methodology that uses existing data from geographically distributed photovoltaic installa-
tions to forecast the power production of a given plant by exploiting spatial and temporal
correlations. These approaches were investigated by analyzing the relationship between
historical performance and the associated meteorological data. The method used a net-
work of sensors made up of geographically scattered power plants. The used input was
derived from the prepared data and not based on the global solar irradiation data, and
the Numerical Weather Predictions (NWP) were not taken into consideration. In relation
to state-of-the-art forecasting methodologies, the Normalized Root Mean Square Error
(nRMSE) can be reduced by 20% or more. Again, for short-term forecasting of the power
output of a photovoltaic system, a new probabilistic method has been proposed based on a
competitive ensemble of diverse base predictors [18]. The author selected three different
probabilistic methods and trained them as base predictors in order to construct an ensemble
of the predictive distribution with the best precision and accuracy criteria. These meth-
ods have been implemented in three different steps to form a probabilistic multi-model
ensemble forecast. In terms of production forecast dependability, the Multi-Objective (MO)
optimization technique outperformed the Single-Objective (SO) optimization technique by
a wide margin, with minimal Continuous Ranked Probability Score (CRPS) losses. A simple
forecasting model was compared with more complicated and sophisticated models over
32 photovoltaic plants of different sizes and technology over a period of one year [19]. The
collected data were classified into three categories, namely meteorological data, measured
data and computed data. The data were trained hourly, and the results were evaluated
using different performance indices; the normalized Mean Absolute Error (nMAE) was
the main index compared with other algorithms. The accuracy and quality of the results
were evaluated using the Grey Box (GB) model, Quantile Random Forest (QRF) and an
ensemble of methods. The results were improved by 5% in terms of nMAE. In another
paper, the output power of a photovoltaic system was forecasted using a hybrid Deep
Learning (DL) system based on Convolutional Neural Networks (CNN) and Long-Short
Term Memory Recurrent Neural Networks (LSTM) [20]. The CNN model was used to find
nonlinear patterns and persistent frameworks in prior output power data, allowing for
a more accurate photovoltaic power forecast. The LSTM was also used to estimate the
photovoltaic power of the following time step by modeling the dynamic variations in the
previous photovoltaic data. The suggested approach was thoroughly tested on data from a
photovoltaic system installed in Limberg, Belgium, and numerical results show that it can
deliver good photovoltaic system predictive accuracy.

Recently, the NARX technique monthly based on NN and time-series analysis have
been widely used in several papers to solve nonlinear and complex systems. This technique
has already proven its immense potential through its capability to forecast complicated
input–output correlations, and it has become a significant aspect of the modern approach
to forecasting [21]. To reduce the computational costs associated with the linearity in the
variable’s mode, the NARX model is sometimes described as a continuous combination
of complex functions [22]. NARX structures are well-suited to learning approaches, and
their composition is complicated by the fact that the number of terms is rapidly increasing.
The NARX methodology is generally recognized as a powerful modeling and evaluation
technique that converges slightly quicker and generalizes far more than most other NN
methodologies. These were created to handle time-dependent operating conditions using
real-time data from equipment activity. Because the validity of the results is simple to com-
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pute and the prediction results are simple to interpret, NARX was widely used to handle a
range of data-driven modeling difficulties. Generally, the purpose of the NARX method is
to predict the next power output using the time-series y(t) based on the identification of
the previous information of the same exogenous information and previous information of
the time-series x(t) [23].

