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Abstract: Photoplethysmography (PPG) is a common and practical technique to detect human
activity and other physiological parameters and is commonly implemented in wearable devices.
However, the PPG signal is often severely corrupted by motion artifacts. The aim of this paper
is to address the human activity recognition (HAR) task directly on the device, implementing a
recurrent neural network (RNN) in a low cost, low power microcontroller, ensuring the required
performance in terms of accuracy and low complexity. To reach this goal, (i) we first develop an RNN,
which integrates PPG and tri-axial accelerometer data, where these data can be used to compensate
motion artifacts in PPG in order to accurately detect human activity; (ii) then, we port the RNN to
an embedded device, Cloud-JAM L4, based on an STM32 microcontroller, optimizing it to maintain
an accuracy of over 95% while requiring modest computational power and memory resources. The
experimental results show that such a system can be effectively implemented on a constrained-
resource system, allowing the design of a fully autonomous wearable embedded system for human
activity recognition and logging.

Keywords: recurrent neural network (RNN); deep neural network (DNN); photoplethysmography
(PPG); accelerometer; human activity recognition (HAR); embedded system; STM32

1. Introduction

Human activity recognition (HAR) using wearable sensors, i.e., devices directly posi-
tioned on the human body, is one of the most popular research areas, which focuses on
automatically detecting what a particular human user is doing based on sensor data.

HAR is at the core of a wide variety of applications, such as smart homes [1,2], health
care [3–7], surveillance [8,9], skill assessment [10], and industrial settings [11], to cite just
a few.

To this end, photoplethysmography (PPG) is an optical technique commonly em-
ployed in wearables and other medical devices to measure the change in the volume of
blood in the microvascular tissue. Light is emitted from a dedicated device and then
reflected and absorbed at different rates during the cardiac cycle. The reflected light is
read by a photo-sensor to detect those changes. The output from this sensor can then be
processed to obtain a valid heart rate (HR) estimation. Being that PPG is a noninvasive
method for HR estimation with respect to electrocardiography (ECG) and surface elec-
tromyography, requiring simpler body contact at peripheral sites on the body, such sensors
are being more and more used in wearable devices, such as smart watches, as the preferred
modality for HR monitoring in everyday activities.

However, accurate estimation of the PPG signal recorded from the subject’s wrist
when the subject is performing various physical exercises is often a challenging problem, as
the raw PPG signal is severely corrupted by motion artifacts (MAs). These are principally
due to the relative movement between the PPG light source/detector and the wrist skin
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of the subject during motion. In order to reduce the MAs, a number of signal processing
techniques based on data derived from different sensor types, especially accelerometer
data, have proven to be very useful [12–14].

Among smartphones and smart watches, built-in triaxial accelerometers are probably
the most widespread sensors that can be used for activity monitoring. Because smartphones
and smart watches have become very popular, the data-fusion techniques of PPG and
acceleration data can be used for providing accurate and reliable information on human
activity directly on such devices [15,16]. PPG sensors alone are not usually applied in
HAR classification since they are not designed to capture motion signals as opposed to
inertial measurement units (IMU), typically comprising accelerometers and gyroscopes.
However, using a PPG sensor for HAR presents several advantages [17]: (i) wearable
devices are becoming ubiquitous and almost always embed a PPG sensor, so it makes sense
to exploit the information that it can provide, as it comes at no additional cost to the user
of one of these PPG-enabled smartwatches or wristbands; (ii) the PPG sensor can either be
used alone when other HAR sensors are unavailable, or combined with them to augment
recognition performance; and (iii) this sensor can be used to monitor different physiologic
parameters (heart rate, blood volume, etc.) in one solution. For these reasons, we chose to
also employ the PPG signal to predict human activities.

HAR can be treated as a pattern recognition problem, and in this context, machine
learning techniques have proven particularly successful. Due to recent advancements
of deep learning techniques, these methods can be categorized in two main approaches:
(i) conventional machine learning techniques, and (ii) deep learning-based techniques.
In the first category, various machine learning methods, such as k-Nearest Neighbors
(k-NN), Support Vector Machines (SVM), Gaussian Mixture Models (GMM), Hidden
Markov Models (HMM) [18], Random Forests (RF) [19], and Molecular Complex Detection
methods (MCODE) [20], have been adopted.

The second category, i.e., deep learning-based techniques, includes Deep Neural
Networks (DNNs) [21,22], Convolutional Neural Networks (CNNs) [23,24], Autoencoders [25,26],
and Recurrent Neural Networks (RNNs) [27–35].

Furthermore, recent advancements in machine learning algorithms and portable
device hardware could pave the way for the simplification of wearables, allowing the
implementation of deep learning algorithms directly on embedded devices based on micro-
controllers (MCUs) with limited computational power and very low energy consumption,
without the need for transferring data to a more powerful computer to be elaborated [36,37].

