
electronics

Article

Area, Power and Speed Optimized Early Output Majority Voter
for Asynchronous TMR Implementation

Padmanabhan Balasubramanian 1,* and Nikos E. Mastorakis 2

����������
�������

Citation: Balasubramanian, P.;

Mastorakis, N.E. Area, Power and

Speed Optimized Early Output

Majority Voter for Asynchronous

TMR Implementation. Electronics

2021, 10, 1425. https://doi.org/

10.3390/electronics10121425

Academic Editor: Antonio G.

M. Strollo

Received: 15 May 2021

Accepted: 11 June 2021

Published: 14 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore

2 Department of Industrial Engineering, Technical University of Sofia, 1000 Sofia, Bulgaria; mastor@tu-sofia.bg
* Correspondence: balasubramanian@ntu.edu.sg; Tel.: +65-679-047-45

Abstract: This paper presents a new, efficient asynchronous early output majority voter that can
be used to effectively realize an asynchronous triple modular redundancy (TMR) implementation.
For the input-output mode asynchronous realization, the dual-rail code was used for data encoding
and four phase return-to-zero and return-to-one handshake schemes were separately used for data
communication. The proposed majority voter requires 62.8% less area and dissipates 37% less power
on average compared to the best of the existing asynchronous majority voters while considering
both handshake schemes. Importantly, the reductions in area and power are achieved without
sacrificing the speed. Example TMR implementations show that the proposed majority voter leads
to simultaneous reductions in cycle time, silicon area, and power dissipation. As a result, the
proposed majority voter enables improved optimization in figure-of-merits such as area–cycle time
product, power–cycle time product, and area–cycle time–power product for TMR implementations
utilizing it compared to TMR implementations incorporating other majority voters. The circuits were
implemented using a 32/28-nm CMOS technology.

Keywords: digital circuits; logic design; fault tolerance; low power; high speed; TMR; CMOS

1. Introduction

In many mission- and safety-critical applications such as space, aerospace, nuclear
power plants, electric power transmission and distribution, banking and stock exchanges,
and industrial control and automation, etc. N-modular redundancy is widely used, with
triple modular redundancy (TMR) being common [1,2]. To realize a TMR implementation,
three identical function blocks are used, where a function block may be a circuit or a
sub-system or a system. The corresponding output(s) of the function blocks are majority
voted using majority voter(s). Suppose a function block produces K outputs, K 3-input
majority voters are required to realize a TMR implementation [3].

Depending upon the design paradigm adopted, the majority voter used in a TMR
implementation may be realized in a synchronous or asynchronous design style. Different
designs of majority voters for a synchronous TMR implementation are available in the
literature [4–6]. Different designs of majority voters for an asynchronous TMR implemen-
tation are also available in the literature [7–10]. Reference [7] corresponds to a bundled
data asynchronous design while the studies in [8–10] correspond to an input-output mode
asynchronous design. Generally, an input-output mode asynchronous design is more
robust than a bundled data asynchronous design since the former is not delay-sensitive
while the latter is sensitive to delays [11]. Note that henceforth, by ‘asynchronous real-
ization’ we mean an ‘input-output mode asynchronous realization’ in this paper unless
stated otherwise.

In [8,9], strongly indicating majority voters for an asynchronous TMR implementation
were presented while in [10] an early output majority voter was presented. This paper

Electronics 2021, 10, 1425. https://doi.org/10.3390/electronics10121425 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9412-4773
https://doi.org/10.3390/electronics10121425
https://doi.org/10.3390/electronics10121425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10121425
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10121425?type=check_update&version=2


Electronics 2021, 10, 1425 2 of 12

presents a new, improved early output majority voter for an asynchronous TMR imple-
mentation. The dual-rail code is used for data encoding and four-phase return-to-zero
handshaking (RTZH) and return-to-one handshaking (RTOH) schemes are separately used
for data communication.

The rest of this paper is organized as follows. Section 2 briefly discusses fundamentals
of input-output mode asynchronous circuits. Section 3 presents the proposed early output
majority voter and describes how it is used to realize an efficient asynchronous TMR
implementation. Section 4 gives the design metrics of example TMR implementations
which utilize different majority voters including the proposed majority voter. Section 5
gives the conclusions.

2. Input-Output Mode Asynchronous Circuit

A typical block diagram of an input-output mode asynchronous pipeline stage is
shown in Figure 1a. It consists of a pair of input and output register banks, control
signals (AIN and AOUT) which are exchanged between the register banks to control the
data flow, an asynchronous circuit that is sandwiched between the register banks, and
completion detectors.

Electronics 2021, 10, x FOR PEER REVIEW 2 of 13 
 

 

In [8,9], strongly indicating majority voters for an asynchronous TMR implementa-
tion were presented while in [10] an early output majority voter was presented. This paper 
presents a new, improved early output majority voter for an asynchronous TMR imple-
mentation. The dual-rail code is used for data encoding and four-phase return-to-zero 
handshaking (RTZH) and return-to-one handshaking (RTOH) schemes are separately 
used for data communication. 

The rest of this paper is organized as follows. Section 2 briefly discusses fundamen-
tals of input-output mode asynchronous circuits. Section 3 presents the proposed early 
output majority voter and describes how it is used to realize an efficient asynchronous 
TMR implementation. Section 4 gives the design metrics of example TMR implementa-
tions which utilize different majority voters including the proposed majority voter. Sec-
tion 5 gives the conclusions. 

