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Abstract: The YOLOv4 neural network is employed for underwater target recognition. To improve
the accuracy and speed of recognition, the structure of YOLOv4 is modified by replacing the upsam-
pling module with a deconvolution module and by incorporating depthwise separable convolution
into the network. Moreover, the training set used in the YOLO network is preprocessed by using
a modified mosaic augmentation, in which the gray world algorithm is used to derive two images
when performing mosaic augmentation. The recognition results and the comparison with the other
target detectors demonstrate the effectiveness of the proposed YOLOv4 structure and the method
of data preprocessing. According to both subjective and objective evaluation, the proposed target
recognition strategy can effectively improve the accuracy and speed of underwater target recognition
and reduce the requirement of hardware performance as well.

Keywords: underwater image; enhancement; YOLO neural network; target recognition; mosaic
data augmentation

1. Introduction

There are countless oil and gas, mineral, biological, and chemical resources in the
vast ocean. With the continuous development of science and technology, we have a
better understanding of the ocean. In the process of ocean exploration, there are many
underwater tasks, such as target positioning [1], biological recognition [2], archaeology [3],
object search [4], environment detection [5], device maintenance [6], etc. In accomplishing
these tasks, underwater target recognition plays an important role. Underwater target
recognition depends on an underwater vision system, which can be divided into acoustic
vision systems and optical vision systems [7]. Based on the acquired acoustic information,
one can perform image processing, feature extraction, classification, and recognition [8].
However, there are some defects in underwater acoustic vision images, such as noise,
low resolution, and less image information [9]. In recent years, with the development of
optical equipment, optical vision system-based underwater target recognition has received
increasing attention. From the point of view of methodology, many target recognition
algorithms have been put forward and applied in underwater scenarios.

Target recognition, also known as target detection, is a kind of computer vision task. It
aims to identify specific types of visual objects (such as human, animal, or vehicle) in digital
images. Most of the early target recognition algorithms are based on handcrafted features.
Viola and Jones [10] proposed a VJ recognizer, which realized real-time face recognition for
the first time. Dalal and Triggs [11] initially proposed the histogram of oriented gradient
(HOG) feature descriptor. Felzenszwalb et al. proposed the deformable part model (DPM)
as an extension of the HOG recognizer [12] and made various improvements [13]. DPM
is regarded as the peak of traditional target recognition. However, as the performance of
handcrafted features tends to be saturated, traditional target recognition hits a bottleneck.
In recent years, convolutional neural networks (CNNs) have received attention and have
been proven as an effective tool for classification [14]. In the application of CNNs to target
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recognition, Girshick et al. [15] initially proposed a CNN-based target recognition tool.
He et al. [16] developed a spatial pyramid pool network (SPPnet) with a speed more
than 20 times that of RCNN (Regions with CNN factures), without sacrificing recognition
accuracy. In 2015, Redmon et al. [17] proposed the YOLO (You only look once) network,
which is the first one-stage detector in the area of deep learning. Liu et al. [18] proposed the
second one-stage detector, SSD (single shot multibox detector). Compared to YOLO, the
contribution of SSD is the introduction of multi-reference and multi-resolution recognition
technology, which significantly improves the recognition accuracy of the one-stage detector,
especially for some small objects.