1.3. Contributions

The aim of this paper is to consider the application of the NARX model combined
with NNs and time-series to predict the power of photovoltaic modules for one month.
The PVM system is installed on the rooftop of Heliopolis University on the eastern edge of
the southern Nile delta in Egypt. It is located on the east side of the Nile, with coordinates
given as Latitude = 30.420 and Longitude = 31.565. The used data are collected from the
monocrystalline modules with 175 W peak solar power fabricated by SunModule SW
linked to a converter (Sunny Island) [24]. The above PVM is investigated in [25], which
has indicated that the monocrystalline PVM is the best equipment for a hot climate after
studying the influence of the experimental module on power generation. The proposed
method uses solar radiation, hours and temperature as the exogenous variables. The
NARX paradigm is assumed to be capable of simulating a highly nonlinear state-space
model. It is also widely used to handle a range of issues, and it is mainly important in
sophisticated control applications. The NARX model is also chosen because of its quick
training and convergence times, as well as its exceptional accuracy and attractive dynamics
and interference tolerance. In this paper, three algorithms are used to train and improve
the NNs: NARX-LMA, NARX-BRA and NARX-SCGA. In order to evaluate the quality of
the results, a comparison between the experimental measurement is presented. For further
accuracy, the statistical measures are generated to examine the efficacy and productivity of
the NARX-LMA, NARX-BRA and NARX-SCGA models. The results show that NARX-BRA
outperforms NARX-LMA and NARX-SCGA in terms of Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), Residual Sum of Squares (RSSE), Root Mean Squared
Error (RMSE), Auto-Correlation Function (ACF) and R2. Finally, the results reveal that
the NARX-BRA models are suitable for performing the one-month time-series composite
index forecasting.

This paper is organized as follows: in Section 2, we provide a description and a pre-
sentation of the photovoltaic system, weather characteristics and the used methodologies.
Section 3 deals with the forecasting performance metrics. Section 4 illustrates the simula-
tion, presents a comparison of the results and provides an assessment of the prediction
accuracy measures, as well as the discussion, and Section 5 concludes this study.

2. Materials and Methods

This section presents the implementation of the NARX model to forecast the power
output of the PVM system. The PVM is installed in Heliopolis University, Belbeis city, Egypt.
The system is installed to supply electricity to the university, which is connected to the grid.
A weather station collects various data daily, such as solar radiation, ambient temperature
and the power output of the photovoltaic modules. The output power is forecasted using
the NARX model based on neural network time-series and the NARX-LMA, NARX-BRA
and NARX-SCGA optimized training algorithms.

2.1. Photovoltaic Module and Weather Station

The photovoltaic modules are SunModule SW monocrystalline cells with 175 W
peak solar power, located on the Nile’s southern delta, with coordinates La = 30.420 and
Lo = 31.565. The modules are fabricated by Solar Word, with an innovative module
structure. They are made up of 72 series-connected cells with 125×125 mm dimensions
and a generation capacity of 4.5 kWp. The electrical characteristics of the monocrystalline
photovoltaic modules at STC are Pmax = 175 Wp, Vmpp = 35.7, Impp = 4.9 A, Voc = 44.4 V and
Isc = 5.4 A [26]. The PVM is coupled to an SMA inverter and is inclined at a predefined angle
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to collect the maximum power throughout the day. Figure 1 illustrates the photovoltaic
modules on the roof-top of the university [27].

1 
 

 
Figure 1. Monocrystalline photovoltaic system on the roof of Heliopolis University.

In this investigation, the monocrystalline PV (Figure 1) was chosen for the aforemen-
tioned purposes:

(1) this is the most commonly used device in Egypt;
(2) it has the most reasonable costs among its competitors;
(3) according to manufacturer reports, it has the best heat resistance.

Numerous papers have analyzed the performance of the 175 W SunModule SW
monocrystalline cell. The thermal effects are reported in [28] by using different microin-
verter placements. It indicates that, at lower temperatures, the performance is approx-
imately reduced by 0.65%, while the AC/power is enhanced by 0.9%. The electrical
characteristics and performance analyses are provided in [29]. The supervision and con-
trol of the used PVM linked to two stages and connected to a DC/DC converter at the
string level and the main inverter are presented in [30]. Another publication discusses and
presents the experimental analysis and investigation of the single-phase Z-source inverter
attached to the used photovoltaic modules (175 W SunModule SW monocrystalline) [31].