2. Input-Output Mode Asynchronous Circuit 
A typical block diagram of an input-output mode asynchronous pipeline stage is 

shown in Figure 1a. It consists of a pair of input and output register banks, control signals 
(AIN and AOUT) which are exchanged between the register banks to control the data 
flow, an asynchronous circuit that is sandwiched between the register banks, and comple-
tion detectors. 

 
Figure 1. (a) Block diagram of an input-output mode asynchronous circuit stage. Example illustration of input register 
bank and completion detector corresponding to: (b) RTZH and (c) RTOH. 

In Figure 1a, an input register bank and an output register bank are shown. The input 
register bank could serve as an output register bank for a preceding stage in the pipeline, 
and the output register bank could serve as an input register bank for a successive stage 
in the pipeline. Supposing that dual-rail encoded signals viz. (A1,A0) and (B1,B0) are sup-
plied through the input register bank, a two-input C-element is used for each rail of every 

Figure 1. (a) Block diagram of an input-output mode asynchronous circuit stage. Example illustration of input register bank
and completion detector corresponding to: (b) RTZH and (c) RTOH.

In Figure 1a, an input register bank and an output register bank are shown. The
input register bank could serve as an output register bank for a preceding stage in the
pipeline, and the output register bank could serve as an input register bank for a successive
stage in the pipeline. Supposing that dual-rail encoded signals viz. (A1,A0) and (B1,B0)
are supplied through the input register bank, a two-input C-element is used for each rail
of every dual-rail encoded input which is synchronized with the acknowledgment input



Electronics 2021, 10, 1425 3 of 12

signal (AIN), and forwarded to the asynchronous circuit for processing, as depicted in
Figure 1b,c. This description is applicable for the output register bank as well, shown in
Figure 1a. To avoid the loading on AIN signal, a non-inverting buffer or buffer tree may
be used.

The C-element is a rendezvous element that is often used to construct asynchronous
circuits. If all the inputs to a C-element are 1 or 0, it would output 1 or 0, respectively. On
the other hand, if any of the inputs to a C-element is different, the C-element would retain
its existing steady state. A static CMOS realization of a 2-input C-element [12] is shown in
Figure 2, where P and Q are the inputs and R is the output. In Figure 1b,c, the circles with
the marking ‘C’ represent the C-element.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 13 
 

 

dual-rail encoded input which is synchronized with the acknowledgment input signal 
(AIN), and forwarded to the asynchronous circuit for processing, as depicted in Figure 
1b,c. This description is applicable for the output register bank as well, shown in Figure 
1a. To avoid the loading on AIN signal, a non-inverting buffer or buffer tree may be used. 

The C-element is a rendezvous element that is often used to construct asynchronous 
circuits. If all the inputs to a C-element are 1 or 0, it would output 1 or 0, respectively. On 
the other hand, if any of the inputs to a C-element is different, the C-element would retain 
its existing steady state. A static CMOS realization of a 2-input C-element [12] is shown in 
Figure 2, where P and Q are the inputs and R is the output. In Figure 1b,c, the circles with 
the marking ‘C’ represent the C-element. 

 
Figure 2. Static CMOS realization of a two-input Muller C-element. 

AIN and AOUT represent acknowledgment input and output control signals in Fig-
ure 1, which are Boolean complements of each other. AIN and AOUT are used for data 
communication, i.e., for handshaking between the input and output register banks, and 
they control the data flow in an input-output mode asynchronous pipeline stage. Dual-
rail encoding of inputs and outputs is performed according to the handshake scheme 
used. For example, a signal A is encoded into dual-rail signals (A1,A0) based on RTZH and 
RTOH, as shown in Table 1. 

Table 1. Dual-rail data encoding based on four phase RTZH and RTOH. 

Handshake Scheme 
Single Rail Input 

(A) Dual-Rail Equivalent 
St

 A1 A0 

RTZH 

0 0 1 
1 1 0 
– 0 0 
– 1 1 In

RTOH 

0 1 0 
1 0 1 
– 1 1 
– 0 0 In

In Table 1, with respect to RTZH [11], A1 = 1 and A0 = 0, and A0 = 1 and A1 = 0 are 
referred to as data. Only one of the rails of each dual-rail encoded input is asserted high to 
represent data, and binary 1 is used to represent data in the case of RTZH. A1 = A0 = 0 is 
referred to as the spacer that is supplied between two data inputs, and A1 = A0 = 1 is des-
ignated as indeterminate or illegal. 

With respect to RTOH [13], A1 = 0 and A0 = 1, and A0 = 0 and A1 = 1 are referred to as 
data. Only one of the rails of each dual-rail encoded input is asserted low to represent data, 
and binary 0 is used to represent data in the case of RTOH. A1 = A0 = 1 is referred to as the 
spacer that is supplied between two data inputs, and A1 = A0 = 0 is deemed indeterminate. 

Figure 2. Static CMOS realization of a two-input Muller C-element.

AIN and AOUT represent acknowledgment input and output control signals in
Figure 1, which are Boolean complements of each other. AIN and AOUT are used for
data communication, i.e., for handshaking between the input and output register banks,
and they control the data flow in an input-output mode asynchronous pipeline stage.
Dual-rail encoding of inputs and outputs is performed according to the handshake scheme
used. For example, a signal A is encoded into dual-rail signals (A1,A0) based on RTZH and
RTOH, as shown in Table 1.

Table 1. Dual-rail data encoding based on four phase RTZH and RTOH.