In recent years, edge computing has emerged to reduce communication latency,
network traffic, communication cost, and privacy concerns. Edge devices are resource-
constrained devices and cannot support high computation loads. As previously mentioned,
in the literature, various machine learning methods and DNN models have been developed
for HAR. Particularly, deep learning algorithms have shown high performance in HAR,
but these algorithms require high computation, making them inefficient to be deployed
on edge devices. To our knowledge, there are still few works that have addressed this
problem specifically for the HAR classification task [36,37], as most have tested the DNN
architectures on high performance processor units [17,28,38–40].

Thus, the main goal of this paper is to prove that the proposed RNN can be imple-
mented in a low cost, low power core, while preserving good performance in terms of
accuracy. To reach this goal, we proceed as follows:

• We design an RNN using PPG and triaxial accelerometer data in order to detect human
activity, using a publicly available data set for its design and testing. The design and
hyper-parameter optimization is performed on a computer architecture.

• After the RNN has been designed, we investigate the porting and performance of
the network on an embedded device, namely the STM32 microcontroller architecture
from ST, using their “STM32Cube.AI” software solution [41]. This framework allows
the porting of a pre-built DNN, converting it to optimized code to be run on the
constrained hardware platform.
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• When porting the RNN to the embedded system, we show how the network can
be simplified to better fit the microcontroller limited resources. In particular, it
is demonstrated that the input data can be downsampled to a significant degree,
while maintaining good accuracy and requiring fewer hardware resources in order to
be implemented.

The rest of the paper is organized as follows. In Section 2, we summarize the re-
lated work and we state the motivations for our work. Section 3 summarizes the basic
concepts of the RNNs. Section 4 describes the data set adopted in the experiments and
the pre-processing data applied to improve the RNN performance. Section 5 reports the
details of the proposed RNN architecture with a description of the main features, hard-
ware and software to implement this network in the low-power, low-cost Cloud-JAM L4
board (STM32L476RG microcontroller). Finally, the experimental results are presented in
Section 6.

2. Related Work

Nowadays, deep learning techniques have brought great improvements in signal
recognition/classification and object detection.

In References [42,43], an automatic target detection and recognition in the infrared
images based on a CNN is studied.

In Reference [44], a robust multi-camera multi-player tracking framework is presented.
In this system, the player identity, which is commonly ignored in existing methods, is
specifically considered, using a deep player identification model for players’ identification,
2D localization and segmentation based on a Cascade Mask R-CNN model.

In this section, we provide a summary of the most recent deep learning techniques
adopted for classification of PPG signal.

Heart Rate Variability (HRV) is the continuous fluctuation of period length between
cardiac cycles, which can be used for the diagnosis of cardiovascular diseases, such as
myocardial infarction and cardiac arrhythmia. In Reference [45], an RNN based on bidirec-
tional long short-term memory (biLSTM) is introduced for accurate PPG cardiac period
segmentation to derive three important indexes for HRV estimation.

biLSTM is an improved version of long short-term memory (LSTM), which receives
forward and backward feature inputs in order to gain information behind and ahead of a
specific sample point.

In the study [46], a new hybrid prediction model is proposed by combining ECG and
PPG signals with an RNN to estimate blood pressure continually within the RNN structure;
a biLSTM is used as the input hidden layer to look for contextual features both forward
and backward, while a rectified linear unit (ReLU) layer is selected as the last hidden layer.

In Reference [47], different CNN architectures for PPG-based heart rate estimation are
investigated. To train the network, an end-to-end learning approach that takes the time-
frequency spectra of synchronized PPG and accelerometer signals as the input and provides
the estimated heart rate as the output, is adopted.

A deep learning model for heart rate estimation using a single-channel wrist PPG
signal is proposed in [48]. The model contains three components: a CNN, an LSTM, and a
fully connected network (FCN).

The input data segmented into eight windows of 1 second duration is passed to the
CNN-LSTM feature extractor by performing five parallel convolutions, thereby providing
diverse feature representations from the input signal at various receptive fields.

In Reference [17], a novel method is adopted to extract meaningful features from
the PPG to predict human activities that combines convolutional and recurrent layers.
The convolutional layers are set as feature extractors and provide abstract representations
of the three CS, RS and MS data in feature maps, while the recurrent layers model the
temporal dynamics of the activation of the feature maps.
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3. Brief of RNNs

While traditional neural networks are characterized by the complete connection
between adjacent layers, recurrent neural networks (RNNs) can map target vectors from
the entire history of the previous map. The structure of an RNN network is shown in
Figure 1.

RNN
h1

RNN
h2

RNN
ht

x1

o1

V2

W1 W2 Wt

x2 xt

VtV1

o2 ot

...

Figure 1. Structure of an RNN.

