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Abstract: Fault detection/diagnosis has become a crucial function of the battery management system
(BMS) due to the increasing application of lithium-ion batteries (LIBs) in highly sophisticated and
high-power applications to ensure the safe and reliable operation of the system. The application
of Machine Learning (ML) in the BMS of LIB has long been adopted for efficient, reliable, accurate
prediction of several important states of LIB such as state of charge, state of health and remaining
useful life. Inspired by some of the promising features of ML-based techniques over the conventional
LIB fault detection/diagnosis methods such as model-based, knowledge-based and signal processing-
based techniques, ML-based data-driven methods have been a prime research focus in the last few
years. This paper provides a comprehensive review exclusively on the state-of-the-art ML-based data-
driven fault detection/diagnosis techniques to provide a ready reference and direction to the research
community aiming towards developing an accurate, reliable, adaptive and easy to implement fault
diagnosis strategy for the LIB system. Current issues of existing strategies and future challenges of
LIB fault diagnosis are also explained for better understanding and guidance.

Keywords: Battery Management System (BMS); Artificial Neural Network (ANN); Support Vector
Machine (SVM); Electric Vehicle (EV); Random Forest (RF); Logistic Regression (LR); Gaussian
Process Regression (GPR); cloud-based BMS

1. Introduction

Owing to their high energy density, high power density, long service life, environmen-
tal friendliness and low self-discharge rate, lithium-ion batteries (LIBs) have become the
prime energy storage system for many applications such as electric vehicles (EVs), grid-
level power storage and several other consumer electronics [1,2]. However, the safe and
reliable operating area of the LIB is very narrow, which necessitates a battery management
system (BMS) for effective operational control, protection and energy management [3–7].
In addition, due to the limitation of the cell voltage and storage capacity of a single LIB cell,
high power applications of LIBs such as EVs and grid-tied energy storage systems require
hundreds or even thousands of single battery cells [8]. Cell inconsistencies in a LIB pack
are a common issue; thus an appropriate BMS is also indispensable for the safe and reliable
operation of the LIB pack as well as every single cell of the battery pack [9,10]. A BMS can
be designed to serve many functions including but not limited to data acquisition, esti-
mation of the state of charge (SOC) [11,12] and state of health (SOH) [13,14], temperature
measurement/estimation [15], cell balancing [16,17], fault detection/diagnosis [18,19] and
thermal management [16]. Very recently researchers have started paying attention to the
detection/diagnosis of faults after the occurrence of several accidents in e-transportation
due to the failure of the LIB system [20,21]. It was evidenced that extreme operating
conditions, manufacturing flaws and battery aging were among the prime reasons behind
the battery system failure.
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The performance of LIB is affected by different abusive operating conditions such as
overcharge or over-discharge event, startup at low temperature, vibration and higher heat
generation resulting in metallic lithium plating, formation of solid electrolyte interphase
layer and formation of lithium dendrite that eventually accelerate the aging of LIB and
may lead to catastrophic failure during operation [22–24]. Therefore, the presence of
fault detection and diagnosis features of BMS is highly critical for LIB-powered systems,
especially for high-power applications. Smarsly et al. [25] demonstrated that a minor
fault could eventually result in dangerous consequences without proper fault diagnosis
and defense mechanism. Relevant discussion on the importance of fault diagnosis and
defense mechanisms was also presented by Williard et al. in references [26] and [20].
Studies on LIB fault mechanisms that tried to find the causes and consequences of LIB
faults have been extensively reported in the literature. Research on LIB fault detection and
diagnosis has gained momentum in the last few years. Faults in the LIB system are typically
classified as internal and external faults. Some of the most frequently reported external
faults are cell wiring faults, faults in the thermal management system and sensor faults
such as temperature, voltage and current sensor faults, whereas some common internal
battery faults are overcharged, over-discharged, internal short circuit (ISC), accelerated
degradation and thermal runaway. Tran et al. [19] presented a detailed classification
of the commonly reported LIB faults. A few other studies also classified the LIB faults
from control system perspectives [27]. They grouped the overcharged, over-discharged,
overheating, external short circuit (ESC), ISC, electrolyte leakage, battery swelling, battery
accelerated degradation and thermal runaway faults as battery faults. On the other hand,
the voltage, current and temperature sensor faults were grouped under the sensor faults
and the terminal connector fault, cooling system fault, controller area network (CAN) bus
fault, high voltage contactor fault and fuse fault were included under actuator faults.

