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Abstract: Defect detection is the most important step in the postpartum reprocessing of kiwifruit.
However, there are some small defects difficult to detect. The accuracy and speed of existing detection
algorithms are difficult to meet the requirements of real-time detection. For solving these problems,
we developed a defect detection model based on YOLOv5, which is able to detect defects accurately
and at a fast speed. The main contributions of this research are as follows: (1) a small object detection
layer is added to improve the model’s ability to detect small defects; (2) we pay attention to the
importance of different channels by embedding SELayer; (3) the loss function CIoU is introduced
to make the regression more accurate; (4) under the prerequisite of no increase in training cost, we
train our model based on transfer learning and use the CosineAnnealing algorithm to improve the
effect. The results of the experiment show that the overall performance of the improved network
YOLOv5-Ours is better than the original and mainstream detection algorithms. The mAP@0.5 of
YOLOv5-Ours has reached 94.7%, which was an improvement of nearly 9%, compared to the original
algorithm. Our model only takes 0.1 s to detect a single image, which proves the effectiveness of the
model. Therefore, YOLOv5-Ours can well meet the requirements of real-time detection and provides
a robust strategy for the kiwi flaw detection system.

Keywords: deep learning; real-time detection; fruit defect detection; YOLOv5; loss function of
bounding-box regression

1. Introduction

China is a giant producer of kiwi, whose output ranks first in the world [1]. Defect
detection plays a significant role in the postpartum reprocessing of kiwifruit. Through
defect detection, we can grade and price different kiwifruit based on their quality, which
helps to change the phenomenon that the price of kiwifruit was difficult to increase in the
past [2]. It also guarantees food safety. However, detection technology is very traditional
and outdated. Most manufacturers and workers mainly rely on manual detecting, which
wastes too much labor and has poor efficiency [3].

In recent years, computer-vision-based object detection technology has gradually
become matured [4,5]. Shah et al. use Faster RCNN to identify plants and weeds [6]. Zeze
et al. use CNN to realize the recognition of apples [7]. Computer vision has the obvious
advantages of high accuracy and fast speed [8]. Defect detection based on computer vision
is an automatic and nondestructive fruit detection method [9]. It overwhelms manual
detection on precision and efficiency; hence, it will bring the inevitable trend of application
in fruits in the future [10].

In current fruit defect detection algorithms, it is difficult to balance speed and accuracy
simultaneously. Dong et al. [11] used computer vision technology to detect the surface
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defects of Korla fragrant pears. Under the condition of guaranteeing accuracy, it still takes
2.5 s to detect a single image. Wang et al. [12] conducted rapid detection of pomegranate
leaf diseases, but the accuracy was only 87%. Xing et al. [13] used the BP neural network
in mango quality inspection to increase the speed as much as possible while ensuring
accuracy. The final speed also took 0.8 s.

The development of deep learning algorithms in recent years has led to major break-
throughs in the field of computer vision. In terms of target recognition, deep learning
algorithms represented by convolutional neural networks (CNNs) have improved the
accuracy and detection speed, compared with traditional methods [14]. At present, target
recognition algorithms are mainly divided into two types: one is a two-stage algorithm
based on the detection frame and classifier, such as the R-CNN [15] series algorithm, which
is of higher accuracy, but its deeper network structure also leads to a slower speed, fail-
ing to meet real-time the requirements of the target recognition detection. The other is a
regression-based first-order algorithm, such as SDD [16], YOLO [17] series algorithms, etc.,
with faster inference speed and stronger practicability, which can meet real-time object
recognition and detection.

This paper takes kiwifruit defect as the research object, collects four types of common
flaw photos to make a kiwi flaw dataset, and uses the characteristics of high detection
speed and high accuracy of the YOLOv5 [18] algorithm in the field of image detection. We
ameliorated the problem and compared the improved model with the original one. The
use of the CosineAnnealing [19] decay method in the training process can improve the
model effect without increasing the cost of training. The result proves that the improved
model leads to significant progress, which proves the effectiveness of the improved model.

