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Abstract: In this paper, we propose new complex and real pair-wise detection for conventional
differential space–time modulations based on quasi-orthogonal design with four transmit antennas
for general QAM. Since the new complex and real pair-wise detections allow the independent joint
ML detection of two complex and real symbol pairs, respectively, the decoding complexity is the
same as or lower than conventional differential detections. Simulation results show that the proposed
detections exhibit almost identical performance with an optimum maximum-likelihood receiver,
as well as improved performance compared with conventional pair-wise detections, especially for
higher modulation order.

Keywords: space time codes; differential space time modulation; differential detection; pair-wise
detection; maximum likelihood detection

1. Introduction

So-called quasi-orthogonal (QO) design, adopted in coherent space–time codes
(STBCs) [1–3], enjoys some preferable features of full spatial diversity gain as well as
simplified maximum-likelihood (ML) detection based on complex or real pair-wise sym-
bols for any type of signal constellation. These QO-STBCs have been developed to be
applicable not only to 4G long-term evolution (LTE) [4], but also to a 5G new radio (NR)
communication system [5,6] that is currently commercializing beyond standardization.

However, for so-called differential space–time modulations (DSTMs) [7,8] based on the
QO design, hereafter referred to as QO-DSTM, the efficient pair-wise ML detection applied
in the conventional QO-STBCs is no longer available at a receiver when using general QAM.
This is mainly since power-normalization with a constraint of fixed total transmit energy
in a transmitter inevitably generates dependencies among all differentially modulated
signals on each other. Hence, [7,8] presents alternative pair-wise, but not ML, detections
showing degraded performance compared to the ML decoding. Furthermore, ref. [9] does
not exhibit significant performance loss unlike [7,8], but has a critical disadvantage due to
its decoding complexity greatly increasing as the modulation order increases.

For this reason, in this paper, new complex and real pair-wise detections for the
conventional QO-DSTMs [7,8] with four transmit antennas were proposed for general
QAM without additional operation. A key feature in the proposed detections is that when
decoding a given complex or real symbols pair, all the other pairs’ variant power values
contained in an ML metric are simply replaced by or estimated to be their constant mean
values. This mean-based estimation effectively cuts off the dependencies between the given
differential symbols which pair with all the other pairs, thus enabling the independent
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joint detection of two complex or real symbols, such as the conventional ones [7,8], with
the resulting performances much closer to ML decoding.

2. Conventional QO-DSTMs and Differential Pair-Wise Detections

The conventional QO-DSTMs [7,8] with four transmit antennas can be constructed
by serially concatenating the coherent QO code with differential encoding, as shown in
Figure 1.
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Figure 1. Block diagram of conventional QO-DSTM [7,8] with four transmit antennas.

The transmitter of Figure 1 first encodes a kth input vector xk = [xk
1, xk

2]
T of length 4

through the conventional coherent QO encoder [2,3] consisting of precoder Θ and Alamouti
encoder [10], resulting in:

Vk
1 =

1√
2

[
rk

1,1 rk
2,1

−
(

rk
2,1

)∗ (
rk

1,1

)∗ ], (1)

Vk
2 =

1√
2

[
rk

1,2 rk
2,2

−
(

rk
2,2

)∗ (
rk

1,2

)∗ ] (2)

where rk
i = [rk

i,1rk
i,2]

T
= Θxk

i with an unitary precoder Θ. Notice that the precoder Θ is
chosen so that the precoded vector rk

i has different values for any distinct xk
i [2,3], and thus

is mapped to xk
i in a one-to-one relationship. Then, each Vk

l is differentially modulated
with an iterative fashion as follows:

S0
l = I2, Sk

l =
Vk

l

ak−1
l

Sk−1
l , k ≥ 1 (3)

where ak−1
l =

√
1
2

(
|rk−1

1,l |
2
+|rk−1

2,l |
2)

is a power-normalization factor to satisfy Sk−1
l

(
Sk−1

l

)H

=
(

ak−1
l

)2
I2 with an 2× 2 identity matrix I2. (•)H denotes a Hermitian operator. The

differentially modulated Sk
l are finally transmitted through four transmit antennas in a

time-multiplexed form as shown in Figure 1, and finally arrive at a receiver through 4× 1
independent and identical MIMO fading channels.
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Assuming a receive vector yk
l = [yk

l,1yk
l,2]