2.2. NARX Neural Network Model

The NARX neural network technique is an important class of nonlinear recurrent
dynamic ANN computer program networks comprising linked nodes inspired by a sim-
plification of the human neural system. As a result, every point contains an artificial
neuron that takes one or more inputs and accumulates them and passes through a non-
linear active function to generate an output [32–35]. In the Feedforward Neural Networks
(FNNs) model, the information moves in one direction, with nodes structured in layers.
Meanwhile, in a Recurrent Neural Network (RNN) architecture, such as NARX, the in-
formation/communication moves both forward and backward, providing connections
between neurons situated in the same or previous layers [36]. This structure evaluates the
present level of an incoming time-series with preceding values of the same series, as well as
the present and previous values of an exogenous series. This typically includes simulating
the inputs and outputs of complex processes, constructed by two tapping delays, one
flowing over the inputs and the other over the outputs. Likewise, the NARX methodology
takes time-series data and is based on the linear autoregressive exogenous (ARX) model.
The NARX technique is indeed an important form of discrete-time of a nonlinear system.
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The time-series y(t) can be presented as the weighted sum of n independent power outputs
of a photovoltaic system presented by P1(t), P2(t), . . . Pn(t) as [22,37]:

y(t) = a0 + a1P1(t) + a2P2(t) + . . . + anPn(t) + e(t) (1)

where e(t) is the deviation error.
The new value of y(t) is directly reliant on the previous output parameters and even

the previous independent exogenous input parameters when a NN multilayer perceptron
predicts the function f.

y(t) = [P1(d1(t))P2(d2(t)), . . . , P31(d31(t))] (2)

where di(t), (i = 1, 2 . . . , 31) is the days of each power given as

d(t) = [d1(t)d2(t), . . . , d31(t)] (3)

Nonlinear multidimensional equations could be approached using a linear structure
of nonlinear functions, and the function f can be modeled as follows:

f [P] = f [P1, P2, . . . , Pn] = a0 + f1(P1) + f2(P2)+, . . . , fn(Pn) + e(t) (4)

The input u(t) and output y(t) of a nonlinear model are modeled and approached by:

y(t) = a0 +
na

∑
i=1

aiy(t− i)+
nb

∑
j=1

bju(t− j) + e(t) (5)

The values of a1, a2 . . . , ana and b1, b2 . . . , bna are constant, the system exponent number
is na, and nb represents the input exponent number.

Generally, the function f is nonlinear, and the future values of y(t) are extrapolated
on prior output and input u(t) values. The desired forecasted values of the power output
generated by the photovoltaic system are regressed by direct feedback and connected with
the output and input of the multi-layer NN. Figure 2 gives a description of the input and
output in the NARX model’s NN framework [38].

Electronics 2021, 10, x FOR PEER REVIEW 6 of 17 
 

 

( ) ( ) ( ) ( )0 1 1 2 2 ( )n ny t a a P t a P t a P t e t= + + + + +  (1) 

where e(t) is the deviation error. 
The new value of y(t) is directly reliant on the previous output parameters and even 

the previous independent exogenous input parameters when a NN multilayer perceptron 
predicts the function f. 

( ) ( )( ) ( )( ) ( )( )1 1 2 2 31 31, ,y t P d t P d t P d t =    (2) 

where 𝑑 (𝑡), (𝑖 1,2 … ,31) is the days of each power given as 

( ) ( ) ( ) ( )1 2 31, ,d t d t d t d t=     (3) 

Nonlinear multidimensional equations could be approached using a linear structure 
of nonlinear functions, and the function f can be modeled as follows: 

[ ] [ ] ( ) ( ) ( ) ( )1 2 0 1 1 2 2, , , , ,n n nf P f P P P a f P f P f P e t= = + + + +   (4) 

The input u(t) and output y(t) of a nonlinear model are modeled and approached by: 

( ) ( ) ( ) ( )0
1 1

na nb

i j
i j

y t a a y t i b u t j e t
= =

= + − + − +   (5) 

The values of 𝑎 , 𝑎 … , 𝑎  and 𝑏 , 𝑏 … , 𝑏  are constant, the system exponent 
number is na, and nb represents the input exponent number. 

Generally, the function f is nonlinear, and the future values of y(t) are extrapolated 
on prior output and input u(t) values. The desired forecasted values of the power output 
generated by the photovoltaic system are regressed by direct feedback and connected with 
the output and input of the multi-layer NN. Figure 2 gives a description of the input and 
output in the NARX model’s NN framework [38]. 