In this architecture, each node produces a current hidden state ht and output ot by
using current input xt and previous hidden state ht−1 as follows:

ht = f (Whht−1 + Vhxt + bh) (1)

ot = f (Woht + bo) (2)

where W and V are the weights for the hidden layers in recurrent connections, b denotes
the bias for hidden and output states, and f is an activation function.

Although an RNN is very effective in modeling the dynamic of a continuous data
sequence, it may encounter the problem of gradient disappearance and explosion [49]
when modeling long sequences. In order to overcome this issue, Hochreiter et al. [50]
propose a variant type of RNN, based on the LSTM, which combines learning with model
training without additional domain knowledge. The structure of the LSTM unit is shown
in Figure 2.

ct-1
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Figure 2. LSTM cell unit.
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The following equations show the long-term and the short-term states and the output
of each layer at each time step:

ft = σ(WT
x f · xt + WT

h f · ht−1 + b f ) (3)

it = σ(WT
x i · xt + WT

h i · ht−1 + bi) (4)

c̃t = tanh(WT
x c · xt + WT

h c · ht−1 + bc) (5)

gt = σ(WT
x g · xt + WT

h g · ht−1 + bg) (6)

ct = ft ⊗ ct−1 + it ⊗ c̃t (7)

ot, ht = gt ⊗ tanh(ct) (8)

where Wx f , Wxi , Wxo , Wxg denote the weight matrices for the corresponding connected
input vector, Wh f

, Whi
, Who , Whg represent the weight matrices of the short-term state

of the previous time step, and b f , bi, bo, bg are bias terms. Here, the symbol ⊗ denotes
point-wise multiplication.

4. Data Set

We used a recent data set that is publicly available [51] and includes PPG and tri-axis
accelerometer data from seven different subjects performing five series of three different
activities (resting, squat, and stepper). The four signals are simultaneously acquired with a
sampling frequency of 400 Hz and include a total of 17,201 s of recording data. The seven
adult subjects include three males and four females aged between 20 years and 52 years.

The PPG and accelerometer signals were recorded from the wrist during some volun-
tary activity, using the Maxim Integrated MAXREFDES100 health sensor platform. This
platform integrates one biopotential analog front-end solution (MAX30003/MAX30004),
one pulse oximeter and heart-rate sensor (MAX30101), two human body temperature
sensors (MAX30205), one three-axis accelerometer (LIS2DH), one 3D accelerometer and 3D
gyroscope (LSM6DS3), and one absolute barometric pressure sensor (BMP280). Particularly,
the PPG signals were acquired at the ADC output of the photodetector with a pulse width
of 118µs, a resolution of 16 bits and a full-scale range of 8192 nA, lighted with the green
LED. The three-axis accelerometer signal values correspond to the MEMS output with a
10-bit resolution, left-justified, ±2 g scale and axes oriented as shown in Figure 3, with z
pointing toward the experimenter’s wrist.

Figure 3. Accelerometer orientation axis.

For the data acquisition, the following measurement set-up was followed as shown in
Figure 4: (1) positioning of the sensor directly on the wrist; (2) insertion of the sensor inside
a specific weight lifting bracelet, adjustable by a hook-and-loop closure, with optimal elastic
characteristics that make it particularly suitable to guarantee perfect adherence of the sensor
device to the skin surface; (3) verification of the correct wiring, as the loss of adhesion to
the skin-device interface would cause the addition of high frequency noise in the acquired
signals, making them unusable; (4) use of the sensor with the cable in “tethered” mode,
where the cable comes out from the rear end of the band thus still guaranteeing freedom
of movement.
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Figure 4. PPG measurement set-up: (1) reference point for the positioning of the sensor; (2,3) insertion
of the device inside the appropriate band; (4) preparation for a measurement session.

Of the data set, the first five subjects were used for the training phase, while the last
two subjects were left for the final testing.

4.1. Data Pre-Processing

The PPG and accelerometer data from every single recording session are combined to
obtain a series of four-dimension input data.

A preliminary cleaning of the data is performed for the presence of occasional spikes,
including NaN points, probably due to glitches in the communication channel during
acquisition. Those are always single points, so they can easily be fixed in software by inter-
polating the two adjacent points. This cleaning is performed on the five training subjects
only, to improve the training process. Data from the two test subjects are left unaltered,
to account for transmission errors in real-life applications and to not add overhead to a
possible embedded implementation (tests on the computer have shown this to make no
difference on the results).

The data are then split in partially overlapping windows of the same size. The choice
of window size and overlapping is explained in detail in Section 4.3.

Before feeding the neural network with the resulting inputs, preliminary tests have
shown that some basic normalization of data is needed for PPG to achieve acceptable
results. It has been already mentioned that it is extremely sensitive to movement. As an
example, Figure 5 shows PPG data from a single subject performing five series of the same
exercise. It can be seen that the signal varies greatly not only between series, but also in the
short term during the same recording.