Handshake Scheme
Single Rail Input

(A) Dual-Rail Equivalent
State Definition

A1 A0

RTZH

0 0 1 Binary 0
1 1 0 Binary 1
– 0 0 Spacer
– 1 1 Indeterminate

RTOH

0 1 0 Binary 0
1 0 1 Binary 1
– 1 1 Spacer
– 0 0 Indeterminate

In Table 1, with respect to RTZH [11], A1 = 1 and A0 = 0, and A0 = 1 and A1 = 0 are
referred to as data. Only one of the rails of each dual-rail encoded input is asserted high
to represent data, and binary 1 is used to represent data in the case of RTZH. A1 = A0 = 0
is referred to as the spacer that is supplied between two data inputs, and A1 = A0 = 1 is
designated as indeterminate or illegal.

With respect to RTOH [13], A1 = 0 and A0 = 1, and A0 = 0 and A1 = 1 are referred to as
data. Only one of the rails of each dual-rail encoded input is asserted low to represent data,
and binary 0 is used to represent data in the case of RTOH. A1 = A0 = 1 is referred to as the
spacer that is supplied between two data inputs, and A1 = A0 = 0 is deemed indeterminate.

Four phases or steps are involved in RTZH and RTOH. In the case of RTZH, with
AIN being 1 initially, a fresh data can be input to the asynchronous circuit for processing,
and after this, AOUT would assume 1 through the completion detector. Subsequently,



Electronics 2021, 10, 1425 4 of 12

AIN would assume 0. With AIN = 0, the spacer is supplied to the asynchronous circuit
for processing, and eventually AOUT will assume 0 through the completion detector and
AIN would assume 1 again. Another data sequence can then be input to the asynchronous
circuit for processing. These imply that the application of inputs according to RTZH follows
the sequence data-spacer-data-spacer and so on, i.e., the data bus would entirely assume zero
after the application of an input data.

In the case of RTOH, with AIN being 1 initially, the spacer is supplied to the asyn-
chronous circuit for processing, and AOUT would assume 1 through the completion
detector. Following this, AIN would assume 0, and a fresh data can be input to the asyn-
chronous circuit for processing. Subsequently, AOUT would assume 0, implying that AIN
will assume 1 again and the spacer can be supplied. These imply that, according to RTOH,
the application of inputs follows the sequence spacer-data-spacer-data and so on, i.e., the
data bus entirely assumes one after the application of an input data.

Example completion detectors corresponding to RTZH and RTOH are shown in
Figure 1b,c, respectively, assuming that single rail primary inputs A and B are dual-rail
encoded as (A1,A0) and (B1,B0). The dual rails of each encoded primary input is combined
using a two-input OR gate in the case of RTZH and a two-input AND gate in the case of
RTOH. The outputs of two-input OR (AND) gates are combined using a C-element in the
case of RTZH (RTOH) to produce the completion detector output. When many two-input
OR gates or two-input AND gates are present, their outputs can be combined using a tree
of C-elements to produce the completion detector output. The output of the completion
detector acknowledges the receipt of all the primary inputs given to the asynchronous
circuit for processing.

3. Proposed Early Output Majority Voter and Asynchronous TMR Implementation

The block diagram of an asynchronous TMR implementation is shown in Figure 3,
with asynchronous function blocks 1, 2 and 3 all being identical. Dual-rail encoding is
used and four-phase RTZH or RTOH may be used. At least two out of the three function
blocks should always maintain the correct operation. In Figure 3, (A1,A0), (B1,B0) and
(C1,C0) represent the dual-rail primary inputs given to asynchronous function blocks 1, 2
and 3, and (X1,X0), (Y1,Y0) and (Z1,Z0) are their corresponding primary outputs which are
majority voted to generate the voter’s primary output (M1,M0).

Electronics 2021, 10, x FOR PEER REVIEW 4 of 13 
 

 

Four phases or steps are involved in RTZH and RTOH. In the case of RTZH, with 
AIN being 1 initially, a fresh data point can be input to the asynchronous circuit for pro-
cessing, and after this, AOUT would assume 1 through the completion detector. Subse-
quently, AIN would assume 0. With AIN = 0, the spacer is supplied to the asynchronous 
circuit for processing, and eventually AOUT will assume 0 through the completion detec-
tor and AIN would assume 1 again. Another data sequence can then be input to the asyn-
chronous circuit for processing. These imply that the application of inputs according to 
RTZH follows the sequence data-spacer-data-spacer and so on, i.e., the data bus would en-
tirely assume zero after the application of an input data. 

In the case of RTOH, with AIN being 1 initially, the spacer is supplied to the asyn-
chronous circuit for processing, and AOUT would assume 1 through the completion de-
tector. Following this, AIN would assume 0, and a fresh data can be input to the asyn-
chronous circuit for processing. Subsequently, AOUT would assume 0, implying that AIN 
will assume 1 again and the spacer can be supplied. These imply that, according to RTOH, 
the application of inputs follows the sequence spacer-data-spacer-data and so on, i.e., the 
data bus entirely assumes one after the application of an input data. 

Example completion detectors corresponding to RTZH and RTOH are shown in Fig-
ure 1b,c, respectively, assuming that single rail primary inputs A and B are dual-rail en-
coded as (A1,A0) and (B1,B0). The dual rails of each encoded primary input is combined 
using a two-input OR gate in the case of RTZH and a two-input AND gate in the case of 
RTOH. The outputs of two-input OR (AND) gates are combined using a C-element in the 
case of RTZH (RTOH) to produce the completion detector output. When many two-input 
OR gates or two-input AND gates are present, their outputs can be combined using a tree 
of C-elements to produce the completion detector output. The output of the completion 
detector acknowledges the receipt of all the primary inputs given to the asynchronous 
circuit for processing. 