T
corresponding to Sk

l , Zhu’s QO-DSTM [7]
presents a near-ML complex pair-wise detection of xk

i , where i = 1, 2 for an optimal complex

precoder ΘC = 1√
2

[
1 ejπ/4

1 −ejπ/4

]
, given as

x̂k
i = min

rk
i

2

∑
l=1

 ||yk−1
l ||2

2ak−1
l

|rk
i,l |

2 −
{〈

y′k−1
l,i , y′kl,1

〉
rk

i,l

}R
 (4)

where y′k−1
l,1 = [(yk−1

l,1 )∗yk−1
l,2 ]T and y′k−1

l,2 = [(yk−1
l,2 )∗ − yk−1

l,1 ]T . (•)T is a transpose operator
and 〈a, b〉 = aHb.

Furthermore, in order to further reduce the decoding complexity of (4), Chang’s QO-

DSTM [8] uses a real precoder ΘR =

[
cos θ sin θ
− sin θ cos θ

]
with θ = π/4 + 13.28◦, producing

real pair-wise detection of
(

xk
i

)R
and

(
xk

i

)I
, i = 1, 2, given as

(
x̂k

i

)R
= min

(rk
i )

R

2

∑
l=1

||yk−1
l ||2

2ak−1
l

∣∣∣∣(rk
i

)R
∣∣∣∣2∓{〈y′k−1

i,l , y′kl
〉R(

rk
i,l

)R
}, (5)

(
x̂k

i

)I
= min

(rk
i )

I

2

∑
l=1

||yk−1
l ||2

2ak−1
l

∣∣∣∣(rk
i

)I
∣∣∣∣2 ∓{〈y′k−1

i,l , y′kl
〉I(

rk
i,l

)I
}. (6)

In (4)–(6), (•)R and (•)I denote real and imaginary parts, respectively.

3. New Pair-Wise Detections

Before deriving new pair-wise decoding, we first rearrange the exact ML decoding ([3],
Equation (33)) in a vector form as follows:

x̂k = min
xk

2

∑
l=1


σ2+(ak−1

l )
2

ql
||yk

l ||
2
+

σ2+(ak
l )

2

ql
||yk−1

l ||2

− 2ak−1
l
ql

[(
yk−1

l

)H
Vk

l yk
l

]R
+ 2σ2 ln (ql)

 (7)

≈min
xk

∥∥∥∥∥ ak−1
1 yk

1
µ1

−
Vk

1yk−1
1

µ1

∥∥∥∥∥
2

+

∥∥∥∥∥ ak−1
2 yk

2
µ2

−
Vk

2yk−1
2

µ2

∥∥∥∥∥
2
 (8)

= min
xk

∥∥∥∥∥∥∥∥∥∥∥∥


ak−1

1 yk
1,1/µ1

ak−1
1

(
yk

1,2

)∗
/µ1

ak−1
2 yk

2,1/µ2

ak−1
2

(
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2,2

)∗
/µ2

−
 Yk−1

1
µ1

02

02
Yk−1

2
µ2




rk
1,1

rk
2,1

rk
1,2

rk
2,2



∥∥∥∥∥∥∥∥∥∥∥∥

2

(9)

where ql = σ2 + (ak−1
l )

2
+ (ak

l )
2

with σ2 = 1/SNR, µl =

√
(ak

l )
2
+ (ak−1

l )
2

and Yk−1
l =[

yk−1
l,1 yk−1

l,2
(yk−1

l,2 )∗ −(yk−1
l,1 )∗

]
. The approximation of (8) uses an assumption of high SNR, i.e.,

σ2 ≈ 0 [7,8]. Furthermore, the equality of (9) comes from no change of magnitude of any
conjugated signal.
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Here, let us define a 4 × 4 unitary matrix B =

[
Yk−1

1 /ρk−1
1 02

02 Yk−1
2 /ρk−1

2

]
with

ρk−1
l = ‖yk−1

l ‖ to satisfy BHB = I4. Then, by multiplying the left of (9) with BH , the ML
metric can be written as the summation of two equations, including each xk

i as follows:

∥∥∥∥∥∥∥∥∥∥∥
BH


ak−1

1 yk
1,1/µ1

ak−1
1

(
yk

1,2

)∗
/µ1

ak−1
2 yk

2,1/µ2

ak−1
2

(
yk

2,2

)∗
/µ2

− BH

 Yk−1
1
µ1

02

02
Yk−1

2
µ2




rk
1,1

rk
2,1

rk
1,2

rk
2,2


∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥


1/µ1 0 0 0
0 1/µ1 0 0
0 0 1/µ2 0
0 0 0 1/µ2





zk
1,1

zk
2,1

zk
1,2

zk
2,2

−


ρk−1
1 0 0 0
0 ρk−1

1 0 0
0 0 ρk−1

2 0
0 0 0 ρk−1

2




rk
1,1

rk
2,1

rk
1,2

rk
2,2



∥∥∥∥∥∥∥∥∥

2

(10)

=

∥∥∥∥∥∥∥∥∥∥

[
1/µ1 0

0 1/µ2

]([
zk

1,1
zk

1,2

]
−
[

ρk−1
1 0
0 ρk−1

2

][
rk

1,1
rk

1,2

])

+

[
1/µ1 0

0 1/µ2

]([
zk

2,1
zk

2,2

]
−
[

ρk−1
1 0
0 ρk−1

2

][
rk

2,1
rk

2,2

])
∥∥∥∥∥∥∥∥∥∥

2

(11)

=
∥∥∥Λ
(

zk
1 − ρk−1Θxk

1

)∥∥∥2
+
∥∥∥Λ
(

zk
2 − ρk−1Θxk

2

)∥∥∥2
(12)

where diagonal matrix Λ=diag(1/µ1,1/µ2), zk
i =[zk

i,1zk
i,2]

T
with zk

i,l =
{

ak−1
l

〈
y′k−1

l,i ,y′kl,1
〉}

/ρk−1
l

and ρk−1 = diag
(

ρk−1
1 , ρk−1

2

)
. The equality of (10) uses an energy conserving property of

the unitary matrix BH .
From (12), we can see that if all µl in Λ are independent of xk, each xk

i can be sep-

arately decoded by minimizing
∥∥∥Λ
(

zk
i − ρk−1Θxk

i

)∥∥∥2
. Unfortunately, the values µl =√

1
2

(
|rk

1,l |
2
+ |rk

2,l |
2
)
+ (ak−1

l )
2

in Λ are variant with respect to rk
i,l or all the input QAM

signals xk, implying the unfeasibility of pair-wise ML detection at the receiver. Specifically,
in order to decode xk

1, we need to know the two exact values of |rk
2,1|2 and |rk

2,2|2 in µl

containing the other signals xk
2. Conversely, for decoding xk

2, the two values |rk
1,1|2 and

|rk
1,2|2 corresponding to the other xk

1 need to be known. Considering that µl are normalizing
terms including ak

l and ak−1
l , we conclude that the dependency between two symbol pairs

xk
1 and xk

2 indeed originates from the power-normalization with the constraint of total
transmit power in (3), thus implying that this dependency will be not avoidable for the
general QAM.

Hence, in order to make separate detections of xk
i possible, it should be done to break

up the dependency relationship between xk
1 and xk

2 in µl . For this goal, when decoding
xk

1, we simply replace or estimate the values of the other |rk
2,1|2 by their mean values, i.e.,

E
{
|rk

2,1|2
}
= E

{
|rk

2,2|2
}
= 1, and also when decoding xk

2, E
{
|rk

1,1|2
}
= E

{
|rk

1,2|2
}
= 1. In this

way, the decoding of xk
1 can be performed only by using rk

1,l elements containing xk
1 and the

same can be done for decoding xk
2 only by using rk

2,l elements.
Hence, this simple mean-based estimation produces a new complex pair-wise decod-

ing of xk
i , given as

x̂k
i = min

xk
i

∥∥∥Λ̂i

(
zk

i − ρk−1Θxk
i

)∥∥∥2
, i = 1, 2 (13)
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where Λ̂i =diag(1/µ̂i,1,1/µ̂i,2) with µ̂i,l =

√
1
2

(
|rk

i,l |
2
+1
)
+(ak−1

l )
2
.