To better isolate the PPG signal trend from the motion artifacts, we apply statistical
standardization to the data, that is, we scale the data so that the resulting mean and
standard deviation are 0 and 1, respectively, according to the following formula:

PPGstd =
PPG− µ

σ
(9)

with µ and σ being the original mean and standard deviation, respectively.
In order to ensure that the data can be processed in real time when porting the

RNN to the embedded system, µ and σ are computed independently for each window
of the incoming data, and so is the standardized signal. Standardization thus transforms
each input signal window into another vector of the same length but with predefined
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mean and variance. Moreover, per-window standardization has the added benefit of also
compensating somewhat rapid signal variations between windows. The results of this per-
window standardization are still shown in the same Figure 5, where the right panel shows
standardized data for 1200 sample windows with no overlapping. The non-overlapping
output windows are simply juxtaposed on the graph for ease of representation.
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Figure 5. PPG data from subject 1, recorded during the squat activities, as originally acquired (left panel) and after
standardization on non-overlapping windows of 1200 samples (right panel).

On the other hand, accelerometer signals are more regular than PPG, suffering only
from low-magnitude noise, which is intrinsic in accelerometers. Figure 6 shows, as a
matter of example, the accelerometer data from the recordings of a single subject in one
activity. The only issue that must be addressed is that the data generally have a fixed
offset, approximately constant, due to projection of gravity acceleration across the three
spatial axes. Being that this offset is practically random for the purpose of data analysis,
we remove it by subtracting the mean value from the data:

ACC0 = ACC− µ (10)

with µ being the original mean.
Moreover, as can be seen in the same figure, the offset can change abruptly during the

same exercise, due to the subject unconsciously changing position. So again, we choose
to subtract the mean value in single data windows, individually. The resulting processed
signals for the same data are always shown in the right panel of the same Figure 6. While
this procedure may not be optimal, for the few data windows crossing an offset change,
nevertheless, it is computationally lightweight so as to be implemented in real time in an
embedded system and, as the figure shows, it results in a good filtering of the signal.

Preliminary tests have shown that normalization of acceleration values according to
their standard deviation has a negative effect on final accuracy, with the normalization
layer of the RNN itself leading to better results.
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Figure 6. Z-axis acceleration data from subject 2, recorded while resting. Original data (left panel), and after mean-value
subtraction (right panel), using non-overlapping windows of 1200 samples.

4.2. Data Downsampling

The original sample rate of the data (400 Hz) can impose a significant load on the
processor and memory of an embedded device. Moreover, previous works show that
classification of human activity does not require high sample rates [52].

For this reason, a crucial part of the work is examining varying degrees of downsam-
pling of the original signals to find an optimal combination of accuracy and performance
on constrained hardware platforms.

To efficiently downsample data, we chose not to use resampling algorithms that
require digital filters, which would add significant computational cost when implemented
in the final embedded system. We instead used a simple decimation procedure in which 1
out of M samples are retained, discarding the rest. This leads to sample rates corresponding
to integer decimation factors only. Mathematically, this is equivalent to transforming the
original signal x[n] to a new signal y[n], such as the following:

y[n] = x[Mn] (11)

with M being the decimation factor.
A new RNN must be built and trained for every sample rate because the size of the

network layers depend on the size of input data windows.
In the rest of the paper, when talking about the number of samples in data windows,

we will always refer to the samples before downsampling in order to avoid confusion.

4.3. Data Windowing

The window length and overlapping are important hyper-parameters in neural net-
works, as well as other machine learning algorithms [53,54]. Being that w is the number
of samples in a window and o is the number of overlapping samples between adjacent
windows, the n-th data window corresponds to samples in the following range:

[n(w− o), n(w− o) + w− 1] (12)

with n >= 0.
To find the best combination for our particular network, we conducted a series of tests

with various values of the two parameters. It is common practice, when training a neural
network, to further split the training data in two sets: data actually used to fit the network
weights, and validation data to monitor the performance of the network during the various
training epochs.

Since the number of different subjects in the data set is small and different subjects
inevitably have substantial differences in their data, the statistical distribution of the data
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might not be uniform enough, and so choosing a single partition of training and validation
data might not lead to representative results. So, we decided to adopt a cross-validation
strategy, that is, for every window length and overlapping combination we trained five
networks, isolating each time a different subject for the validation (the network architecture
is explained in detail in Section 5). The resulting accuracy of every combination was then
computed as the average of the maximum accuracy obtained for the validation data in
every test during the training epochs.

Being that this process is quite time-consuming, we examined a limited combination
of parameters in the neighborhood of what was already tested in [53], and with a downsam-
pling factor of 10. As can be seen in Table 1, the best accuracy was reached with a window
of 1200 samples (before downsampling), corresponding to 3 seconds and 50% overlapping.