3. Proposed Early Output Majority Voter and Asynchronous TMR Implementation 
The block diagram of an asynchronous TMR implementation is shown in Figure 3, 

with asynchronous function blocks 1, 2 and 3 all being identical. Dual-rail encoding is 
used and four-phase RTZH or RTOH may be used. At least two out of the three function 
blocks should always maintain the correct operation. In Figure 3, (A1,A0), (B1,B0) and 
(C1,C0) represent the dual-rail primary inputs given to asynchronous function blocks 1, 2 
and 3, and (X1,X0), (Y1,Y0) and (Z1,Z0) are their corresponding primary outputs which are 
majority voted to generate the voter’s primary output (M1,M0). 

 
Figure 3. Asynchronous TMR implementation utilizing dual-rail encoding. Figure 3. Asynchronous TMR implementation utilizing dual-rail encoding.

The logic expressions of the majority voter outputs corresponding to RTZH are given
by Equations (1) and (2), where the first three terms on the right side of the equations



Electronics 2021, 10, 1425 5 of 12

signify the correct operation of at least two function blocks and the last term specifies the
correct operation of all the function blocks.

M1 = X1Y1 + Y1Z1 + X1Z1 + X1Y1Z1 (1)

M0 = X0Y0 + Y0Z0 + X0Z0 + X0Y0Z0 (2)

The logic expressions of the majority voter outputs corresponding to RTOH are given
by Equations (3) and (4). In general, the dual of the logic expressions corresponding to
RTZH would give rise to logic expressions that adhere to RTOH, and vice-versa. It may
be recalled that binary 1 is used to represent data in the case of RTZH with zeroes used as
the spacer and binary 0 is used to represent data in the case of RTOH with ones used as
the spacer.

M1 = (X1 + Y1) (Y1 + Z1) (X1 + Z1) (X1 + Y1 + Z1) (3)

M0 = (X0 + Y0) (Y0 + Z0) (X0 + Z0) (X0 + Y0 + Z0) (4)

The truth table of the dual-rail encoded majority voter corresponding to RTZH and
RTOH is given in Table 2.

Table 2. Truth table of the dual-rail encoded majority voter (showing only data and no spacer).

Dual-Rail Encoded Inputs Dual-Rail Encoded Outputs

X1 X0 Y1 Y0 Z1 Z0 M1 M0

Based on RTZH

0 1 0 1 0 1 0 1
0 1 0 1 1 0 0 1
0 1 1 0 0 1 0 1
0 1 1 0 1 0 1 0
1 0 0 1 0 1 0 1
1 0 0 1 1 0 1 0
1 0 1 0 0 1 1 0
1 0 1 0 1 0 1 0

Based on RTOH

1 0 1 0 1 0 1 0
1 0 1 0 0 1 1 0
1 0 0 1 1 0 1 0
1 0 0 1 0 1 0 1
0 1 1 0 1 0 1 0
0 1 1 0 0 1 0 1
0 1 0 1 1 0 0 1
0 1 0 1 0 1 0 1

The proposed early output majority voter is shown in Figure 4, where Figure 4a
corresponds to RTZH and Figure 4b corresponds to RTOH. To transform a circuit that
corresponds to RTZH into one that corresponds to RTOH and vice versa, excepting the
C-elements, the rest of the gates should be replaced by their respective duals. This property
was proven through induction in [14].

Figure 4a comprises two complex gates and Figure 4b also comprises two complex
gates. An AO222 or an OA222 complex gate is realized in static CMOS style using 12
transistors. Hence, Figure 4a,b would require just 24 transistors each for a static CMOS
implementation. Figure 4a,b perhaps represent the ultimate gate-level design of an early
output asynchronous majority voter based on dual-rail encoding which correspond to
RTZH and RTOH respectively. This is because Figure 4a,b feature only one gate for each
rail of the encoded voter output.



Electronics 2021, 10, 1425 6 of 12
Electronics 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 4. Proposed early output majority voter corresponding to: (a) RTZH; (b) RTOH. 

Figure 4a comprises two complex gates and Figure 4b also comprises two complex 
gates. An AO222 or an OA222 complex gate is realized in static CMOS style using 12 tran-
sistors. Hence, Figure 4a,b would require just 24 transistors each for a static CMOS imple-
mentation. Figure 4a,b perhaps represent the ultimate gate-level design of an early output 
asynchronous majority voter based on dual-rail encoding which correspond to RTZH and 
RTOH respectively. This is because Figure 4a,b feature only one gate for each rail of the 
encoded voter output. 

The proposed early output majority voter is a monotonic Boolean network (MBN) 
[15]. Referring to Figure 3, the asynchronous TMR implementation consisting of identical 
function blocks and the proposed majority voter(s) is also an MBN. In an MBN, the signal 
transitions monotonically increase or decrease from the primary inputs up to the primary 
outputs subsequent to the application of inputs [16]. In an MBN corresponding to RTZH, 
the signal transitions monotonically increase from binary 0 to 1 for the application of data, 
and monotonically decrease from binary 1 to 0 for the application of spacer. For example, 
after the application of spacer in Figure 4a, if data are applied whereby X0, Y0 and Z0 as-
sume 1, then M0 would assume 1. Subsequently, in the following return-to-zero phase, if 
X0, Y0 and Z0 assume 0, M0 would also assume 0. 

On the other hand, in an MBN corresponding to RTOH, the signal transitions mono-
tonically decrease from binary 1 to 0 for the application of data, and monotonically in-
crease from binary 0 to 1 for the application of spacer. For example, after the application 
of spacer in Figure 4b, if data are applied whereby X0, Y0 and Z0 assume 0, then M0 would 
assume 0. Subsequently, in the following return-to-one phase, if X0, Y0 and Z0 assume 1, 
M0 would also assume 1. 