Moreover, for a real Θ, the mean-based estimation can be applied to

µ̂i,l =

√
1
2

(
|(rk

i,l)
R|2 + |(rk

i,l)
I |2 + 1

)
+ (ak−1

l )
2

in (13) one more time for the separate de-

coding of
(

xk
i

)R
and

(
xk

i

)I
, i.e., E

{
|(rk

i,l)
I |2
}

= 1
2 , ∀l when decoding

(
xk

i

)R
and also

E
{
|(rk

i,l)
R|2
}
= 1

2 , ∀l when decoding
(

xk
i

)I
, resulting in:

(
x̂k

i

)R
= min

(xk
i )

R

∥∥∥∥Λ̂R
i

[(
zk

i

)R
− ρk−1Θ

(
xk

i

)R
]∥∥∥∥2

, i = 1, 2 (14)

(
x̂k

i

)I
= min

(xk
i )

I

∥∥∥∥Λ̂I
i

[(
zk

i

)I
− ρk−1Θ

(
xk

i

)I
]∥∥∥∥2

, i = 1, 2 (15)

where Λ̂R
i = diag

(
1/µ̂R

i,1, 1/µ̂R
i,2

)
with µ̂R

i,l =

√
1
2

(
|(rk

i,l)
R|2 + 3

2

)
+ (ak−1

l )2 and Λ̂I
i =

diag
(

1/µ̂I
i,1, 1/µ̂I

i,2

)
with µ̂I

i,l =

√
1
2

(
|(rk

i,l)
I |2 + 3

2

)
+ (ak−1

l )2.

Obviously, the new pair-wise detections of (13)–(15) are not equal to the ML decoding
of (12), but exhibit performances within only about 0.5 dB compared to the ML receiver for
all simulation cases, which will be shown in the following simulation results.

Notice that with some manipulations, the conventional detection of (4) can be shown

to be equal to the new one of (13) setting µ̂i,l to be
√

ak−1
l , i.e., Λ̂i = diag

(√
ak−1

1 ,
√

ak−1
2

)
,

given as

min
xk

i

∥∥∥Λ̂i

(
zk

i − ρk−1Θxk
i

)∥∥∥2

= min
rk

i

(∥∥∥Λ̂iρ
k−1rk

i

∥∥∥2
− 2
{〈

Λ̂izk
i , Λ̂iρ

k−1rk
i

〉}R
)

(16)

= min
rk

i

2

∑
l=1

[
(ρk−1

1 )2

ak−1
l

|rk
i,l |

2 − 2
{〈

y′k−1
l,i , y′kl,1

〉
rk

i,l

}R
]

(17)

where the equality of (16) is from that Λ̂i is absolutely irrelevant to the current input
signals xk

i or rk
i . Following the same derivations, (5) and (6) can also be proven to be

equal to the new ones of (14) and (15), respectively, setting µ̂
R(I)
i,l to be

√
ak−1

l . This
means that the conventional detections can be seen as the ones to cut off the dependency

between two xk
i or four

(
xk

i

)R(I)
from each other by estimating µl to be simply

√
ak−1

l .
Moreover, since the proposed methods are the same symbol by symbol decoding as the
conventional methods except for the ml computation, performance improvement can be
expected without increasing the same decoding complexity.

Defining ε(µ̂l) = E
{
(µl − µ̂l)

2
}

, Table 1 compares the accuracies of µ̂ls used in the

conventional and new detections for the QO-DSTMs [7,8] with perfect knowledge of ak−1
l .

From Table 1, the estimation errors of µ̂l in the new detections are shown to be
greatly lower than those of the convention detections. Furthermore, the gap between both
detections becomes slightly larger as increasing the modulation order. This is obvious since
the conventional detections do not consider the values of current QAM input signals xk for
estimating µl unlike new ones, and thus the estimation error increases much more for a
higher modulation order.
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Table 1. Comparisons of ε(µ̂l) for the conventional and new detections.