 
Figure 2. The topology of the NARX framework during training. 

The nonlinear function f has a multilayer perception and consists of different nodes 
structured in two layers; the first layer is named H and performs the output function, and 
Z represents the second layer, which refers to the value of a node’s activation. In complete 
NNs, the activation function and system parameters have always been associated one to 
one and aggregated. The value of the state variables is estimated by the next step and can 
be modeled as follows: 

( ) ( )1i ix t z t+ =  (6) 

The weight and number of each node are external inputs in the NARX architecture 
model, while the activation function for each node is presented as: 

( ) ( ) ( )0
1
1,...,

m

ij j i i
j
i H

z t f w a x t bu t c
=
=

 
 = + + + 
  

  
(7) 

Figure 2. The topology of the NARX framework during training.

The nonlinear function f has a multilayer perception and consists of different nodes
structured in two layers; the first layer is named H and performs the output function, and
Z represents the second layer, which refers to the value of a node’s activation. In complete
NNs, the activation function and system parameters have always been associated one to
one and aggregated. The value of the state variables is estimated by the next step and can
be modeled as follows:

xi(t + 1) = zi(t) (6)

The weight and number of each node are external inputs in the NARX architecture
model, while the activation function for each node is presented as:
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z(t) = f

w0 +
m

∑
j = 1

i = 1, . . . , H

aijxj(t) + biu(t) + ci

 (7)

The real values of the weights aij, bi and ci are fixed, and the output layer y(t) is made
up of a single linear node, written as:

y(t) = w0 +
H

∑
i=1

wijzi(t) + e(t) (8)

2.3. Levenberg–Marquardt Training Algorithm

The LMA is an adaptable and flexible methodology that interpolates between the
Gauss–Newton algorithm (GNA) and the Gradient-Descent Method (GDM) [39] to identify
a multidimensional function’s lowest values [40]. As evidenced by many applications, the
LMA is more trustworthy than the GNA, and it may identify a solution even when starting
from a very low point [41]. The LMA uses the GDM to initialize the variables of the model
in the contrary direction of the gradient of the objective function if the first assumption
of the variable’s type is not enough to reach their optimal point. The minimal element is
calculated as the sum of squares from nonlinear real-valued functions [42]. If the initial
estimate is around or close to the optimum, the LMA selects the GNA by supposing that
the objective function is quadratic [43].

If LMA uses a sum of squares as an objective function using the Hessian matrix, and
considering the mathematical equation of LMA as a linear approximation of the function f,
the LMA can be formulated as [44]:{

H = J′.J
xk+1 = xk − [J′.J + µI]−1.J′.ε

(9)

where J indicates the Jacobian matrix, xk+1 the Hessian matrix, xk represents the weight
vector, µ represents the scalar operator, I is the identity matrix, and ε represents the residual
error vector.

2.4. Bayesian Regularization Training Algorithm

The BRA is recognized to be one of the best methods for handling NN learning
problems since it can randomly select regularization coefficients and combines the high-
convergence qualities of traditional BP with earlier Bayesian statistics [45]. Regularization
is a training method that significantly enhances the recognition accuracy by incorporating
a limitation notion into the NN’s training criterion component in order to ensure that
the network’s weight connection is properly configured [46]. The supplementary term is
written in the following form:  F = βEd + αEw

Ew = 1
2

n
∑

i=1
wi

2 (10)

where ED and Ew are the sum of squared network errors and the sum of squared network
weights, respectively. While α and β denote the regularization parameters [47], their values
can be determined by: 

α = γ
2Ew

β = M−γ
2Ed

γ = n− 2α.tr(H)−1

H = β∇2Ed + α∇2Ew

(11)
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where γ is the effective weight and H is the Hessian matrix of the objective function.