Table 1. Validation set accuracy for different window lengths and overlapping, best result displayed
in bold.

Overlap
Window 25% 50%

1000 89.95% 90.15%
1100 90.07% 91.70%
1200 91.25% 91.79%
1300 91.30% 91.61%
1400 89.06% 90.52%
1500 89.86% 90.16%

The final network used in the rest of the article was trained with the mentioned
windowing parameters, and using all the 5 training subjects (no validation data).

4.4. Data Augmentation

Since the number of inputs belonging to the three different activities are not equally
represented, the network might end up being biased towards a specific class. A simple
technique to address this problem is oversampling [55], a form of data augmentation where
the data from classes with less occurrences are duplicated as needed, so that the data used
for training are more uniformly distributed among the different classes. (“Oversampling”
in this context must not be confused with data resampling in time domain, performed
independently).

Table 2 shows the number of input windows for the 3 classes, limited to the 5 subjects
used for training, before and after data augmentation.

To summarize, Table 3 shows the number of inputs of the 7 subjects, before and after
the oversampling applied to the first 5 ones. Oversampled data were used to train the
final network.

Table 2. Number of data windows for the 3 classes, limited to the first 5 subjects.

Activity Original Oversampled

resting 6871 6871
squat 773 6388

stepper 1045 6473

Table 3. Number of data windows for the 7 subjects (oversampling applied to the first 5 subjects only).

Subject Original Oversampled

1 2663 6197
2 2364 5693
3 1193 2469
4 1205 2559
5 1264 2814
6 1288 1288
7 1333 1333

total 11,310 22,353



Electronics 2021, 10, 1715 10 of 18

5. Rnn Architecture

The RNN used in this paper is depicted in Figure 7. It is based on an architecture
commonly used with time-based sensor data [54–56] and consisting of a combination of
fully connected layers and LSTM cells.

Dense 1 Batch
Normaliz. LSTM 1 Dropout 1 LSTM 2 Dropout 2 LSTM 3 Dropout 3 Dense 2INPUT OUTPUT
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Figure 7. RNN architecture.

Input data are assembled from PPG and the three acceleration axes, resulting in
four-dimension time-series. Data are then fed to the network in windows of size w× 4,
with the parameter w being the size in time points of a single data window as described in
Section 4.3.

The first layer is a fully-connected one (dense), with the purpose of identifying relevant
features in the input data. In this layer, the generic n-th neuron produces an output value
yn, according to the x1, . . . xm inputs to the layer and the wnj neuron weights associated to
every input. Specifically,

yn = φ

(
m

∑
j=1

wnjxj + bn

)
(13)

where φ is an activation function and bn is a bias value.
Next, there is a batch normalization layer, which normalizes the mean and standard

deviation of the data globally, operating on single batches of data as the training progresses.
For every input data batch x, its output is the following:

y = γ · x− x√
σ2 + ε

+ β (14)

where x and σ2 are the mean value and variance of the data batch, respectively, and γ, ε, β
are internal trainable parameters of the layer.

The core of the recurrent neural network, then, is represented by three cascaded LSTM
layers, whose internal architecture was briefly explained in Section 3. Each one is followed
by a dropout layer that randomly discards a part of the input to reduce overfitting.

Finally, there is a fully-connected layer of size 3 that, together with the Sparse Cate-
gorical Cross-entropy loss function assigned to the network, performs the classification
in one of the three classes. The loss function, or cost function in more general terms of
optimization problems, represents the error that must be minimized by the training process.
The specific representation of the error depends on the particular function assigned to the
network. For the Categorical Cross-entropy function, the error is as follows:

J(w) = − 1
N

N

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (15)

where w is the set of model parameters, e.g., the weights of the RNN, N is the number of
input test features, yi and ŷi are the true and predicted classes respectively, expressed numerically.

The intermediate layers have size 32; this hyper-parameter was determined experimen-
tally, starting with a larger value and decreasing it until the accuracy varied significantly.

Table 4 shows the details of the individual layers. The RNN, as built in this configura-
tion, has 25,283 trainable parameters.
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Table 4. Details of RNN layers.

Layer Output Size Parameters

Dense 1 (–, w, 32) 160
Batch Norm. (–, w, 32) 128

LSTM 1 (–, w, 32) 8320
Dropout 1 (–, w, 32) 0

LSTM 2 (–, w, 32) 8320
Dropout 2 (–, w, 32) 0

LSTM 3 (–, 32) 8320
Dropout 3 (–, 32) 0

Dense 2 (–, 3) 99

5.1. Hardware and Software

For the first part of the design and hyper-parameter optimization, the RNN was
developed with TensorFlow 2.4.1 and Keras 2.4.0. The network and the related algorithms
were initially developed on the Google Colaboratory platform; then, the final computations
were performed on a computer with an Intel Core i7-6800K CPU, 32 GiB of RAM and an
NVIDIA GeForce GTX 1080 GPU.