Many researchers have applied target recognition methods to underwater images. In
the past, most people used traditional target recognition methods for underwater target
recognition. Xu et al. [19] proposed an inhomogeneous illumination field to reduce the
backward scattered background noise in underwater environments. Xu et al. [20] proposed
an underwater target feature extraction method based on the singular value of a gener-
alized S-Transform module time–frequency matrix. Ma [21] analyzed and extracted the
polarization feature, edge feature, and line feature, which are more suitable for underwater
environment target detection, and then used the Itti model to generate a saliency map to
detect underwater targets. Wang et al. [22] adjusted the regional saliency by simulating
the eye movement to change the position of the attention focus and formed the saliency
region to achieve underwater object detection. Oliver et al. [23] studied the influence of
different underwater point spread functions on the detection of image features using many
different feature detectors, and the influence of these functions on the feature detection
ability when they are used for matching and target detection. Zhang et al. [24] extracted
new combined invariant moments of underwater images as the recognition features of
the system, and used an artificial fish swarm algorithm (AFSA) improved neural network
as the underwater target classifier. Yang et al. [25] presented a classification algorithm
based on multi-feature fusion for moving target recognition. Dubreuil et al. [26] investi-
gated underwater target detection by combining active polarization imaging and optical
correlation-based approaches. Yahya et al. [27] proposed a robust target recognition algo-
rithm using bounding box partition to overcome the problem of failure of recognition due
to unmatched targets. Liu et al. [28] proposed a feature matching algorithm based on the
Hough transform [29] and geometrical features for target detection in special underwater
environments. Li et al. [30] proposed an algorithm for the recognition of small underwater
targets based on shape characteristics.

In 2015, researchers began to apply deep learning to underwater target recognition.
Li et al. [31] first applied deep CNN to underwater detection and constructed an Image-
CLEF dataset, which involves 24,277 fish images belonging to 12 classes. Sun et al. [32]
proposed a CNN knowledge transfer framework for underwater object recognition and
tackled the problem of extracting discriminative features from relatively low-contrast im-
ages. Zhou et al. [33] proposed three data augmentation methods for a Faster R-CNN
network. Park and Kang [34] improved the YOLO network and proposed a method to
accurately classify objects and count them in sequential video images. Arain et al. [35]
presented two novel approaches for improving image-based underwater obstacle detection
by combining sparse stereo point clouds with monocular semantic image segmentation.
Jia and Liu [36] designed a rapid detection method for marine animals based on MSRCR
(multiscale Retinex with color restore) and YOLOv3 to solve the problems of insufficient
illumination of the underwater environment and slow detection speed in the detection of
marine animals. Qiang et al. [37] proposed a target recognition algorithm based on im-
proved SSD to improve the target detection accuracy and speed in the complex underwater
environment. Zang et al. [38] used a region-based fully convolutional network (R-FCN)
model to identify marine organisms to realize a submersible tool for video information
recognition. Liu [39] solved the imbalance of underwater image datasets through a GAN
network. Li et al. [40] employed a transfer learning strategy to train the underwater YOLO
network and to alleviate the limitation of fish samples.
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Generally, deep learning-based underwater target recognition has achieved some
progress in recent years. Nevertheless, the powerful ability of deep learning has not been
fully exploited. This paper introduces the latest version of YOLO, i.e., YOLOv4, to under-
water target recognition. Moreover, in consideration of the particularity of underwater
environments, YOLOv4 is modified to improve the speed and accuracy of target recogni-
tion. The original upsampling module is replaced with a deconvolution module. At the
same time, the depthwise separable convolution is added to the YOLO network to reduce
the calculation burden of network recognition and training. Another contribution of the
study is that a new data preprocessing method is proposed to improve the accuracy of
target recognition. In this method, the background environment factors are taken into
account when extracting target features. Mosaic augmentation is employed and improved.
It is noted from the literature that, in the process of underwater target recognition, enhance-
ment or restoration algorithms for underwater images are often incorporated into target
recognition to improve the accuracy of recognition. For example, Xie et al. [41] applied the
dark channel prior model in underwater target recognition. Zhou et al. [42] adopted an
adaptive underwater image enhancement algorithm to suppress noise and to improve edge
clarity in recognizing moving underwater objects. Liang et al. [43] proposed an algorithm
that combines the improved dark channel and MSR (multiscale Retinex) to improve the
accuracy of target recognition. Yang et al. [44] proposed a novel underwater image enhance-
ment method to improve the quality of underwater images through color compensation
and correction, gamma correction, and brightness de-blurring. Note that, although some
underwater image enhancement algorithms yield positive results, the processing speed is
limited, which degrades their real-time performance. In this study, to improve the accuracy
and speed of underwater target recognition, an improved YOLOv4 is combined with an
improved mosaic augmentation in which an image enhancement algorithm, gray world
algorithm, is incorporated.