2.5. Scaled Conjugate Gradient Training Algorithm

The SCGA technique is a set of fundamental approaches for reducing smooth functions,
particularly when the dimension is largely based on conjugate directions [48]. In SCGA,
the gradient is simply implemented to define the first error descent direction, which we
can indicate by D(0), and then each successive direction is considered to be congruent with
the preceding one, i.e., for those along which there is something, the gradient varies only
in magnitude rather than direction [49]. This was created to eliminate the time-consuming
process of searching for boundaries. After this, a line search mechanism is utilized to
reduce the error function. In MATLAB, ‘trainscg’ is a network training function that uses
the Scaled Conjugate Gradient (SGG) methodology to adjust weights and biases [50]. This
could train a certain network that has derivative functions for the weight, net-input and
transfer functions. This algorithm can be summarized in five steps, by supposing that the
beginning point for the local optimization operation is w(0) [51,52]:

Step 1: k = 0 and the error value in w(0) is generated from gradient vector [53]{
e(0) = E[w(0)]
g(0) = ∇E[w(0)]

(12)

Step 2: if k modd = 0, then
D(k) = −g(k) (13)

Otherwise,
D(k) = −g(k) + λD(k− 1) (14)

The coefficient λ determines how many of the previous search directions are included
in the present one. This could be any of a variety of different formulations. In our
investigation, we used the one proposed by Polak and Ribiere, which is more reliable in non-
quadratic error functions, which, according to [54], and presented in the following equation:

λ =
[g(k)]T − [g(k)− g(k− 1)]

[g(k)]T g(k− 1)
(15)

Step 3: To find a step size ϕ, execute a line search, starting at w(k) and moving through
the directions D(k), that is close enough to the minimum of the set of variable functions
given by:

F(ϕ) = E[w(k) + ϕD(k)] (16)

Step 4: This step deals with the adjustment of the approximated minimum of E, and it
could be given by:

w(k + 1) = w(k) + ϕD(k) (17)

Step 5: k = k + 1 {
e(k) = E[w(k)]
g(k) = ∇E[w(k)]

(18)

If the termination criteria are not met, move to Step 1.
It is indeed noticeable that the line adopted in the proposed algorithm has a consider-

able impact on the algorithm’s general performance.

3. Forecasting Performance Metrics

To evaluate and verify the efficiency and correctness of the proposed forecasting
models, experimental data from the PVM system in Heliopolis university are used. Various
statistical criteria are adopted and used to measure the forecast accuracy [55]. The statis-
tical criteria are applied in a wide range of scientific disciplines to properly evaluate the
suitability of a forecasting model [56]. These statistical criteria are typically determined by
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the difference between the experimental power Pexp and the forecast power Pfor, referred to
as the t-th time’s sample. The approximated models are evaluated based on a comparison
of statistical criteria to maintain the quality and effectiveness of the results.

The Individual Error (IE) is commonly used and defined as the difference between the
experimental and forecasted power.

IE = Pexp,i − Pfor,i (19)

Starting from the IE, the other error indexes adopted for the assessment can be derived:
Relative Error (RE):

RE =
Pexp,i − Pfor,i

Pexp,i
(20)

Mean Absolute Error (MAE):

MAE =
1
N

N

∑
i=1

∣∣Pexp,i − Pfor,i
∣∣ (21)

Mean Absolute Percentage Error (MAPE):

MAPE =
100
N

N

∑
i=1

∣∣Pexp,i − Pfor,i
∣∣

Pexp,i
(22)

Residual Sum of Squares (RSSE):

RSSE =
N

∑
i=1

(
Pexp,i − Pfor,i

)2 (23)

Mean squared error (MSE):

MSE =
1
N

N

∑
i=1

(
Pexp,i − Pfor,i

)2

(24)

Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

(
Pexp,i − Pfor,i

)2

(25)

Coefficient of Determination: The R2 was used to examine the appropriate following
explanation among both observed and predicted values [57], and it was written as:

R2 = 1−

m
∑

i=1

(
Pexp,i − Pfor,i

)2

m
∑

i=1
P2

exp,i −

m
∑

i=1
P2

for,i

m

(26)

where N is the number of measured powers.
The autocorrelation function (ACF) indicates how and why the correlation among any

given input values varies when their separation changes. For the error signal, the ACF can
be presented as:

ACF =
Conv(et, et+k)√
Var(et)Var(et+k)