2. Related Work
2.1. YOLO Algorithm

The main current object recognition algorithms include the R-CNN series and the
YOLO series. The R-CNN series is superior in target detection requiring higher accuracy,
but its detection speed is lower than that of the YOLO series. In practical scenarios, it
cannot meet the real-time performance of object detection. In this context, the YOLO
series of algorithms use the idea of regression to make it easier to learn the generalized
characteristics of the target and solve the speed problem. The YOLO series of algorithms
use a one-stage neural network to complete detection object positioning and classification
directly [20,21].

YOLO views image detection as a regression problem with a simple pipeline and
fast speed. It can process streaming video in real-time with a delay of fewer than 25 s.
During the training process, YOLO can look over the entire image with more attention on
global information in target detection. The core idea of YOLO is to use the entire picture
as the input of the network, and directly return to the position of the bounding box and
the category to which the bounding box belongs at the output. In YOLO, each bounding
box is predicted by the characteristics of the entire image, and each bounding box contains
five predictions and confidences, which are relative to the grid unit in the center of the
bounding box of the boundary. The basic frame of YOLO is as follows: w and h are the
predicted width and height of the entire image (relative to the entire image). The YOLO is
mainly composed of three main components:

• Backbone: A convolutional neural network that aggregates and forms image features
on different types of image granularity;

• Neck: A series of network layers that mix and combine image features and pass the
image features to the prediction layer;

• Head: It can predict image features, generate bounding boxes, and predict categories.
The confidence indicates the accuracy of classification under the specific condition.

YOLOv2 [22] uses a new training algorithm. YOLOv2 uses the k-means clustering
method to cluster the bounding boxes in the training set. As the main purpose of setting,
the a priori box is to make the IOU between the prediction box and the ground truth better,
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the IOU value between the box and the cluster center box is used as the distance indicator
in the cluster analysis. Compared with YOLOv1, it significantly improves the accuracy and
the recall rate. YOLOv3 [23] uses a better basic classification network-class ResNet [24]
and classifier Darknet-53. At the same time, the FPN [25]-like network structure is used
to realize multiscale prediction. The detection accuracy and speed are greatly improved,
and the false background detection rate is effectively reduced. YOLOv4 [26] retains the
head part of YOLOv3, changes the backbone network to CSPDarknet53, and uses the
idea of SPP [27] (spatial pyramid pooling) to expand the receptive field, with PANet [28]
as the neck part. The structure of CSPNet [29] can achieve richer gradient combination
information and reduce the amount of calculation. The PANet structure fully integrates
the different feature layers, which can effectively improve the feature extraction ability of
defects.

YOLOv5 continues to use the three main components of the YOLO series. The network
structure is shown in Figure 1.
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2.1.1. Input

The input end of YOLOv5 uses the same mosaic data enhancement method as
YOLOv4, which performs better in small target detection. YOLOv5 adds the function
of adaptive anchor frame calculation. During each training, the value of the optimal anchor
frame in different training sets is calculated adaptively.

2.1.2. Backbone

YOLOv5 adds the Focus structure to realize the slicing operation. Taking the structure
of Yolov5 s as an example, the original 640× 640× 3 image is input into the Focus structure,
and the slicing operation is used first to form a 320 × 320 × 12 feature map, and then after
a convolution operation of 32 convolution kernels, it finally constructs a feature map of
320 × 320 × 32.

2.1.3. Neck

Yolov5 uses the FPN-PAN structure, CSP2 structure designed by CSPNet, and PANET
as Neck to aggregate features. The neck is mainly used to generate feature pyramids,
enhance the model’s detection of objects of different scales, and realize the recognition of
the same object of different sizes and scales. The feature extractor of the network uses a
new FPN structure, which enhances the bottom-up path and improves the propagation of
low-level features.
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2.2. Algorithm Optimization
2.2.1. Small Target Recognition Layer