An early output asynchronous circuit [17] is able to commence the processing after 
receiving just a subset of the primary inputs and can produce all the primary output(s). 
The early output nature of the proposed majority voter shown in Figure 4a is described 
by an example scenario as follows. After the application of data, X1 = Y1 = 1 could result in 
M1 = 1 early in accordance with the Boolean majority, regardless of Z1 having assumed 1. 
Subsequently, in the following return-to-zero phase after the application of spacer, if X1 
and Y1 assume 0, M1 could assume 0 early regardless of Z1 or Z0 having assumed 0. Thus, 
the early output nature may be manifested for the application of data and/or spacer in 
Figure 4a. 

The early output nature of the proposed majority voter shown in Figure 4b is de-
scribed by an example scenario as follows. With M1 and M0 being 1 initially (due to the 
application of spacer), if X1 and Y1 assume 0 after the application of data, M1 could assume 
0 early regardless of Z1 having assumed 0. Subsequently, in the following return-to-one 
phase, if X1 and Y1 assume 1, M1 could assume 1 early, regardless of Z1 having assumed 1. 

Figure 4. Proposed early output majority voter corresponding to: (a) RTZH; (b) RTOH.

The proposed early output majority voter is a monotonic Boolean network (MBN) [15].
Referring to Figure 3, the asynchronous TMR implementation consisting of identical
function blocks and the proposed majority voter(s) is also an MBN. In an MBN, the signal
transitions monotonically increase or decrease from the primary inputs up to the primary
outputs subsequent to the application of inputs [16]. In an MBN corresponding to RTZH,
the signal transitions monotonically increase from binary 0 to 1 for the application of data,
and monotonically decrease from binary 1 to 0 for the application of spacer. For example,
after the application of spacer in Figure 4a, if data are applied whereby X0, Y0 and Z0

assume 1, then M0 would assume 1. Subsequently, in the following return-to-zero phase, if
X0, Y0 and Z0 assume 0, M0 would also assume 0.

On the other hand, in an MBN corresponding to RTOH, the signal transitions mono-
tonically decrease from binary 1 to 0 for the application of data, and monotonically increase
from binary 0 to 1 for the application of spacer. For example, after the application of spacer
in Figure 4b, if data are applied whereby X0, Y0 and Z0 assume 0, then M0 would assume 0.
Subsequently, in the following return-to-one phase, if X0, Y0 and Z0 assume 1, M0 would
also assume 1.

An early output asynchronous circuit [17] is able to commence the processing after
receiving just a subset of the primary inputs and can produce all the primary output(s).
The early output nature of the proposed majority voter shown in Figure 4a is described by
an example scenario as follows. After the application of data, X1 = Y1 = 1 could result in
M1 = 1 early in accordance with the Boolean majority, regardless of Z1 having assumed
1. Subsequently, in the following return-to-zero phase after the application of spacer, if
X1 and Y1 assume 0, M1 could assume 0 early regardless of Z1 or Z0 having assumed 0.
Thus, the early output nature may be manifested for the application of data and/or spacer
in Figure 4a.

The early output nature of the proposed majority voter shown in Figure 4b is described
by an example scenario as follows. With M1 and M0 being 1 initially (due to the application
of spacer), if X1 and Y1 assume 0 after the application of data, M1 could assume 0 early
regardless of Z1 having assumed 0. Subsequently, in the following return-to-one phase, if
X1 and Y1 assume 1, M1 could assume 1 early, regardless of Z1 having assumed 1. Thus,
the early output nature may be manifested for the application of data and/or spacer
in Figure 4b.

The proposed early output majority voter is different from the majority voters pre-
sented in [8,9], which are strongly indicating. A strongly indicating asynchronous cir-
cuit [18] requires all the primary inputs to process and produce all the primary output(s).
This implies that a strong indication majority voter would require all the primary inputs
to process them and produce data as well as spacer. Due to this strict timing constraint,
strong indication asynchronous circuits generally have inferior design metrics compared



Electronics 2021, 10, 1425 7 of 12

to other categories of asynchronous circuits [14]. Although the majority voter presented
in [10] is of early output type, similar to our proposed majority voter, however, it contains
relatively more logic and hence our proposed majority voter facilitates better optimization
of the design metrics, which is discussed in the next section.

4. Results

TMR circuits incorporating existing majority voters [8–10] and the proposed majority
voter called “NEO_MV” were implemented adhering to RTZH and RTOH, separately. A
full adder [19] was used to represent the function blocks. Excepting the 2-input C-element
that was custom realized, as shown in Figure 2, the rest of the gates were directly utilized
from the 32/28 nm CMOS standard digital cell library [20]. A typical case process, voltage
and temperature specification corresponding to a low leakage (high Vt) process with a
supply voltage of 1.05V and an operating junction temperature of 25 ◦C was considered for
the simulations. Default wire loads were included, and a fan-out of 4 drive strength was
assigned to all the output ports, i.e., majority voter outputs.

Different TMR implementations were simulated, and their functionality was verified
by considering all the distinct inputs for the function blocks, which were supplied through
a test bench. The test bench indirectly modelled the presence and absence of fault(s) in
the function block(s). In other words, all the distinct combinations of the majority voter’s
primary inputs shown in Table 2 were generated through the outputs of function blocks to
perform functional simulations of the majority voters. For example, referring to Table 2,
with respect to RTZH, X1 = Y1 = Z1 = 1 and X0 = Y0 = Z0 = 1 denote those instances when
all the function blocks operate correctly and produce the same outputs. The remaining
instances represent the scenarios when one of the function blocks is faulty, but a majority
of the function blocks still operate correctly. Likewise, with respect to RTOH, referring to
Table 2, X1 = Y1 = Z1 = 0 and X0 = Y0 = Z0 = 0 refer to those instances when all the function
blocks operate correctly and produce the same outputs. The remaining instances represent
the scenarios when one of the function blocks is faulty. However, a majority of the function
blocks still operate correctly. The test bench was supplied at a latency of 2 ns, i.e., at a
cycle time of 4 ns. The switching activity data obtained from the simulations were used to
estimate the total power dissipation.