Mod.
ΘC [7] ΘR [8]

ε

(√
ak−1

l

)
, (4) ε

(
µ̂i

l
)
, (13) ε

(√
ak−1

l

)
, (5), (6) ε

(
µ̂i

l,R(I)

)
, (14), (15)

16-QAM 7.462 0.195 2.679 0.359

64-QAM 44.593 0.866 6.558 0.754

256-QAM 263.204 2.898 16.042 1.381

4. Simulation Results

All simulations are done based on an independent data frame consisting of 128 blocks.
Each block has four QAM symbols. For propagation channel models, it is assumed that
the four MIMO channel gains have independent and identical Rayleigh distributions, and
also are constant during each frame with independent distribution. Furthermore, in all
decodings, we use ak−1

1 and ak−1
2 calculated from previously detected symbols.

Figure 2 shows average bit error rates (BERs) of the new and conventional complex
pair-wise detections for the Zhu’s QO-DSTM [7] using ΘC. For the comparison of perfor-
mances, the ML results of (12) are also included. Firstly, the new pair-wise detection is
shown to achieve more improved performance compared to the conventional one for all
simulation cases. The performance gain is much larger especially as the modulation order
increases. Specifically, for 16, 64 and 256 QAMs, the respective SNR gains at BER = 10−4

are about 0.8, 1.0, 1.2 dBs. This is mainly because the new detection is performed based
on more accurately estimated µ̂l compared to the conventional one, especially for a higher
modulation order, as shown in Table 1. Furthermore, we note that the proposed detection
shows an SNR loss of less than only 0.2 dB compared to the ML decoding for all cases.

5 10 15 20 25 30
Eb/N0

10-4

10-3

10-2

10-1

A
ve

ra
ge

 B
ER

s

ML, (12)
Conventional, (4)
Proposed, (13)

16QAM

64QAM

256QAM

Figure 2. Average BERs for the QO-DSTM [7] with ΘC.
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Figure 3 shows the average BERs of the new and conventional real pair-wise detections
for the Chang’s QO-DSTM [8] using ΘR. Here, the ML results are also included for
comparing performances. First the performance trends in Figure 3 are almost the same as
those of Figure 2 with the identical reasons as in Table 1. Specifically, the respective SNR
gains for 16, 64 and 256 QAMs at BER = 10−4 are about 0.3, 0.6, 0.9 dBs. Furthermore, the
proposed detection shows an SNR loss of less than 0.5 dB compared to the ML decoding
for all cases.

5 10 15 20 25 30
Eb/N0

10-4

10-3

10-2

10-1

A
ve

ra
ge

 B
ER

s

ML, (12)
Conventional, (5)－(6) 
Proposed, (14)－(15)

16QAM

64QAM

256QAM

Figure 3. Average BERs for the QO-DSTM [8] with ΘR.

Comparing the simulation results in Figures 2 and 3, we can see that the performance
gain comparing to the conventional system is more significant when using the complex
precoder in Figure 2. This is mainly due to the difference in estimation errors between the
proposed and conventional methods listed in Table 1. Namely, when using the complex
precoder, the gap of estimation errors for µl between these two methods are larger than
those when using the real precoder for all modulation cases, as shown in Table 1.

5. Conclusions

In this paper, we proposed new complex and real pair-wise detections for the conven-
tional QO-DSTMs with four transmit antennas for general QAM. The proposed detections
exhibit a greatly improved performance compared to the conventional ones, especially, for
a higher modulation order and also a performance almost identical with the ML decoding.

Hence, considering decoding the complexity and error performances, the new pair-
wise detections are much more attractive for demodulating the QO-DSTMs. The mean-
based estimation used in the proposed detections can indeed be applied to any other
DSTMs based on amicable orthogonal [11] or QO [12] space-time codes with more than
four transmit antennas and general QAM. In addition, it can be applicable for the other
differential modulation systems in such as radio frequency technology [13], underwater
communications [14], heterogeneous networks [15] and wireless sensor networks [16],
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which can also be applied to the artificial intelligence field [17] which is in the spotlight
these days.
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