Realizing the importance of fault detection/diagnosis for the safe and reliable op-
eration of LIB, a significant number of research studies were conducted aiming towards
developing an accurate, reliable, robust and easy to implement fault diagnostic strategy.
Lu et al. [28] briefly illustrated the reason why the development of an effective fault diag-
nosis system is crucial for the advancement of LIB-powered systems. Special concentration
on the sensor fault diagnosis was provided by Xiong et al. [18]. Lyu et al. [29] presented a
detailed discussion particularly on the failure mechanism of LIB and its possible solutions
through a state-of-the-art review study. Fault diagnosis methods reported in the literature
can be broadly categorized into model-based and non-model-based methods. However,
a fusion of these two categories is also reported. A detailed classification of LIB fault
diagnosis methods is presented in Figure 1.

It is noticed from the literature that model-based and signal processing-based methods
have been most extensively used for the LIB fault detection among the fault diagnosis
methods mentioned in Figure 1. Machine Learning (ML)-based techniques were very
recently adopted; however, they are increasing at a much faster pace owing to some of
the prominent advantages such as a high level of accuracy, compatibility with the highly
nonlinear LIB system and reduced dependence on domain experts. The accuracy and
reliability of model-based fault diagnostic strategies predominantly depend on the accurate
equivalent circuit model (ECM) of LIB. Obtaining a highly accurate model is challenging as
the internal characteristics of the highly nonlinear LIB are still not fully understood. This
limitation is eliminated with the advent of ML-based techniques. Furthermore, the impacts
of measurement noises that limit the application of signal processing-based methods
are also reduced to a significant extent with the deployment of ML-based techniques.
Moreover, ML-based techniques further simplify the fault diagnosis by eliminating two
complex and time-consuming steps: Collecting the battery’s accurate physical information
and learning the nonlinear correlation between battery internal parameters and external
measured parameters such as operating current, terminal voltage and temperature. These
eventually reduce the requirement of domain-specific knowledge, time and the cost of the
system development.
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Recently, Hu et al. [30] and Tran et al. [19] presented an overview of different fault
diagnosis algorithms for the LIBs. The concept of dependable graph-based fault tolerance
and diagnostics has been explained by Ubar et al. in references [31–33]. Reza [34] conducted
a review study focusing on the application of ML approaches in the BMS of LIBs. However,
an in-depth review exclusively on the state-of-the-art ML-based fault detection/diagnosis
techniques has not yet been reported in the literature. Moreover, the existing review studies
primarily focused on the general issues and challenges in LIB fault diagnosis. They are
often lacking in explaining the challenges and limitations of any specific diagnostic strategy.
A detailed discussion on the current challenges that researchers are facing and the research
gaps that need to be addressed exclusively in the area of ML-based fault diagnosis has not
yet been covered in the existing literature. Therefore, realizing the promising future and
prominent advantages, the ML-based data-driven fault diagnosis techniques are exclusively
reviewed in this article alongside highlighting the current issues, challenges and future
research scope. The primary objective of this review study is to provide a ready reference
and direction to the researchers towards developing an accurate, efficient, reliable and
easy to implement ML-based data-driven fault diagnostic method for the LIB system. A
detailed classification of specifically ML-based approaches that are currently being used in
the BMS of LIB is presented in Section 3.

The remaining portion of the review article is organized as follows. The fundamentals
of ML-based LIB fault diagnosis methods with a special focus on generic methodologies
are presented in Section 2. Section 3 provides an overview of different kinds of ML-based
fault diagnosis techniques typically employed by researchers so far. Section 4 is the prime
section of this review article as it provides a comprehensive survey on the ML-based LIB
fault diagnostic techniques reported in the literature. Section 5 summarized the current
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issues, challenges and future research scopes in the LIB fault diagnosis. Finally, concluding
remarks are presented in Section 6.