Screenshots of portions of simulation waveforms of TMR implementations utilizing the pro-
posed majority voter (NEO_MV) are shown in Figures 5 and 6, corresponding to RTZH and RTOH,
respectively. In Figures 5 and 6, (SUM21,SUM20), (SUM11,SUM10) and (SUM01,SUM00) represent
the sum outputs of triplicated full adders while (CARRY21,CARRY20), (CARRY11,CARRY10) and
(CARRY01,CARRY00) represent the carry outputs of the full adders. The majority voted sum and
carry outputs are denoted by (SUM1,SUM0) and (CARRY1,CARRY0) in Figures 5 and 6,
whose waveforms are highlighted in blue. The waveforms in Figures 5 and 6 show that
correct majority voted outputs are produced in accordance with the Boolean majority
despite the faulty behavior of a function block.

In an input-output mode asynchronous circuit, the cycle time is an important metric
that governs the operating speed. The cycle time is the time duration to complete one
transaction that involves the processing of a data and the spacer. The time taken to process
the data and the spacer are called forward latency and reverse latency respectively, and the
cycle time is the sum of these latencies. For the TMR implementations considered, their
forward and reverse latencies are equal, and so the cycle time is equal to a doubling of the
forward latency/reverse latency.

The standard design metrics such as area, cycle time, and power dissipation were
estimated for different TMR implementations corresponding to RTZH and RTOH, and they
are given in Table 3. The differences in the design metrics of TMR implementations are
entirely attributable to the differences in the logic of the majority voters, since the function
blocks, registers and completion detector used are the same.



Electronics 2021, 10, 1425 8 of 12
Electronics 2021, 10, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Screenshot of a portion of simulation waveforms of the TMR implementation incorporating the proposed majority voter (NEO_MV) corresponding to RTZH. Binary 1 repre-
sents data in the case of RTZH. Majority voted sum output (SUM1,SUM0) is captured within the yellow rectangles and majority voted carry output (CARRY1,CARRY0) is captured 
within the rose rectangles. 

Figure 5. Screenshot of a portion of simulation waveforms of the TMR implementation incorporating the proposed majority voter (NEO_MV) corresponding to RTZH. Binary 1 represents
data in the case of RTZH. Majority voted sum output (SUM1,SUM0) is captured within the yellow rectangles and majority voted carry output (CARRY1,CARRY0) is captured within the
rose rectangles.



Electronics 2021, 10, 1425 9 of 12Electronics 2021, 10, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 6. Screenshot of a portion of simulation waveforms of the TMR implementation incorporating the proposed majority voter (NEO_MV) corresponding to RTOH. Binary 0 repre-
sents data in the case of RTZH. Majority voted sum output (SUM1,SUM0) is captured within the white rectangles and majority voted carry output (CARRY1,CARRY0) is captured 
within the yellow rectangles. 

Figure 6. Screenshot of a portion of simulation waveforms of the TMR implementation incorporating the proposed majority voter (NEO_MV) corresponding to RTOH. Binary 0 represents
data in the case of RTZH. Majority voted sum output (SUM1,SUM0) is captured within the white rectangles and majority voted carry output (CARRY1,CARRY0) is captured within the
yellow rectangles.



Electronics 2021, 10, 1425 10 of 12

Table 3. Design metrics of asynchronous TMR implementations with respect to RTZH and RTOH.

Majority
Voter Used

Area
(µm2)

Cycle Time
(ns)

Power Dissipation (µW)

Majority Voters Others * Total

Based on RTZH

Singh_MV [8] 327.08 2.84 25.29 128.91 154.2

DIMS_MV [8] 319.46 2.30 15.94 130.06 146.0

Toms_MV [8] 312.34 2.40 16.37 129.43 145.8

SI_MV [8] 300.14 2.50 27.26 128.74 156.0

CG_MV [9] 277.78 2.46 24.94 128.26 153.2

EO_MV [10] 261.51 1.74 6.50 127.70 134.2

NEO_MV (proposed) 239.15 1.70 4.11 127.29 131.4

Based on RTOH

Singh_MV [8] 327.08 2.78 25.43 129.77 155.2

DIMS_MV [8] 315.39 2.24 14.74 130.96 145.7

Toms_MV [8] 312.34 2.38 16.71 130.39 147.1

SI_MV [8] 300.14 2.48 27.17 129.93 157.1

CG_MV [9] 277.78 2.46 24.76 128.94 153.7

EO_MV [10] 261.51 1.74 6.39 129.01 135.4

NEO_MV (proposed) 239.15 1.66 4.01 128.09 132.1

* Refers to function blocks, registers and completion detector.