For the embedded part, we tested the RNN on a Cloud-JAM L4 board (https://www.
rushup.tech/jaml4, accessed on 1 June 2021), which, for its small form factor and integrated
Wi-Fi, can represent a valid prototyping base for a wearable system. While it features a
set of inertial and environmental sensors, it is not a complete system with PPG sensor and
other needed features. Nevertheless it allows testing the RNN on a real hardware and
evaluating its performance in terms of memory and execution time, should a full-featured
monitoring system be designed. The classification of test data is done in real time by
providing input data to the board from the test set via a serial interface. This also ensures
reproducibility of the results with respect to the other tests.

The board features an STM32L476RG microcontroller (https://www.st.com/content
/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/
stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x6/stm32l476rg.html, accessed on 1
June 2021), with an Arm® 32-bit Cortex®-M4 CPU + FPU, frequency up to 80 MHz, 1 MiB
flash memory, 128 KiB RAM (but limited to 96 KiB for practical reasons) and about 3 mA
of CPU current consumption at full speed.

The porting of the neural network to the STM32 architecture is made possible by
a software framework from ST, named “STM32Cube.AI” [41] (current version 6.0.0), in-
tegrated in the STM32Cube IDE. The software is a complete solution to import a Keras
(or other) model, analyze it for compatibility and memory requirements, and convert it
to an optimized C implementation for the target architecture. The generated network
can then be evaluated with test input data, both on the computer and the actual device
to obtain various metrics, such as execution time, number of specific hardware operations
and accuracy.

All the software developed for this article is publicly available at https://github.com
/MAlessandrini-Univpm/rnn-ppg-har, accessed on 1 June 2021, published in July 2021.

6. Experimental Results

The final RNN was tested on both the computer and the MCU, with several decimation
factors. For every factor, the network was trained and tested with the following parameters:

• Windows of 1200 samples (before decimation) and 50% overlapping.
• Data augmentation applied.
• Five subjects used for training, with no further split for validation.
• Test performed on the last two subjects, not involved in training.
• A total of 100 training epochs.

In addition to the other hyper-parameters already discussed, the number of epochs
was chosen experimentally by examining the training accuracy and loss value during
the training stage. Figure 8 shows the progress of accuracy (estimated on the training
material itself) and loss with respect to the training epochs for the network with no

https://www.rushup.tech/jaml4
https://www.rushup.tech/jaml4
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x6/stm32l476rg.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x6/stm32l476rg.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x6/stm32l476rg.html
https://github.com/MAlessandrini-Univpm/rnn-ppg-har
https://github.com/MAlessandrini-Univpm/rnn-ppg-har
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downsampling (original data at 400 Hz). It can be seen that at about 100 epochs, the
values reach convergence.
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Figure 8. Accuracy and loss progress with respect to training epochs.

Table 5 shows the accuracies and resource usage obtained by the training and the final
test for the various RNNs, for both computer and MCU.

On the computer side, reported times are the total time for the training and test
stages, respectively.

On the embedded system, every RNN requires a given amount of flash and RAM
memory, reported by the framework during the initial analysis. Flash memory requirements
do not depend on the sample rate, but only on the network architecture, namely, the
quantity of weights and other parameters that are read-only values after the training is
done. As shown, the amount of flash memory required is well below the available quantity.

RAM memory, on the other hand, is more limited (96 KiB in this case) and its usage is
strongly dependent on the size of input data (and so on the sample rate). Moreover, part of
the RAM is needed by the program besides data structures belonging to the RNN. It can
be seen that not all the configurations can fit in RAM; combinations that would require
more than 100% of RAM could not be executed on the MCU. (An alternative practice to
fit a DNN model to a constrained architecture is converting it to TensorFlow Lite format.
Unfortunately, the current STM32Cube.AI version—6.0.0—does not support some specific
operations generated by the T.F. Lite converter for our model).

Table 5. Experimental results, best results displayed in bold.