The rest of the paper is organized as follows. In Section 2, the fundamentals of gray
world algorithm, YOLO, mosaic augmentation, and the CIoU loss function are described.
In Section 3, the improvement of YOLOv4 and modification of mosaic augmentation are
explained. In Section 4, some examples are treated with the proposed method to verify its
effectiveness. The final section contains the conclusions.

2. Fundamentals
2.1. Gray World Algorithm

As is known, underwater images are mostly affected by the refraction and absorption
of light. Therefore, an image of objects in water presents a blue-green tone. At the same
time, the scattering of light induced by particles in the water makes the image details
blurred and the surface atomized. The temperature of water also affects the propagation of
light, leading to light scattering [45]. In summary, most underwater images have problems
of color deviation, blur, and atomization. As a result, it is difficult to extract the features of
underwater images.

To alleviate the color deviation, the gray world algorithm is used in this study. This
algorithm is based on the gray world hypothesis [46]. The hypothesis holds that the
average reflection of light by natural objects is a fixed value in general, and this fixed value
is approximately considered “gray”. The gray world algorithm is widely used owing to two
advantages. Firstly, for a single-tone image—for example, a greenish underwater image—
the enhancement effect of gray world algorithm is satisfactory. The second advantage of
the gray world algorithm is the low computational cost [47]. The gray world algorithm can
be described as follows.

First, the average values of the three channels are calculated:
Ravg = 1

m ∑m−1
0 R

Gavg = 1
m ∑m−1

0 G
Bavg = 1

m ∑m−1
0 B

, (1)
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where R, G, B, represent the red, green, and blue pixel values of each pixel; Ravg, Gavg, Bavg
are the average of red, green, and blue channels of all pixels. m is the number of pixels in
the image. Based on Equation (1), the mean value of RGB can be obtained as:

K =
(

Ravg + Gavg + Bavg
)
/3, (2)

Then, the gain of each channel relative to K can be determined:
KR = K/Ravg
KG = K/Gavg
KB = K/Bavg

, (3)

The pixel values of pixels are adjusted one by one according to the obtained gains:
Rnew = KR ∗ R
Gnew = KG ∗ G
Bnew = KB ∗ B

, (4)

where Rnew, Gnew, Bnew represent the new pixel value of each pixel.

2.2. YOLO Neural Network

The You only look once (YOLO) neural network was proposed by Redmon et al. in
2015 [18]. It is the first one-stage target detector in the era of neural networks. In this target
detector, to improve the detection speed, the “proposal detection + verification” pattern in
the two-stage detector (e.g., RCNN, Faster RCNN) is abandoned; only one neural network
is used instead. The YOLO network divides the image into several regions with the same
size. Then, the network predicts the kinds and probability of objects in bounding boxes
in each region. Later, Redmon made a series of improvements on the basis of YOLO, by
proposing v2 and v3 versions [48,49].

YOLOv3 was proposed by Redmon in 2018 [50]. Owing to the fast training speed and
detection speed, it is often used in practice. YOLOv3 blends several excellent structures,
including the Darknet53 network, anchor, and FPN network. The basic framework of the
YOLOv3 neural network is shown in Figure 1.

Figure 1. Framework of YOLOv3.