Overall, from Table 3, we see that the proposed NEO_MV enables better reductions in
area, cycle time, and power dissipation compared to its counterparts. This is due to two
main reasons. Considering both RTZH and RTOH, on average, the areas of the majority
voters are found as: Singh_MV–50.57µm2; DIMS_MV–45.75 µm2; Toms_MV–43.20 µm2;
SI_MV–37.11 µm2; CG_MV–25.92 µm2; EO_MV–17.79 µm2; and the proposed NEO_MV–
6.61 µm2. Therefore, NEO_MV requires 62.8% less area compared to the best of the existing
majority voters viz. EO_MV. The lesser area occupancy of NEO_MV leads to lesser power
dissipation, and its latency is less because it has a single logic level. The split-up of power
dissipated by majority voters and the power dissipated by function blocks, registers and
completion detector is also given in Table 3. The sum of these power components gives
the total power dissipation. From Table 3, we note that compared to EO_MV, NEO_MV
dissipates 36.8% less power for RTZH and 37.2% less power for RTOH, i.e., 37% less
power on average. Overall, NEO_MV enables reduced total power dissipation for the TMR
implementations comprising it compared to TMR implementations incorporating the other
majority voters.

Besides estimating the standard design metrics such as cycle time, area and average
power dissipation, some figure-of-merits (FOMs) are also calculated for VLSI designs. It
is desirable to have reduced design metrics which is characteristic of an effective circuit
design. Given this, the FOMs are a combined interpretation of the design metrics. Some
popular FOMs include area–delay product (here, area–cycle time product (ACTP)), power-
delay product (here, power–cycle time product (PCTP)), and area–delay–power product
(here, area–cycle time–power product (ACTPP)). Among these, PCTP is representative
of energy.

We calculated the actual values of the above mentioned FOMs for all the TMR imple-
mentations and then normalized them. To normalize, the highest value of actual FOM of
a TMR implementation with respect to a specific handshake scheme was considered as
the baseline and this was used to divide the actual FOM of all the TMR implementations.



Electronics 2021, 10, 1425 11 of 12

This procedure was followed to normalize the FOMs of various TMR implementations
corresponding to RTZH and RTOH separately, and the normalized FOMs are portrayed by
Figure 7a,b. A smaller value is preferable for a normalized FOM, which is indicative of an
effective circuit design.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 13 
 

 

 
Figure 7. Normalized FOMs of TMR implementations utilizing different majority voters corre-
sponding to: (a) RTZH; and (b) RTOH. 

In Figure 7a, the blue, orange and grey bars denote normalized ACTP, PCTP and 
ACTPP, respectively, corresponding to RTZH, and in Figure 7b, the orange, yellow and 
green bars denote the same order of normalized FOMs with respect to RTOH. It is clear 
from Figure 7a,b that TMR implementations utilizing the proposed majority voter 
(NEO_MV) achieve better optimized FOMs compared to TMR implementations incorpo-
rating the other majority voters. This is due to the reduced design metrics reported for 
NEO_MV compared to its counterparts, as noted from Table 3. 

From Figure 7a,b, and Table 3, it may be inferred that among the existing majority 
voters, EO_MV is optimized. However, the proposed NEO_MV is better optimized than 
EO_MV. TMR implementations incorporating NEO_MV achieve the following savings in 
FOMs compared to TMR implementations incorporating EO_MV: (i) 10.7% reduction in 
ACTP, 4.1% reduction in PCTP (energy) and 12.5% reduction in ACTPP with respect to 
RTZH; and (ii) 12.7% reduction in ACTP, 6.9% reduction in PCTP (energy) and 14.9% re-
duction in ACTPP with respect to RTOH. 

5. Conclusions 
This paper presented a new compact early output majority voter that is useful for 

realizing an effective asynchronous TMR implementation. The dual-rail code was used 
for data encoding and four-phase handshake schemes were used for data communication. 
Different TMR circuits were implemented incorporating the proposed majority voter and 
the other existing majority voters. The design metrics report enhanced reductions in area, 
cycle time, power dissipation, and thus reduced FOMs for TMR implementations incor-
porating the proposed majority voter compared to TMR implementations incorporating 
other existing majority voters. 

Figure 7. Normalized FOMs of TMR implementations utilizing different majority voters correspond-
ing to: (a) RTZH; and (b) RTOH.

In Figure 7a, the blue, orange and grey bars denote normalized ACTP, PCTP and
ACTPP, respectively, corresponding to RTZH, and in Figure 7b, the orange, yellow and
green bars denote the same order of normalized FOMs with respect to RTOH. It is clear from
Figure 7a,b that TMR implementations utilizing the proposed majority voter (NEO_MV)
achieve better optimized FOMs compared to TMR implementations incorporating the other
majority voters. This is due to the reduced design metrics reported for NEO_MV compared
to its counterparts, as noted from Table 3.

From Figure 7a,b, and Table 3, it may be inferred that among the existing majority
voters, EO_MV is optimized. However, the proposed NEO_MV is better optimized than
EO_MV. TMR implementations incorporating NEO_MV achieve the following savings
in FOMs compared to TMR implementations incorporating EO_MV: (i) 10.7% reduction
in ACTP, 4.1% reduction in PCTP (energy) and 12.5% reduction in ACTPP with respect
to RTZH; and (ii) 12.7% reduction in ACTP, 6.9% reduction in PCTP (energy) and 14.9%
reduction in ACTPP with respect to RTOH.

5. Conclusions

This paper presented a new compact early output majority voter that is useful for
realizing an effective asynchronous TMR implementation. The dual-rail code was used
for data encoding and four-phase handshake schemes were used for data communication.



Electronics 2021, 10, 1425 12 of 12

Different TMR circuits were implemented incorporating the proposed majority voter and
the other existing majority voters. The design metrics report enhanced reductions in area,
cycle time, power dissipation, and thus reduced FOMs for TMR implementations incorpo-
rating the proposed majority voter compared to TMR implementations incorporating other
existing majority voters.