As the kiwifruit has small-size flaws and few pixel features, the inspection model is
required to have a strong inevitable ability for small defects. In the original YOLOv5 model,
the feature map of the last layer of the convolutional network structure is too small to meet
the requirements of the subsequent detection and regression. To solve this problem, we
add a small target detection layer and continue to process the feature map for expansion.
The main purpose of upsampling is to enlarge the original image so that it can be displayed
on a higher resolution display device. The zoom operation of the image cannot bring more
information about the image; hence, the quality of the image will inevitably be affected.
However, there are indeed some zooming methods that can increase the information of the
image such that the quality of the zoomed thick image exceeds the quality of the original
image. Upsampling adopts the interpolation method, that is, on the basis of the original
image pixels, a suitable interpolation algorithm is used to insert new elements between
pixels, as shown in the following Figure 2. At the same time, the acquired feature map and
the feature map of the second layer in the backbone network are Concat Fusion in order to
obtain a larger feature map for small target detection.
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2.2.2. SELayer

In order to obtain more detailed information about the target that needs attention and
suppress other useless information from different channels, we introduce the Attention
network, SElayer [30]. SENet is a network structure proposed by Jie et al., which mainly
focuses on the feature fusion among channels of the convolution operation in the backbone
network. The main innovation of this network is that the model can automatically learn the
importance of different channel features by focusing on the relationship between channels.
The SE module mainly includes operations through compression (Squeeze) and excitation
(Excitation). The Squeeze operation takes global average pooling to encode the entire
spatial feature on a channel as a local feature. The calculation method is as follows:

zc =
1

H ×W ∑H
i=1 ∑W

j=1 uc(i, j) (1)

In this formula, the second two-dimensional matrix in the three-dimensional matrix af-
ter convolution represents the result of the Squeeze operation, and the subscript represents
the number of channels.

After the Squeeze operation obtains the channel information, it uses two fully con-
nected layers to form a gate mechanism and activates it with Sigmod. The calculation
method is as follows:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (2)

where δ is the ReLu activation function, σ is the Sigmoid function, and W1 and W2 is the
weight of the two fully connected layers used for dimensionality reduction and dimension
upgrade, which, respectively, equals to C

r × C and C× C
r , r is the scaling parameters to

limit model complexity and improve model capabilities. s represents the weight set of the
feature maps obtained through the fully connected layer and the nonlinear layer. Finally,
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the weight of the output is assigned to the original feature. The calculation formula is as
follows:

x̃c = sc × uc (3)

In the formula, x̃c is a feature map of a featured channel of X̃, sc is a weight, and uc is
a two-dimensional matrix. After modification, the network structure is shown in Figure 3:
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This article considers embedding SELayer in the backbone. The improved network
structure is shown below in Figure 4.
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2.2.3. Boundary Loss Function

IoU [31] is the intersection over union, a common indicator in target detection, whose
main function is to determine the positive sample and the negative sample and to evaluate
the distance between the output box and the correct label. IoU is scale invariant, which
means that it is not sensitive to scale. Therefore, in the regression task, IoU is the most
direct indicator for judging output madness and correct labeling. However, there is a
problem with the definition of IoU itself. IoU is 0 if the two boxes do not intersect. At the
same time, due to the 0 loss, there is no gradient back; hence, learning and training cannot
be performed. To solve these problems, Rezatofighi et al. proposed the idea of GIoU [32]
and directly set IoU as the return loss. Since IoU is a ratio concept, it is not sensitive to the
scale of the target object. However, the BBox regression loss (MSE loss, l1-smooth loss, etc.)
optimization and IoU optimization in the detection task is not completely equivalent, the
Ln norm is also sensitive to the scale of the object, and IoU cannot optimize the part that
does not overlap directly. The principle of GIoU is as follows:

LGIoU = 1− IoU +

∣∣C− B ∪ Bgt
∣∣

|C| (4)

However, there are still some problems with the GIoU such as the unstable target
frame regression and the easy divergence during training. Some frames of the target detec-
tion without overlapping GIoU regression strategies may degenerate into IoU regression
strategies. In order to directly minimize the normalized distance between the anchor box
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and the target box to achieve a faster convergence rate and make the regression more
accurate and faster when it overlaps or even contains the target box, Zheng et al. put
forward the idea of DIoU and CIoU [33]. The principle is as follows:

LDIoU = 1− IoU +
ρ2(b, bgt)

c2 (5)

where b and bgt represent the center points of the prediction box and the real box, respec-
tively, ρ represents the Euclidean distance between the two center points, and c represents
the diagonal distance of the smallest closed area that can contain the prediction box and
the real box at the same time.