YOLOv4 was proposed by Bochkovskiy [50] in 2020 on the basis of YOLOv3. Com-
pared with YOLOv3, YOLOv4 makes many improvements, including changing the back-
bone network Darknet53 to CSPDarknet53, adding SPP and PANet network, taking CIoU
as a part of the loss function, and using mosaic augmentation. The structure of the YOLOv4
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neural network is shown in Figure 2. As can be seen, as with YOLOv3, in YOLOv4, the
input image is processed as an image with the width and height of 416 × 416. For different
sizes of targets, the final output layer of the YOLO network has three sizes of width and
height, i.e., 13 × 13, 26 × 26, and 52 × 52. Note that in the output layers, as shown in
Figures 1 and 2, for example, 13 × 13 × (c + 5) × 3, c represents the number of kinds to be
detected; 5 reflects whether there is a target in an anchor box and 4 adjustment parameters
of the anchor box; 3 represents three different anchor boxes corresponding to each size
of width and height. It can also be seen that the basic convolution blocks of the YOLOv4
network, i.e., CBL and CBM, are similar to YOLOv3. The main difference is that YOLOv4
takes the Mish function as the activation function in the backbone network, while the Leaky
ReLU function is used in YOLOv3.

Figure 2. Structure of YOLOv4.

A basic convolution block in YOLOv4 is composed of normal convolution, batch
normalization, and activation functions.

For the CBL block,

x′ = Leaky ReLU(Batch Normalization(Conv(x))). (5)

For the CBM block,

x′ = Mish(Batch Normalization(Conv(x))), (6)

where x is the input, x′ is the output, Conv() is the normal convolution operator, Batch
Normalization() is the batch normalization operator, and Leaky ReLU() and Mish() are
activation functions.

The Res unit is a basic residual component in both YOLOv3 and YOLOv4. The output
feature of the unit is obtained by adding the input feature and the result of two convolutions.
In the residual convolution block of YOLOv3, the input feature enters the Res unit after
a basic convolution. Then, an output feature is obtained. In YOLOv4, the input feature
travels along two routes after a basic convolution. In one route, the result of convolution
goes through the Res unit and the basic convolution, while in the other route, the result of
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convolution only experiences the basic convolution. The final output feature is obtained by
concatenating the results of two routes.

In addition to modifying the backbone network, YOLOv4 also adds the SPP network
and modifies the FPN network to the PANet network. The SPP network performs maximum
pooling of inputs with different sizes and concatenates the pooling results together to obtain
an output. The PANet network can be regarded as an upgrade of the FPN network, in
which the structure of downsampling is added.

2.3. Mosaic Augmentation

Mosaic augmentation [50] derives from CutMix augmentation [51], which stitches
two pictures together into one picture to increase the number of targets and enhance the
complexity of the background. It has been proven that such an operation is beneficial to
the training of a target detection neural network.

2.4. CIoU

IoU (Intersection over Union) is a basic criterion in target recognition, being the ratio
of the intersection and union of the predict box and ground truth. In the training of a neural
network, sometimes, it is problematic to take IoU as a part of the loss function, especially
for the case of IoU = 0 and the case when different intersections have the same IoU value.
Therefore, in YOLOv4, CIoU (Complete IoU) [52] is selected to replace IoU as a part of the
loss function. The lower the CIoU, the better a predicted box approximates the ground
truth. The CIoU part of the loss function and its components are as follows:

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αν, (7)

IoU =
|B ∩ Bgt|
|B ∪ Bgt| , (8)

ν =
4
π2

(
arctan

wgt

hgt − arctan
w
h

)2

, (9)

α =
ν

(1− IoU) + ν
, (10)

where B, Bgt represent the predict box and the ground truth, respectively; ρ(b, bgt) is the
distance between the center point of the predict box and the ground truth; c represents
the diagonal distance of the smallest rectangle containing the predict box and the ground
truth; w, h, wgt, hgt represent the width and height of the predict box and the ground truth,
respectively; α is a positive trade-off parameter to measure the consistency of aspect ratio ν.
The parameters of CIoU are shown in Figure 3.

Figure 3. Description of CIoU.
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3. Improvement of YOLOv4
3.1. E-Mosaic Augmentation

As is known, there are two main purposes of mosaic augmentation in target recogni-
tion. One is to increase the complexity of the image background. The other is to increase
the number of objects in an image. Due to the particularity of the underwater environment,
the image background is mostly blue-green for underwater images. The complexity of
the background is too weak for mosaic augmentation. As a result, the accuracy of target
recognition cannot be improved obviously, even if mosaic augmentation is carried out.