2. Genetic ML-Based LIB Fault Diagnosis Scheme

The protection of LIB packs and minimizing the risks associated with the operation
of LIB-based systems are indispensable in BMS. Therefore, detection/diagnosis of faults
in LIB systems and designing an effective defense mechanism are of utmost importance.
Naturally, to establish an appropriate fault diagnostic strategy, in-depth knowledge and
understanding of different kinds of faults alongside the corresponding fault mechanism in
LIBs are highly essential. Regarding these, Lyu et al. [29] presented a detailed review of
failure modes and mechanisms of LIBs and Hu et al. [27] presented a comprehensive review
of fault mechanisms, fault features and fault diagnosis of various faults in LIBS, including
internal battery faults, sensor faults and actuator faults. A summary of different kinds
of external and internal faults in LIBs along with an overview of major fault diagnostic
strategies were presented by Tran et al. [19]. Before diving into the details of ML-based
fault diagnostic methods reported in the literature, it is worth giving an introduction to
the subject matter for the basic understanding of the readers. Therefore, in this section, a
generic ML-based fault diagnosis scheme for LIB is presented. Figure 2 depicts the generic
block diagram of the ML-based fault diagnosis scheme.
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Typically, the voltage, current and temperature of the battery cells are recorded using
sensors and a data acquisition system. Further, data is also generated by analyzing the
consumption pattern and through experiments. Battery fault data is collected from battery
operations data and also through laboratory experiments. Then the raw data is pre-
processed for cleaning and feature extraction. Then the data is divided into a training data
set and a test data set randomly. While formulating an ML-based fault diagnostic strategy,
the training data set is used for learning purposes, whereas the test data set is used for
validation. Finally, the measured battery parameters such as operational current, terminal
voltage, temperature and others are used to detect battery faults using the validated ML-
based fault diagnosis scheme. This fault detection signal is further used as a command
to the battery protection system. So far, five ML approaches have been reported in the
literature to develop the ML-based fault diagnostic scheme; however, in general, apart
from the ML algorithm, the rest of the steps and components are very much similar. These
five ML algorithms are discussed briefly in the subsequent section.

3. Overview of ML-Based Fault Diagnosis Techniques

Currently, ML techniques are extensively used in the BMS of LIBs. A summary of
ML approaches in BMS is presented by Reza et al. through a review study [23]. Here, this
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section aims to provide an overview of different ML techniques that are currently being
used in BMS applications specifically for LIB fault diagnosis. A complete family of ML
approaches that are successfully used in BMS of LIB is illustrated in Figure 3. Among
all these, the ML approaches that were already employed for the LIB fault diagnosis are
highlighted in green color, whereas the remaining potential approaches are highlighted in
yellow for the readers’ convenience. A brief description of each ML-based fault diagnosis
technique as mentioned in Figure 3 is presented below.
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3.1. Artificial Neural Network

Artificial Neural Network (ANN) is one of the most widely used frameworks of
ML algorithms to perform a wide variety of tasks [35,36]. It is inspired by the biological
neural networks that constitute animal brains. ANN uses supervised learning approaches
during model training. Features like self-adaptability and learning abilities of the animal
brain enable ANN to perform tasks by considering examples, generally without being
programmed with task-specific rules. Moreover, ANN is capable of effectively capturing
the dynamics of a highly nonlinear system. All these features make it suitable for LIB
due to its highly complex and nonlinear dynamic characteristics. The basic strategy is to
form a nonlinear black-box of an ANN-based fault diagnosis model by learning implicit
rules from known pairs of input and output data, then to validate the model by test input
and output data that are unknown to the model. The training is typically conducted
offline. Then the ANN model can effectively distinguish between the normal and abnormal
conditions of the battery system provided the ANN model is well-trained with a sufficient
amount of data. There are several variants of ANN that can be broadly classified into
two subgroups. The classic neural networks subgroup includes wavelet neural network
(WNN), back-propagation neural network (BPNN), radial basis function network (RBFN),
feed-forward neural network (FFNN) and extreme learning machine (ELM). On the other
hand, modern neural networks are often recognized as deep NNs, which mainly include
recurrent neural networks (RNNs) and convolutional neural networks (CNNs). Often
a combination of one of these techniques is also used in BMS applications such as long
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short-term memory network (LSTM) and RNN-LSTM. Here, LSTM is an expansion of
RNN and CNN; similarly, RNN-LSTM is a combination of RNN and LSTM. There are
several other variants of ANN that were discussed in detail by S. Walczak [37]. However,
among these ANN-based techniques only basic ANN, LSTM, RNN, RNN-LSTM, and few
other hybrid techniques have so far been used for fault detection of LIBs as mentioned in
Figure 3.