Decimation Factor
1 10 20 30 40 50 60 80 100 150

sample rate (Hz) 400 40 20 13.33 10 8 6.67 5 4 2.67
window samples 1200 120 60 40 30 24 20 15 12 8

PC

training accuracy (%) 99.52 99.89 99.91 99.93 99.88 99.85 99.78 99.67 99.52 99.10
test accuracy (%) 94.28 94.96 94.12 93.82 95.54 93.97 93.17 92.76 92.45 90.81
training time (s) 6797 1252 933 810 771 731 701 641 656 625
total test time (s) 5.10 1.52 1.22 1.19 1.21 1.08 1.06 0.98 1.28 1.01

MCU

test accuracy (%) - 94.96 94.12 93.82 95.54 93.97 93.17 92.76 92.45 90.81
RAM usage (%) - 34.4 17.7 12.5 9.4 7.3 6.2 5.2 4.2 3.1
flash usage (%) - 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7

MACC operations (k) - 3,026 1,513 1,009 757 605 504 378 303 202
average test time (ms) - 601.6 301.0 200.2 150.1 120.2 100.0 75.1 60.1 40.2

CPU usage (%) - 40.1 20.1 13.4 10.0 8.0 6.7 5.0 4.0 2.7

Timing results are computed by running the RNN on the actual device (see Section 5.1).
A dedicated firmware application is provided by the framework; the IDE tool can com-
municate with such an application on the board, send it the test data to make it run the
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neural network inference on the hardware and finally, obtain the statistics on performance.
Every time a different model is used, a series of operations are needed: generating the code,
compiling it, programming it on the MCU flash memory and finally, running the test.

Presumably for a limitation of the firmware validation application, the program stops
working if the input and reference data provided are too big, so it was not possible to
use the full test data (consisting of more than 2000 rows). A subset of the data (100 rows)
had to be used. Since the application reports the average time needed for every inference,
the timing results are still meaningful. Indeed, the reported test time for the MCU is the
average time of a single data input.

About the accuracy, to have a meaningful comparison with results on the computer
using the full test data, we referred to the validation performed by the toolkit on the
computer; this uses the same C code generated for the MCU and so it is expected to provide
equivalent numerical results.

The CPU percentage usage was computed as the ratio between the average inference
time reported by the validation application and the duration of a data window (3 s),
multiplied by a factor of two to account for 50% overlapping of the data windows. This
parameter can give an estimation of the capability of the embedded system to handle
the data classification in real time and the CPU time remaining for other concurrent
activities. The table also reports the number of MACC operations, in rounded thousand
units, required for a single inference.

It can be seen from the results that the accuracy does not decrease while downsampling
the data down to 10 Hz (in fact, it actually increases), corresponding to a CPU usage of 10%,
leaving plenty of execution time for other concurrent activities, or alternatively, allowing
the reduction of the CPU clock frequency to achieve a lower power consumption. Note that
the CPU usage does not include data pre-processing, that is, normalization of the mean
value and/or standard deviation (see Section 4.1) that would be needed if data are acquired
in real time. Those operations are much simpler than RNN inference, and so should not
add a significant overhead.

It can also be seen that the accuracies achieved by the MCU implementation are
identical to the ones obtained on the computer. This is presumably due to the differences
between the two models being relatively small: apart from the limited precision of the mi-
crocontroller FPU (32 bits), the model does not require further compression or quantization
to fit on the embedded system.

Figure 9 shows the confusion matrix from the classification of test data in the same
setup. It can be seen that the squat and stepper activities are the ones suffering from the
larger mistake rates, while the resting activity is recognized correctly in 98% of the cases.
This may be due in part to the amount of original input data being substantially less for
squat and stepper activities with respect to resting.

In the current setup, the accuracy of the testing stage reaches a maximum of 95.54%
for a decimation factor 40. While splitting the data set into five training subjects and
two testing subjects is a natural choice, the limited size of the data set can lead to a bias
in the results, according to the chosen partition. Moreover, it can be seen from Table 5
that by increasing the decimation factor, the difference between the training and testing
accuracies increases.

To test the effect of such a bias, we repeated the previous tests with a leave-one-subject-
out, cross-validation strategy. This means testing seven models for every experiment
in which six subjects are used for training and one (different each time) for testing. Table 6
shows the test accuracy for this setup, averaged over all the models. Since reducing the
test material with respect to training can increase the overfitting effect, we repeated the
tests with 50 epochs in addition to 100.
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Figure 9. Confusion matrix of test data classification.

Table 6. Testing accuracies of leave-one-subject-out cross-validation.

Decimation Factor
Epochs 10 20 30 40 50 60 80 100 150

50 88.71% 88.80% 87.38% 86.95% 86.21% 85.00% 85.13% 84.81% 82.66%
100 88.01% 89.43% 88.13% 88.30% 85.41% 84.91% 86.24% 83.88% 83.29%

It can be seen that in this configuration, the accuracies are significantly lower. Again,
this can be explained by the data set being of limited size, and so a single subject may not
be representative enough to be used for testing. Indeed, if one better examines a single case,
for example, the one at decimation 40 and 100 epochs that results as the best one in Table 5,
it can be seen that a few subjects can negatively influence the average results, while most
of them have accuracies similar to the better ones reported earlier. This is shown in Table 7.

Table 7. Detail of test accuracy for single subjects in cross-validation, decimation 40, 100 epochs.