In this study, a novel data augmentation method, named after e-mosaic augmentation,
is proposed. An image enhancement algorithm, gray world algorithm, is incorporated into
mosaic augmentation. Similarly to normal mosaic augmentation, e-mosaic augmentation
selects four images. The difference is that, before stitch, the e-mosaic augmentation first
enhances two images on the diagonal by using gray world algorithm. The purpose is
to increase the complexity of the background, which benefits the training of a target
recognition neural network. Figure 4 presents the process of e-mosaic augmentation.

Figure 4. E-mosaic augmentation.

3.2. YOLOv4-uw

In this study, the structure of YOLOv4 is modified to increase the target recognition
accuracy and speed. To improve the accuracy of recognition, the upsampling module in
YOLOv4 is replaced with the deconvolution module. To increase the speed of recognition,
depthwise separable convolution is used to replace the normal convolution in the Res unit
and the normal convolution near the output layer.

Figure 5 shows the difference between upsampling and deconvolution. As can be seen,
the upsampling structure can only enlarge the feature size and cannot restore the details. By
contrast, the deconvolution structure can not only enlarge the feature size but also restore
details. This is because deconvolution is the reverse operation of convolution, which can
approximately restore the feature layer to what it was before convolution. Obviously,
compared to upsampling, deconvolution is conducive to the restoration of image details.
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Figure 5. Upsampling and deconvolution: (a) upsampling; (b) deconvolution.

Figure 6 presents the comparison between a normal three-dimensional convolution
and a depthwise separable three-dimensional convolution. The left plot is the normal 3 × 3
convolution block, which is composed of 3 × 3 convolution, batch normalization (BN), and
the activation function (AF). The right plot is a 3 × 3 depthwise separable convolution
block, which is composed of depthwise convolution, point convolution (1× 1 convolution),
batch normalization, and the activation function. Depthwise separable convolution is
the core of MobileNet [53]. The difference between depthwise separable convolution and
normal three-dimensional convolution is that depthwise separable convolution divides
convolution operation into two steps to reduce the amount of convolution calculation.
Although the accuracy might be slightly reduced, the speed of training and detection can
be usually improved.

Figure 6. A 3 × 3 convolution and corresponding depthwise separable convolution.

Figure 7 presents the structure of the modified YOLOv4 in the study, named YOLOv4-uw
since this version of YOLOv4 is constructed for the purpose of underwater target recog-
nition. Notably, it is observed that in the used training set and test set, the objects to be
recognized are of medium size and small size. To further improve the speed of target recog-
nition, the large-sized output layer in YOLOv4, i.e., with the size of 52 × 52, is removed.
Correspondingly, the SPP structure is deleted since SPP is introduced in YOLOv4 to deal
with various sizes of objects.
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Figure 7. Structure of YOLO-uw.

4. Results and Discussion
4.1. Training and Test Set

The training environment of YOLO is: Windows10; Inter® Core™ i5-10600KF;
NVIDIA GeForce RTX 3080; Python3.7; CUDA11.0; Cudnn8.0.4; tensorflow-gpu2.4.0.

The experimental dataset is from the Target Recognition Group of 2020 China Under-
water Robot Professional Competition (URPC 2020). In total, it contains 4757 pictures, 3805
of which (80% data) are taken as the training set, while the rest, 952 pictures (20% data),
are taken as the test set. The target types are divided into four categories: echinus, starfish,
holothurian, and scallop.

4.2. Verification of E-Mosaic Augmentation

The proposed e-mosaic augmentation method is verified from objective and subjective
aspects. The recognition precision is calculated as the objective evaluation index. The visual
detection results are presented to subjectively evaluate the effect of e-mosaic augmentation.