3.2. Random Forest Classifier

Like ANN, Random Forest (RF) classifier is also a supervised ML approach that has
demonstrated satisfactory performance while employed in various classification problems
such as sleep stage classifications from electroencephalography (EEG) data [38], bearing
fault identification from vibration data [39], facial expression detection from video data [40],
crop type classification from hyperspectral images [41], lung vessel segmentation from
computed tomography (CT) images [42] and many more [43,44]. RF uses the multiple
numbers of trees of slightly different structures that are collectively employed for classifi-
cations. Collaboration among trees in RF makes the model more robust compared to any
single classifier typically used in other statistical classification problems [45]. RF is a linear
classifier with reduced computational complexity when compared to some other popu-
lar classifiers, making it suitable for lightweight algorithms for real-time operation [46].
Moreover, the scaling of the features is highly convenient and the parallel operation of the
algorithm alongside the primary usage of the system is not an issue as well.

3.3. Support Vector Machine

Despite the requirement of highly complex quadratic programming, the Support Vec-
tor Machine (SVM) is increasingly used for solving classification and regression problems in
recent times [44,47]. SVM tries to form different data clusters by constructing hyperplanes
in high dimensional space in order to distinguish a different class of data while dealing with
classification problems. The typical criteria for finding optimal separation boundaries are
to maximize the distance between the hyperplane and the nearest data point of any cluster.
SVM is becoming a powerful tool for regression analysis in highly nonlinear systems like
LIB. The use of SVM in regression is also termed Support Vector Regression (SVR). SVR
uses different kernel functions and regression algorithms to transfigure a nonlinear model
into a linear model for ease of analysis. There is also another variant of SVM, namely, kernel
space vector machine (KSVM). Further details of SVM can be found in reference [48]. Like
ANN, SVM-based fault diagnostic techniques also do not require an equivalent battery
model. SVM is also a supervised ML approach. So far, only SVR and SVM have been used
for fault diagnosis of LIBs in this category.

3.4. Gaussian Process Regression

Gaussian Process Regression (GPR) is an unsupervised ML technique. The two
primary goals of this technique are clustering the data into groups by similarity and dimen-
sionality reduction to compress the data while maintaining its structure and usefulness of
data. GPR also uses kernel-based ML approaches which can discover prognostics by lever-
aging prior knowledge based on the Bayesian model. Thereafter, it utilizes the variance
around its mean prediction to provide information about the associated uncertainty in the
system. So far very few studies have used GPR for LIB fault diagnosis.

3.5. Logistic Regression

Logistic Regression (LR) is a statistical classification technique used to classify ob-
served data based on the pre-defined criteria [49,50]. This method is the simplest method
for two-class classification and has shown very good performance in linear and non-
linear regression. However, so far very few researchers have employed LR for fault
detection/diagnosis in the LIB system [51].
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4. Review of Fault Diagnosis Methods and Comparative Analysis

In the previous section, an overview of ML approaches that are used to detect different
types of LIB faults is presented. Now, an in-depth review of ML-based fault diagnostic
methods as reported by various researchers in the literature is presented in this section.
Research studies are grouped based on the kind of algorithms used as discussed in Section 3.
Finally, a comparison study among these techniques is also conducted at the end of this
section in Table 1.

Table 1. Comparative analysis among ML-based LIB fault diagnosis methods.