(27)
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4. Results

In this section, the forecasting models used are implemented by using measured
data from the 175 W peak photovoltaic modules, installed at the roof-top of the Heliopolis
University for Sustainable Development, Belbeis city, Egypt. The PVMs are monocrystalline,
with 72 cells linked in series. The used exogenous daily experimental data are measured
during the daytime and heavily depend on the weather conditions. Figure 3a shows a
comparison of the specific inverter total yield by kWh of the injected power by the PVM
for January, February and March of 2018.
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The system experiences several natural problems, such as raining or soiling, which
can increase the generated power energy production from the photovoltaic modules.
For example, Figure 3b presents the soiling in the PVM due to wind, rain and sand. The
fluctuation in power production illustrated in Figure 3a is due to the soiling caused by wind,
rain and sand, because the system is installed in the desert. Köppen–Geiger categorizes
the site as being in Egypt’s hot desert, with warm and long summers; winters are damp,
sandy and cold, and the atmosphere is mostly clear. Throughout the year, the temperature
regularly ranges between 10 and 36 ◦C, with temperatures rarely falling below 7 ◦C or rising
over 39 ◦C [58]. To illustrate and forecast the power output of the PVM, we considered
daily measured data for one month. The experimental data are measured every hour
during August and the former 450 sampling points considered are the input data for the
NARX model.

The performance, quality and accuracy of the proposed models are compared using
10 and 6 numbers of input hidden neurons with 1, 2 and 3 delayers for the one-day pass
as time delays. In order to forecast the next day’s energy P(t) given previous at d day of
P(t + 1) and a different series x(t), the configuration of the NARX approach is illustrated in
Figure 4 [38].
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Generally, the NARX model is based on the following three time-stage targets:

1. The network is trained and its deviation is corrected;
2. Validation is used to check the adaptation of the network and to avoid training from

increasing the generalization of the network;
3. Testing with low impact on training, as well as providing independent network

output analysis before and after training.
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The NARX model is implemented, designed and trained in open-loop form, to rectify
the previous training inputs that were supposed to obtain the correct outputs of the
current loop. Table 1 highlights the forecasted output power effectiveness for the three
training algorithms.

Table 1. Forecasting performance of NARX-LMA, NARX-BRA and NARX-SCGA.

Target Values
NARX-LMA NARX-BRA NARX-SCGA

MSE% R2 MSE% R2 MSE% R2

Training 314 29.62 0.9889 19.81 0.9927 41.03 0.9847
Validation 68 14.36 0.994 0 0 40.48 0.9848
Testing 68 72.91 0.9741 24.96 0.9922 68.96 0.9744

The index metrics R2 are calculated to assess the efficiency of the predicted results
compared to the experimental results. The R2 quantifies the correlation among predicted
and measured values in the interval [0 1]; there is no positive correlation if it equals zero,
or if it is one, it indicates that the connection is excellent. Generally, the low values of MSE
and the high value of R2 imply good training, and the forecasted values could be near to
the experimental values.

From Table 1, the value and high value of MSE and R2 can be obtained for the
NARX-BRA. Figure 5 shows the compared performance of NARX-LMA, NARX-BRA and
NARX-SCGA in terms of MSE.
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Figure 6 depicts a regression plot of the difference among both forecasted measured
and forecasted values. The best value of R2 = 0.9927 is obtained for NARX-BRA, which is
close to 1.

Figure 6 illustrates the measured power output of the PVM compared with the fore-
casted power using NARX-LMA, NARX-BRA and NARX-SCGA for the seven and six days.
Applying 10 and 6 hidden layers, and 1 and 3 delays, the performance and accuracy of the
employed NARX models are evaluated.

Figure 7 presents the obtained results using the three optimization training algorithms,
which are close to the measured power output of the PVM.
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Figure 6. R2 coefficient of the three training algorithms, (a) NARX-LMA, (b) NARX-BRA and (c) NARX-SCGA.
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From Figure 8, all the evaluated results are similar, and it is difficult to determine
which training algorithm is more effective and performs faster. In order to compare the
performance of the NARX-LMA, NARX-BRA and NARX-SCGA and present each algorithm
more accurately, the IE and RE with 6 hidden layers and 3 time delays are presented and
compared in Figure 8.
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Figure 8. Comparison of one-month forecasted power output of photovoltaic system using NARX-
LMA, NARX-BRA and NARX-SCGA.