Comparatively, DIoU is more in line with the target frame regression mechanism than
GIou. For the situation that contains two frames in the horizontal and vertical directions,
the DIoU loss can make the regression very fast, while the GIoU loss almost degenerates
into the IoU loss. DIoU can also replace the common IoU evaluation strategy and apply it
to NMS, making the results obtained by NMS more reasonable and effective.

The DIoU calculation does not take the aspect ratio into consideration but only con-
siders the overlapping area of the bounding box and the center point distance of b and bgt.
However, the consistency of the ratio of w and h between the anchor box, and the target
box is also of high significance. Based on this, the author proposes complete loU loss.

The penalty term of CIoU is based on the penalty term of DIoU plus an impact factor
α, ν, which takes into account the aspect ratio of the predicted frame to fit the target frame.
The specific principle is as follows:

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αν (6)

As shown in Figure 5, the upper left block represents the target frame, the lower
right block represents the prediction frame, and the dashed block represents the smallest
bounding rectangle, and c and d, respectively, represent the diagonal distance of the smallest
enclosing rectangle and the Euclidean distance between the center points of the two boxes.
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The expressions of the weight function and the parameters for measuring the consis-
tency of the aspect ratio are shown in Equations (7) and (8).

a =
v

1− IoU + v
(7)

v =
4

π2 (arctan
wgt

hgt − arctan
wp

hp )
2

(8)

Among them, wgt and hgt represent the width and height of the target frame, and wp

and hp represent the width and height of the prediction frame, respectively.
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2.3. Experimental Setup
2.3.1. Dataset Production and Preprocessing

From September 2019 to December 2019, three different types of kiwifruit were ran-
domly collected at Ya’an Hongming Farm. Different types of kiwifruit vary in size and
shape. To improve the effectiveness of training and increase the diversity of samples, the
collected image data were screened before training. The image preprocessing software was
Labelimg, which is a software used to annotate image labels. Finally, 1600 images were
obtained and stored in JPG format with a resolution of 6000 px × 4000 px. In the next
step, 1000 pictures were randomly selected as the training set. The dataset was enhanced
by adaptive contrast, rotation, translation, cropping, and other methods, and the dataset
was expanded to 2000. The dataset was divided into 4 categories, which are disease, mold,
speckle, and deformation. Then, 300 pictures were randomly selected as the verification
set, and 2200 pictures were annotated as kiwifruit. There were 300 unlabeled kiwifruit
images left as the test set. The dataset is shown in Figure 6.
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2.3.2. Migration Network Initialization

Transfer learning is a common machine learning method, whose key is to transfer the
knowledge that has been trained in a certain field to another new field. As for this paper, it
concerns the completion of the model pretraining. The results will be migrated to the YOLO
v5 network of kiwi flaw detection to help the training of the detection model. To initialize
the model parameters of a small training set, a pretrained network model is selected with a
good learning ability to complete. Since the kiwi flawed image samples in this paper are
limited and few, migration learning is also chosen to initialize the parameters of the YOLO
v5 network, which can ensure the successful migration of the learned knowledge and the
capability to make the new network capable to learn quickly. In this way, the overfitting
caused by insufficient kiwi samples can be improved to a certain degree. At the same time,
the generalization ability of kiwi flaw detection can also be improved correspondingly so
that the recognition model can be facilitated. Even under complex natural conditions, the
model has a good recognition ability to perform migration learning. We need to understand
the datasets, because there are many datasets in the field of image deep learning, and they
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have their characteristics. This paper selects one of the most common and widely used
datasets—ImageNet. This dataset shows outstanding performance in image classification,
detection, positioning, and other fields.