Diagnosis
Methods Major Advantages Major Limitations Comments on Practical

Applicability

ANN

• Insensitive of the model
uncertainty

• High Accuracy
• Highly capable to capture the

nonlinearities of LIB
• Adaptive to temperature and

other uncertain factors
• Easy to implement in

hardware

• Modeling is complex especially
for models having a large
number of hidden layers and
many input features

• Time-consuming
• Generalization irrespective of

battery and working conditions
is difficult

• A large amount of training data
thus large memory requirement
to store the data and algorithm

To date, the most frequently
employed ML technique for LIB
fault diagnosis. Accumulation of
fault data and further development
could enable ANN-based methods
suitable for practical applications

RF • High classification ability
• Low computational cost

• High quality and volume of
battery fault data is required

Suitable for real-time prediction,
however, accuracy and reliability
are the major concerns for practical
application. So far, very few studies
have been conducted, thus
it is too early to judge the
practical applicability

SVM

• High Accuracy
• Less complex modeling

compared to ANN
• Highly capable to capture the

nonlinearities of LIB
• Less training data required

compared to ANN
• Faster diagnosis

• Data preprocessing is
time-consuming and complex

• Selecting appropriate kernel
function and fine parameter
tuning is challenging

• Model adaptability and
reliability is a concern

Good quantity and quality of
training data including fault data
with sufficient proficiency in
modeling could enable this method
suitable for practical application

GPR

• Good accuracy
• Non-parametric; Being flexible
• Provide covariance to generate

uncertainty level

• Effectiveness is highly sensitive
to kernel functions selection
which is complex and
required expertise

• High computational complexity

So far, very few studies have been
conducted, even GPR is not directly
used for fault diagnosis, thus it is
too early to judge the practical
applicability.

LR • Good accuracy
• Easy to implement

• Accommodating a large number
of the feature vector
is challenging

Too early to judge the practicability
as the Model adaptability,
generalization capability, accuracy,
and reliability in the real-world
system have not yet been tested.

4.1. ANN-Based Fault Diagnosis Methods

Among other ML-based fault diagnostic methods, ANN-based techniques have been
used most extensively by researchers. Gao et al. [52] used a single hidden layer BPNN
approach to detect four types of critical faults, namely, voltage sensing fault, temperature
sensing fault, battery cell fault and ESC fault through online monitoring of the measurable
parameters (e.g., voltage, current and temperature). Here, Genetic Algorithm (GA) was
used to initialize and optimize the connection weights and thresholds of the neural network
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(NN). Comparative analysis indicated that the fusion of GA and BPNN improved the fault
diagnosis performance compared to conventional BPNN. However, no insight into the
practical application of the fault diagnosis method was presented in this study. On-line
diagnosis and fault handling were not covered as well. The reported prediction error of GA-
BPNN is around 2% which may not be acceptable to some of the real-world applications.
The sophisticated and high-power applications essentially demand very high prediction
accuracy. Very few data were used for training and testing purposes by the researchers;
thus, the reliability of this strategy in real-world applications needs to be examined. A
similar study was conducted by Sbarufatti et al. [53] where Particle Filters (PF) were
employed for parameter identification instead of GA and the fault diagnostic model was
implemented based on radial basis function neural networks (RBF-NN). This method was
designed to provide over-discharge protection by predicting the end of discharge of LIBs
through real-time measurement of the terminal voltage. The PF was used to identify the
model parameters in real time as soon as new observations of the battery terminal voltage
became available. This approach made the method adaptive to anomalous behaviors due
to failures or unforeseen operating conditions. This adaptive fault diagnostic method
enhanced the prediction accuracy and reliability of parameter identification over the GA-
BPNN-based method. However, the data used during modeling were recorded based on
the constant current charge–discharge test instead of actual vehicle operating data or data
generated through the standard drive cycle test. Therefore, the robustness and reliability of
the diagnostic method in a real-life scenario need to be further explored.