The effectiveness of the evaluated optimization training algorithms is determined
using statistical criteria. The IE indicates the systematic errors, whereas the RE provides
the measurement precision. The IE presents the quantity of quantitative inaccuracy and
is the difference between the experimentally measured power and the forecasted power
using the three optimization training algorithms.

The RE is considered an accuracy indicator and is the fraction of a measurement’s IE
to the measuring being taken. In other words, this form of error is proportional to the size
of the object being measured. Figure 9 presents a comparison of IE and RE using the three
selected techniques, indicating that the NARX-LMA and NARX BRA present low values
for IE and RE. For more precision, we need to calculate another statistical index to further
determine the best optimization training algorithm.
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The autocorrelation function (ACF) describes how and why the correlation among
any consecutive signal values varies as their dispersion varies. It is a time-domain mea-
sure of stochastic process memory that provides no information about the framework’s
frequency content.

Figure 10 depicts the ACF test, which clarifies that the forecasted output power of the
PVM using NARX-LMA, NARX-BRA and NARX-SCGA validates the test, as the values
are in the range of −1 and 1.
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Table 2 presents a comparison between different performance metrics for the three
used training optimization algorithms. The aim is to determine the best NARX model in
terms of the forecasting power output of the PVM. The lowest values of the statistical error
index illustrate the best forecasting data.

Table 2. Comparison of performance metrics.

Statistical Metric NARX-LMA NARX-BRA NARX-SCGA

Total IE 0.3286 0.0030 0.2928
MAE 1.0466 × 10−3 7.8334 × 10−6 932.6028 × 10−6

MAPE 0.10466 7.8334 × 10−4 0.09326028
RSSE 107.9914 × 10−3 8.9073 × 10−6 85.7537 × 10−3

RMSE 2.962 × 10−2 1.981 × 10−2 4.103 × 10−2

R2 0.98899 0.99271 0.98473

The NARX-BRA showed the lowest statistical metric values for IAE, MAE, MAPE, SSE,
RMSE and R2 values compared with NARX-LMA and NARX-SCGA. It can be concluded
that the NARX-BRA is able to forecast the power output produced by the PVM.

5. Conclusions

This paper presents the one-month forecasting of the generated power from photo-
voltaic modules installed in a hot area in Egypt at the Nile delta. The monocrystalline
photovoltaic modules are connected to the grid of Heliopolis University. A NARX approach
is presented and used to overcome several problems that can occur during the forecasting.
It was selected for its power to forecast various fields, and it is an ensemble of a neural
network and time-series analysis. The NARX model was chosen due to its high flexibility
of use and ability to train a nonlinear model with an input–output relationship utilizing
time data.
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The neural network of the NARX was trained using three algorithms, namely the
Levenberg–Marquardt Algorithm, Bayesian Regularization Algorithm and Scaled Conju-
gate Gradient Algorithm, to attain the best performance using experimental data collected
daily during the hot month of August 2018. The theoretical results obtained using the
three training algorithms were compared with the experimental power data. In order to
enhance the validity of the method used, various statistical indexes were calculated to
compare the accuracy, quality and performance of the results. In this paper, the NARX-BRA
showed the lowest values for MAE = 0.0030, MAPE = 7.8334× 10−6, RSSE = 8.9073 × 10−6,
RMSE = 1.981 × 10−2 and R2 = 0.99271. NARX-BRA outperformed the NARX-LMA and
NARX-SCGA. The NARX model can forecast the power of a photovoltaic system under
different conditions, such as ambient temperature, wind speed and solar radiation in
humid and hot regions. The effectiveness and correctness of the results are, in general,
highly influenced by the environment and data inputs.

Future research may address the forecasting of short-term photovoltaic module tem-
perature and solar radiation using NARX and other optimization training algorithms. This
method can also be applied for the forecasting of hybrid systems in terms of predicting the
self-consumption of a photovoltaic/battery/supercapacitor system.
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