Table 1 shows the precision of recognition results in terms of AP (average precision)
and mAP (mean average precision), in which the threshold value of IoU is set to 0.5. The AP
value is a comprehensive evaluation metric based on the precision and recall in a category.
The precision and recall in a category can be calculated after setting the threshold of IoU.
The mAP value is the mean AP of all categories. To verify the effectiveness of e-mosaic
augmentation, three different preprocessing methods with respect to the original dataset
are considered, including without data preprocessing, data preprocessing by mosaic aug-
mentation, and data preprocessing by proposed e-mosaic augmentation. After the training
set is determined, training is performed by using YOLOv4. As shown in Table 1, e-mosaic
augmentation can effectively improve the detection accuracy. Compared with the YOLOv4
without any data preprocessing, in the four underwater animal categories, the recognition
precision of starfish is improved the most by mosaic and e-mosaic augmentation. Com-
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pared with mosaic augmentation, the proposed e-mosaic augmentation leads to a general
improvement in terms of both AP and mAP.

Table 1. Comparison of precision of recognition results with different preprocessing of training set.

Preprocessing of
Training Set

AP
mAP (%)

Scallop Echinus Starfish Holothurian

Without preprocessing 0.66 0.85 0.51 0.55 63.96
mosaic 0.58 0.83 0.74 0.54 67.20

e-mosaic 0.61 0.84 0.72 0.57 68.46

Figure 8 presents some recognition results of four underwater animals, in which
recognition of scallop is labeled by a blue box; echinus by purple; starfish by yellow;
holothurian by red. The plots in the first column of Figure 8a are obtained in the case of
the training set without preprocessing. Presented in column Figure 8b are the results after
using mosaic augmentation in training. Figure 8c shows the recognition results after using
e-mosaic augmentation in training. It can be seen that the recognition results obtained
through e-mosaic augmentation-assisted training are the best. Not only are the recognized
targets the most, but also the predict box is the most accurate.

Figure 8. Target recognition results: (a) without preprocessing training set; (b) preprocessing training
set by mosaic augmentation; (c) preprocessing training set by e-mosaic augmentation.

4.3. Verification of YOLOv4-uw

As aforementioned, the large-scale output layer is deleted from the proposed YOLOv4-
uw in the study because of the lack of large-scale objects in the available training set. The
SPP structure is also removed. Table 2 shows the comparison of YOLOv4-uw with and
without the SPP structure. As can be seen from the comparison results, SPP does not
improve the detection accuracy. It can be even found that the detection speed in terms of
FPS (frame per second) is improved after the SPP structure is deleted.
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Table 2. Comparison of YOLOv4-uw with and without SPP.

Preprocessing of
Training Set

AP
mAP (%)

Detection
Speed (FPS)Scallop Echinus Starfish Holothurian

YOLOv4-uw with SPP 0.64 0.86 0.82 0.62 73.48 39
YOLOv4-uw without SPP 0.64 0.86 0.83 0.68 75.34 44

The proposed YOLOv4-uw neural network is further verified via network perfor-
mance and hardware requirement. The network performance is reflected by detection
accuracy and speed while the hardware requirement refers to model size, parameters, and
required calculation ability.

Table 3 shows the comparison between the proposed YOLOv4-uw and other classic
networks. The mAP value, time spent in detection, and detection speed are used as eval-
uation criteria. Notably, when mAP is measured, the IoU threshold is set to 0.5. As can
be seen from the comparison results, the target recognition by the YOLOv4-uw network
yields a mAP index value of 75.34%, which is nearly 12% higher than YOLOv4. Moreover,
YOLOv4-uw outperforms other target recognition networks. In terms of detection time,
the proposed YOLOv4-uw takes 2.3 ms, which is 0.5 ms faster than YOLOv4. In terms of
FPS, the proposed YOLOv4-uw reaches 44 FPS, which is 9 FPS more than YOLOv4.

Table 3. Comparison between YOLOv4-uw and other networks.