2.3.3. CosineAnnealing

The CosineAnnealing is different from the traditional method. The learning rate will
decrease rapidly with the increase of epoch, and the model will find the local optimal point
and save the current model. After that, the learning rate will abruptly increase to a larger
value, escape from the current local optimal point, find a new local optimal point, and
then repeat this process to adjust the learning rate according to the cycle until the training
is completed. As shown in Equation (6), lmin represents the minimum learning rate, linit
represents the initial learning rate, Tmax represents a quarter of the change period of the
learning rate, and lnew represents the new learning rate obtained.

lnew = lmin + (linit − lmin)× (1 + cos(
epoch
Tmax

π)) (9)

In this training, Tmax is set to 5, lmin is 0.00001, and the learning variability curve of
the first 100 epochs is shown in Figure 7.
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2.3.4. Experimental platform

The training of the model was completed based on the Windows 10 operating sys-
tem and the Pytorch framework. The CPU model of the test equipment is Intel®Core™
i9_10900K CPU@3.70 GHz, the GPU model is GeForce RTX 5000 16 G, and the software
environment is CUDA 10.1, CUDNN 7.6, Python3.7.

The original YOLOv5 and the improved YOLOv5 were trained separately. The param-
eters were set as follows: the maximum number of iterations was 1000, the momentum
was 0.95, the CosineAnnealing of base learning rate was 0.01.

2.3.5. Model Evaluation Indicators

This paper introduces precision (P), which is precision rate, recall rate (R), and mean
average precision (mAP) to evaluate the performance of the kiwi flaw detection model.
The expressions of P and R are as follows:

P =
TP

(TP + FP)
(10)
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R =
TP

(TP + FN)
(11)

Among them, true positives (TP), false positives (FP), and false negatives (FN), re-
spectively, represent positive samples with correct classification, negative samples with
incorrect classification, and positive samples with incorrect classification.

AP is the average accuracy rate, which is the integral of the P index to the R index,
that is, the area under the P–R curve; mAP is the average accuracy of the mean, which
means that the AP value of each category is summed, and then divided by all categories,
i.e., the average value. They are defined as follows:

AP =
∫ 1

0
P(R)dR (12)

mAP =
1
|QR| ∑

q=QR

AP(q) (13)

where QR is the number of categories.

3. Results
3.1. Experimental Results

In order to judge the quality of the detection model accurately, the evaluation in this
paper is based on the loss function curve (Loss) and average accuracy value (mAP).

During the network training process, the loss function can intuitively reflect whether
the network model can converge stably as the number of iterations increases. The specific
loss function of the model is shown in Figure 8 below.
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From the figure, it is found that as the number of iterations gradually increases, the
improved YOLOv5 algorithm curve gradually converges, and the loss value becomes
smaller and smaller. When the model is iterated 600 times, the loss value is basically stable
and has dropped to near 0, and the network basically converges. Compared with the
original YOLOv5, the regression is faster and more accurate, which proves the validity and
effectiveness of the model.

The mAP is used to measure the quality of the defect detection model. The higher the
value is, the higher the average detection accuracy and the better the performance will be.

Figure 9 shows that after about 200 iterations of the YOLOv5-Ours model, the mAP
reaches about 94%, and has gradually stabilized, reaching a maximum of 98%, indicating
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that the improved YOLOv5 model has an average accuracy rate for defect detection. The
overall model performance has met and even exceeded expectations.
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3.2. Analysis

The following Figure 10 shows the improved YOLOv5 network and the YOLOv5-Ours
network in the kiwifruit dataset part of the detection results, respectively, for different
defect categories and defect sizes.
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As the results show, our improved YOLOv5 can accurately detect defects in complex
environments, such as tiny defects, and the return positioning frame is more accurate.
Embedding SELayer discards unimportant features, significantly improves the robustness
of the model, and proves the effectiveness of the network.