Subject Test Accuracy

1 89.11%
2 72.59%
3 92.54%
4 96.68%
5 90.27%
6 95.19%
7 96.47%

This, again, confirms that the limited size of the data set can limit the generality of the
results, producing a strong bias, according to the subject partition. A wider data set could
solve those kinds of problems and provide more general results; this can be the subject for
future work in this field.

Table 8 reports a list of the state-of-the-art works related to HAR in terms of the
employed algorithm, type of signal, data set used for experimentation, number of classes
for each data set, hardware used for testing and performance. The commonly used metrics
to evaluated the validity of the HAR algorithms are accuracy and F1 score: accuracy is
the ratio of the sum of true positives (TP) and true negatives (TN) to the total number
of records; the F1 score is an evaluation of the test’s accuracy calculated as a weighted
average of the precision and recall, where precision is defined as TP/(TP + FP) with
FP = false positives, and recall as TP/(TP + FN) with FN = false negatives. By making
a comparison with the methods present in Table 8, an evaluation of the contribution of
the proposed work can be made. Regarding the data, accelerometer and gyroscope signal



Electronics 2021, 10, 1715 15 of 18

sources are the most commonly used in the state of the art since these signals are simple
to acquire. So, many works focused on the popular and publicly available UCI HAR data
set, which contains six activities (walking, walking upstairs, walking downstairs, sitting,
standing, laying down). However, data sets containing PPG signals are relatively less
common and more limited in the number of presented activities, but it is still an interesting
topic because a PPG sensor is already embedded in smartwatches or wristbands and can
either be used alone when other HAR sensors are unavailable, or combined with them to
improve recognition performance; moreover, this sensor can be used to monitor different
physiologic parameters in one device. Finally, as can be seen, the results obtained with the
proposed method are in line with those of the state of the art, especially considering the
few works that have experimented the implementation on microcontrollers.

Table 8. Performance of the state-of-the-art HAR methods.

Reference Employed
Algorithm

Signal
Source Dataset Number of

Classes
Implemented in

MCU
Hardware
for Testing

Performance
Metrics

Ordóñez et
al. [28]

LSTM ACC (1) Opportunity [57]
(2) Skoda Mini

Checkpoint [58]

(1) 18
(2) 10

– GPU (1) F1 score: 86.40%
(2) F1 score: 95.80%

Agarwal et
al. [40]

RNN/LSTM ACC WISDM [59] 6 – Raspberry Pi 3
(ARM Cortex A53)

Accuracy: 95.78%
F1 score: 95.73%

Zhao et al. [38] LSTM IMU (1) UCI HAR [60]
(2) Opportunity [57] (1) 6

(2) 18

– Intel-i7 CPU,
NVIDIA GTX 960M GPU

(1) F1 score: 93.54%
(2) F1 score: 90.20%

Novac et al. [37] (1) CNN
(2) MLP

IMU UCI HAR [60] 6 X SparkFun Edge board
(ARM Cortex-M4F)

(1) Accuracy: 92.88%
(2) Accuracy: 88.94%

Novac et al. [36] CNN IMU UCI HAR [60] 6 X (1) Nucleo-L452RE-P
(2) SparkFun Edge board

(ARM Cortex-M4F)

Accuracy: 92.46%

Mekruksavanich
et al. [39]

LSTM IMU (1) UCI HAR [60]
(2) USC HAD [61] (1) 6

(2) 12

– Intel i5-8400 CPU,
NVIDIA RTX2070 GPU

(1) Accuracy: 91.23%
(2) Accuracy: 85.57%

Boukhechba et
al. [17]

CNN+RNN PPG custom 5 – Huawei Watch 2
(smartwatch)

F1 score: 78.00%

Biagetti et al. [62] KLT+GMM PPG+ACC Physionet [63] 4 – CPU Accuracy: 78.00%

Biagetti et al. [53] PBP PPG+ACC PPG [51] 3 – Intel i7 CPU,
NVIDIA 1080 GPU

Accuracy: 96.42%

This method RNN/LSTM PPG+ACC PPG [51] 3 X STM32L476RG micro
(ARM Cortex-M4F)

Accuracy: 95.54%

7. Conclusions

In this paper, an RNN was built for human activity recognition, using PPG and
accelerometer data from a publicly available data set. The RNN was then ported to an
embedded system based on an STM32 microcontroller, using a specific toolkit for the
porting of the network model to the mentioned architecture. The results show that an
accuracy of more than 95% is achieved in the classification of test data, and that the sample
rate of the acquired data can be downsampled down to 10 Hz, while maintaining the same
accuracy. This, in turn, allows the network to be run on the embedded device, using modest
hardware resources, paving the way to a fully autonomous activity classifier implemented
as a wearable embedded device, using commonly available and cheap microcontrollers.
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