Network mAP (%) Time Spent in Detection (ms) Detection Speed (FPS)

Faster RCNN 41.98 5.7 17
SSD 71.45 0.9 105

CenterNet 73.57 1.8 55
YOLOv3 31.52 2.1 48
YOLOv4 63.96 2.8 35

YOLOv4-uw 75.34 2.3 44

Table 4 shows the comparison of the required network model size, parameters, and
required calculation ability (represented by billion floating point operations per second,
Bflop/s) among the proposed YOLOv4-uw and other one-step detectors. The smaller the
network is, the lower the requirement of storage space is. As shown in Table 4, the size of
YOLOv4-uw is 65 MB, around a quarter of that of YOLOv4. Moreover, the values of the
parameters in the YOLOv4-uw are the lowest. BFLOP/s is usually used as a measure of
the computing power required by a network. The larger the BFLOP/s is, the higher the
requirement of the device is. As can be seen from Table 4, the BFLOP/s of YOLOv4-uw is
the smallest by 19.6 Bflop /s, around one third of that of YOLOv4.

Table 4. Comparison between YOLOv4-uw and other one-step detectors.

Network Model Size (MB) Total Parameters (M) Bflop/s

SSD 92 24.2 63.2
CenterNet 125 32.7 50.5
YOLOv3 235 61.6 65.4
YOLOv4 250 64.0 59.7

YOLOv4-uw 65 16.7 19.6

4.4. Verification of the Combination of E-Moasic and YOLOv4-uw

Table 5 shows the mAP of recognition results by YOLOv4, YOLOv4 with e-mosaic,
YOLOv4-uw, and YOLOv4-uw with e-mosaic. Three cases with different IoU threshold
values are considered. IoU@0.5 indicates that the IoU threshold is set to 0.5. IoU@0.75
means that the IoU threshold is set to 0.75. IoU@[0.5:0.95] means that when the IoU changes
from 0.5 to 0.95, the mAP is tested every 0.05. Then, the average value of 10 measurement
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results is taken as the final mAP. As can be seen from the results in Table 5, when the IoU
threshold is set to 0.5, the recognition precision by YOLOv4-uw associated with e-mosaic
augmentation can reach 76.84%, which is nearly 13% higher than YOLOv4 without e-mosaic
augmentation and around 8% higher than YOLOv4 with e-mosaic augmentation. When
the IoU threshold is set to [0.5:0.95], it can be seen that under the same data augmentation
conditions, the mAP of YOLOv4-uw is around 11% higher than that of YOLOv4. The mAP
of the same network (YOLOv4 or YOLOv4-uw) can be increased by around 1.2% by using
e-mosaic augmentation.

Table 5. Comparison of YOLOv4 and YOLOv4-uw, with and without e-mosaic.

Condition
mAP

YOLOv4 YOLOv4-uw

e-mosaic No Yes No Yes
IoU @0.5 63.96 68.46 75.34 76.84

IoU @0.75 12.77 12.22 28.41 30.08
IoU @[0.5:0.95] 25.03 26.36 36.12 37.35

5. Conclusions

In this paper, an improved YOLOv4 is proposed to improve the accuracy and speed
of underwater target recognition. A modified data augmentation is also proposed to im-
prove the accuracy of recognition. Through the comparison results between the proposed
YOLOv4-uw and other networks, including YOLOv4, it can be seen that the strategy pro-
posed in this study can effectively improve the recognition accuracy and speed. Moreover,
the requirement of hardware performance using the proposed YOLOv4-uw is lower than
the others.

It should be noted that only one image enhancement method, i.e., gray world algo-
rithm, is considered in performing e-mosaic augmentation. In the next work, other image
enhancement methods will be considered and applied to the preprocessing of the training
set. In addition, further optimization of YOLOv4-uw will be conducted to improve the
recognition accuracy and speed. Due to the fact that the dataset in this paper consists
of medium and small targets, the effectiveness of the neural network proposed here for
large targets has not been confirmed. Future work will be concerned with the verifica-
tion of the proposed YOLO-uw network when dealing with the detection of large-scale
underwater objects.
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