Author Contributions: Conceptualization, P.B. and N.E.M.; methodology, P.B.; software, P.B.; valida-
tion, P.B.; formal analysis, P.B. and N.E.M.; investigation, P.B.; data curation, P.B.; visualization, P.B.;
writing—original draft preparation, P.B.; writing—review and editing, P.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Johnson, B.W. Design and Analysis of Fault-Tolerant Digital Systems; Addison-Wesley: Boston, MA, USA, 1989; ISBN 978-0201075700.
2. Koren, I.; Krishna, C.M. Fault-Tolerant Systems; Morgan Kaufmann Publishers: Burlington, MA, USA, 2007; ISBN 978-0120885251.
3. Choudhary, J.; Balasubramanian, P.; Varghese, D.M.; Singh, D.P.; Maskell, D. Generalized majority voter design method for

N-modular redundant systems used in mission- and safety-critical applications. Computers 2019, 8, 10. [CrossRef]
4. Kshirsagar, R.V.; Patrikar, R.M. Design of a novel fault-tolerant voter circuit for TMR implementation to improve reliability in

digital circuits. Microelectron. Reliab. 2009, 49, 1573–1577. [CrossRef]
5. Ban, T.; Naviner, L.A.B. A simple fault-tolerant digital voter circuit in TMR nanoarchitectures. In Proceedings of the 8th IEEE

International NEWCAS Conference, Montreal, QC, Canada, 20–23 June 2010.
6. Balasubramanian, P.; Prasad, K. A fault tolerance improved majority voter for TMR system architectures. WSEAS Trans. Circuits

Syst. 2016, 15, 108–122.
7. Almukhaizim, S.; Sinanoglu, O. Novel hazard-free majority voter for N-modular redundancy-based fault tolerance in asyn-

chronous circuits. IET Comput. Digit. Tech. 2011, 5, 306–315. [CrossRef]
8. Balasubramanian, P.; Maskell, D.L.; Mastorakis, N.E. Quasi delay insensitive majority voters for triple modular redundancy

applications. Appl. Sci. 2019, 9, 5400. [CrossRef]
9. Balasubramanian, P.; Maskell, D.L.; Mastorakis, N.E. Area optimized quasi delay insensitive majority voter for TMR applications.

In Proceedings of the IEEE 3rd European Conference on Electrical Engineering and Computer Science, Athens, Greece, 28–30
December 2019.

10. Balasubramanian, P.; Maskell, D.L.; Mastorakis, N.E. Asynchronous early output majority voter and a relative-timed asynchronous
TMR implementation. Microelectron. Reliab. 2020, 114, 1–5. [CrossRef]

11. Sparsø, J.; Furber, S.B. Principles of Asynchronous Circuit Design: A Systems Perspective; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 2001; ISBN 978-0792376132.

12. Beerel, P.A.; Ozdag, R.O.; Ferretti, M. A Designer’s Guide to Asynchronous VLSI; Cambridge University Press: Cambridge, UK,
2010; ISBN 978-0521872447.

13. Moreira, M.T.; Guazzelli, R.A.; Calazans, N.L.V. Return-to-one protocol for reducing static power in C-elements of QDI circuits
employing m-of-n codes. In Proceedings of the 25th Symposium on Integrated Circuits and Systems Design, Brasilia, Brazil, 30
August–2 September 2012.

14. Balasubramanian, P. Comparative evaluation of quasi-delay-insensitive asynchronous adders corresponding to return-to-zero
and return-to-one handshaking. Facta Univ. Ser. Electron. Energetics 2018, 31, 25–39. [CrossRef]

15. Cortadella, J.; Kondratyev, A.; Lavagno, L.; Sotiriou, C. Coping with the variability of combinational logic delays. In Proceedings
of the IEEE International Conference on Computer Design, San Jose, CA, USA, 11–13 October 2004.

16. Varshavsky, V.I. Aperiodic circuits. In Self-Timed Control of Concurrent Processes: The Design of Aperiodic Logical Circuits in Computers
and Discrete Systems; Varshavsky, V.I., Ed.; (Translated from Russian by Yakovlev, A.V.); Kluwer Academic Publishers: New York,
NY, USA, 1990; pp. 77–85.

17. Brej, C. Early Output Logic and Anti-Tokens. Ph.D. Thesis, The University of Manchester, Manchester, UK, September 2005.
18. Seitz, C.L. System timing. In Introduction to VLSI Systems; Mead, C., Conway, L., Eds.; Addison-Wesley: Reading, MA, USA, 1980;

pp. 218–262. ISBN 978-0201043587.
19. Toms, W.B.; Edwards, D.A. Efficient synthesis of speed-independent combinational logic circuits. In Proceedings of the Asia and

South Pacific Design Automation Conference, Shanghai, China, 18–21 January 2005.
20. Synopsys SAED_EDK32/28_CORE Databook. Revision 1.0.0. January 2012. Available online: https://www.synopsys.com/

community/university-program/teaching-resources.html (accessed on 12 March 2021).

http://doi.org/10.3390/computers8010010
http://doi.org/10.1016/j.microrel.2009.08.001
http://doi.org/10.1049/iet-cdt.2009.0075
http://doi.org/10.3390/app9245400
http://doi.org/10.1016/j.microrel.2020.113781
http://doi.org/10.2298/FUEE1801025B
https://www.synopsys.com/community/university-program/teaching-resources.html
https://www.synopsys.com/community/university-program/teaching-resources.html

	Introduction 
	Input-Output Mode Asynchronous Circuit 
	Proposed Early Output Majority Voter and Asynchronous TMR Implementation 
	Results 
	Conclusions 
	References