Under the condition that the IoU threshold is 50%, the mAP@0.5 of the original
YOLOv5 is 85%, and the mAP@0.5 of the improved YOLOv5 is 94.7%.
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Table 1 below shows the accuracy comparison between the original model and the
improved one.

Table 1. Comparison between the original model and the improved model.

Category Original YOLOv5 Model YOLOv5-Ours

speckle 0.95 0.96
disease 0.71 0.93

deformation 0.74 0.92
mould 0.84 0.95

Total mAP 0.85 0.947

According to Table 1, the improved model has improved mAP by nearly 8%. Through
testing, it is found that despite the increased complexity of the model, the improved
network still only takes 0.1 s to detect a single image, which is in line with real-time
detection.

It can be inferred from Table 2 that, compared with mainstream detection algorithms,
our network has a higher mAP. Although Fast R-CNN performs well on mAP, it takes
0.79 s to detect a single image, which cannot meet the requirements of real-time detection.

Table 2. Comparison between mainstream detection algorithms.

Category YOLOv5-Ours SSD300 YOLOv3 FAST R-CNN

mAP 0.947 0.855 0.821 0.939

4. Discussion

This paper explores an automatic detection method for kiwifruit defects in real time.
To meet the needs of farmers to understand the states of kiwifruit at any time and in real
time, we use the YOLOv5 model for deeper research. By adding a small target detection
layer, the ability to detect small defects is improved. The layer was embedded to enhance
useful features and suppress less important features. The CIoU was used as the loss
function to make the regression more stable. The feasibility of this method is as follows:

• In terms of processing accuracy, the dataset of this study is manually captured images;
hence, the background information is relatively simple. In slightly complex back-
ground conditions, the accuracy may be reduced. However, this research is based on
unnatural or industrial scenes. Thus, there will be no complex background in practical
application.

• In terms of processing speed, in order to meet the real-time needs of farmers, it is
necessary to process the images collected by the camera. The initial consideration is
using an object detection model to replace models such as, for instance, segmentation
or semantic segmentation (the latter two are relatively slow in processing speed). To
detect models in multiple objects, the YOLOv5 model for processing is considered,
which is a useful model in an advanced single-stage method in the field of object
detection. Compared with the two-step method, the former has a higher processing
speed based on the same hardware environment. Compared with other one-stage
methods (such as YOLOv2), the related reasons have been described in Section 2.1.
The optimized YOLOv5 network structure is complex. Compared with the YOLOv5-
Ours, the detection speed is reduced, but a single image only takes 0.1 s, which can
meet the above requirements.

• In terms of model generalization ability, YOLOv5 uses a mosaic data enhancement
strategy to improve the model’s generalization ability and robustness.

Based on the above discussion, we believe that the method we proposed is an effective
exploration and can promote the development of postproduction reprocessing of crops.
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5. Conclusions and Future Work

In this research, Deep learning technology was applied to kiwi flaw detection. Based
on YOLOv5, a high-precision kiwi flaw detection method was proposed. First, a kiwifruit
dataset containing four types of defects was collected. As far as we know, this is the first
kiwifruit defect dataset in the world and even the first agricultural product postproduction
defect dataset. At the same time, this is the first time that the YOLOv5 network has been
applied to crops. Then, through the improvement of YOLOv5, a small target detection layer
was added to the backbone network, and SELayer was embedded to improve the feature
extraction ability of the model. In addition, we modified the DIoU loss function to the CIoU
loss function to improve the accurate positioning ability of the model prediction frame
and enhance the model convergence effect. Compared with the original YOLOv5 model,
mAP@0.5 increases 9%. It can detect a single image in only 0.1 s (base on GPU 1050Ti) and
has better robustness to the environment, which proves the effectiveness of the model and
provides farmers with more efficient and intelligent postproduction reprocessing strategies.

This paper mainly researches and develops kiwifruit defects under the requirement of
real-time detection. However, fast detection still needs specific hardware configuration.
In the future, we will continue to optimize YOLOv5-Ours and use pruning technology to
optimize the model. At the same time, we will continue to increase the research on more
kiwifruit varieties and increase the scope of application.
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