Actual vehicle operating data for a whole year were utilized by Zhao et al. [54] to
introduce a big data-driven fault diagnosis model powered by an ML algorithm and a 3σ
multi-level screening strategy (3σ-MSS). The 3σ-MSS was utilized to detect the fault based
on abnormal changes in cell terminal voltages in a battery pack and NN was employed
to fit the cell fault distribution in the battery pack. According to the researchers, this 3σ-
MSS-NN-based fault diagnosis strategy can also see the design flaws in battery systems by
analyzing the abnormalities hidden beneath the surface which can be utilized as feedback
to the manufacturers and designers for further upgrade. The effectiveness of the 3σ-MSS-
NN-based diagnosis method was verified by comparing the model outcomes with the
results yielded by the local outlier factor (LOF) algorithm and clustering outlier diagnosis
(COD) algorithm as well as with the actual vehicle data. The model seems very effective
and is expected to provide reliable predictions in a real-world system. However, the major
limitation of this method is that it requires an extended period and large sample size to
develop a reliable diagnosis model, which is costly and laborious. Often access to real-life
data is also restricted, especially fault data. Gao et al. [55] designed a self-recovery real-time
battery fault diagnosis scheme for EVs and also developed a prototype in hardware. The
system can diagnose and protect an EV battery pack from over-charge, over-discharge,
over-current and over-temperature conditions by utilizing sensor recorded data. Despite
satisfactory performance, the fault diagnosis scheme was developed for a 12 cell LIB pack.
Installing one temperature sensor per cell for temperature measurement is feasible for a
prototype system; however, it is impractical for real EV applications due to cost, system
weight and space limitations. Moreover, the impacts of environmental factors and cell
aging were not considered while developing the diagnostic model which will significantly
affect the system performance in a real-world application.

The concept of the deep-learning-enabled fault prognosis method was introduced
by Hong et al. [56] where long short-term memory (LSTM) recurrent neural network
(LSTM-RNN) was used for multi-forward-step voltage prediction to determine the advent
of battery faults and mitigate runaway risk. To ensure the prediction accuracy and model
robustness, a high volume of real-world operational data of an electric taxi was used. Along-
side the influence of the weather and driver’s behavior on the LIBs, the performance was
also considered. The effectiveness, accuracy of voltage prediction and model robustness
were assessed through seasoning using cross-validation and comparative study among
different hyperparameters besides a comparison with actual operational data. Despite high
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accuracy, parameter optimization is a very tedious and time-consuming task as each LSTM
model has its multiple structure parameters. Therefore, learning the battery characteristics
under certain operating and environmental uncertainties is challenging in a short time, and
training the LSTM model using a small amount of test data affects the prediction accuracy.
This fact makes it more difficult to achieve a universal model that could accurately predict
the state of multiple battery parameters regardless of battery aging, variations in road
conditions, changes in driver’s driving behavior, and other uncertainties in environmental
and operating conditions. Ortiz et al. [51] conducted a comparative study to demonstrate
the effectiveness of five commonly used algorithms, namely, k-nearest neighbors (k-NN),
LR, Gaussian naive Bayes (GNB), KSVM and NN, to classify the unbalanced and damaged
Ni-MH battery cells. While this test was not conducted for LIB cells, this study showed
that the NN-based diagnostic tool provides a high evaluation score with correctly classified
data. A similar detailed comparative study for LIBs will be highly appreciated.

4.2. RF Classifier-Based Fault Diagnosis Methods

While RF has been used for a range of classification problems for the last few decades,
the application of RF for the LIB fault diagnosis has only been very recently introduced. The
overwhelming demand for computationally inexpensive prediction algorithms suitable
for real-time operation and easy to implement in low-cost hardware necessitates the
employment of RF for efficient fault diagnosis in LIB systems. Yang et al. [57] primarily
proposed a fractional-order model (FOM) and a first-order Resistance Capacitance (RC)
model to determine the ESC fault in LIB where model parameters were identified by
the GA. Further, they have used an RF classifier to identify cells with electrolyte leakage
that typically occurs due to ESC faults. Later on, Naha et al. [58] used the RF-based
fault diagnosis model for online detection of ISC in LIB cells. The authors generated
the training feature set by developing two ECMs of LIB with and without an ISC where
ECM parameters were identified and extracted from several charge–discharge cycle tests.
According to the study, the fault detection accuracy is 97%; however, the major concern
is that in several advanced highly sophisticated and high-power applications even this
3% inaccuracy is unacceptable. The change in the internal resistance of LIB is considered as
one of the prime factors to determine ISC in this method. Now as the internal resistance
of LIBs is itself very small, the change in internal resistance during ISC is also negligibly
small, especially in the high SOC region. Therefore, accurate and precise determination
of that small change in the internal resistance is highly challenging. This will eventually
reduce the effectiveness and reliability of the focused fault diagnostic method.

4.3. SVM-Based Fault Diagnosis Methods

Inspired by the satisfactory performance while predicting important states such as
SOC, SOH and remaining useful life (RUL) of LIB, SVM has very recently been introduced
into the domain of intelligent fault diagnosis of LIBs. In 2021, Yao et al. [59] employed
SVM to identify the fault state and the degree of fault. In addition, the discrete cosine
filtering method based on white noise characteristics and the grid search method were
used to enhance the prediction accuracy and reliability of SVM-based diagnostic scheme. A
fusion of the discrete cosine filtering method and grid search method with SVM was used
to diagnose the connection fault of series-connected LIB cells in a battery pack. Specifically,
the discrete cosine filter method was employed to reduce the influence of measurement
noise during prediction. The authors used a modified covariance matrix (MCM) of filtered
data, an up-gradation of the traditional covariance matrix (CM), to reduce the influence
of current measurement noise on the condition indicators. Furthermore, to enhance the
accuracy and the robustness of SVM-based diagnostic method, the grid search technique
was employed to optimize the kernel function parameter and the penalty factor. This
method demonstrated highly satisfactory performance; however, the state identification is
very time consuming. According to the study, the minimum time requirement is around
167 s, which limits the practical viability of the strategy for online fault diagnosis. The
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impact of cell aging and temperature variation on cell parameters was not considered while
recording the experimental data. This will lead to inaccurate prediction in a real-world ap-
plication where LIB is subjected to different weather conditions and cell aging is inevitable.
The fault diagnosis accuracy of GS-SVM as reported in the study was 95%. However,
5% inaccuracy in fault diagnosis for several high voltages and current applications such
as e-transportation systems and power grid applications is not permissible from a safety
point of view. Therefore, further research is required to make the model adaptive to aging
and other environmental changes alongside enhancing the prediction accuracy acceptable
to high-power applications. Advancement is also required to make the model suitable
for real-time prediction with an improved level of diagnosis efficiency and reliability. In
another study conducted by Hashemi et al. [60], while SVM was not directly employed for
fault diagnosis, a fusion of SVM and GPR termed machine learning parameter estimator
(MLPE) was used for ECM parameter estimation of LIB. Thereafter, the fault diagnostic
strategy is very similar to other ECM-based fault diagnostic methods such as residual
generation and comparison with normal operating states. This multiple model adaptive
estimation (MMAE) was designed to detect the overcharge (OC) and under-discharge
(UD) fault conditions in LIB. This study only focused on the OC and UD faults of LIB;
however, several other fault conditions may also be very severe in practical applications.
Thus, a similar diagnostic approach for other faults must also be developed. Data used
during modelling and validation was collected by subjecting each battery cell with step
load variation instead of standard drive cycle loading. Step load variation is far from the
battery loading in real-world systems such as load profile of an on-road EV battery. The
impact of temperature and SOC variation was only considered but the influence of cell
aging was not considered. The major limitation of the model is the generalization. In order
to detect the OC and UC faults, the ECM parameters of each cell need to be subjected to
the OC and UC faults. Therefore, extensive experiments need to be conducted for data
collection, which is complicated, time-consuming and requires a highly safe laboratory
setup. The generalization of the model is also challenging. There are two other variants in
the support vector domain, namely, KSVM and relevance vector machine (RVM), that are
also reported in the focused domain. Ortiz et al. [51] employed KSVM for classifying faulty
and non-faulty battery cells and revealed that the KSVM method has a greater classification
efficiency compared to conventional SVM. This is especially because the characteristics
and the operations of the battery cell can be better adapted by the function of the radial
base kernel. However, the performance of the KSVM-based method was not tested for LIB,
which needs to be further explored. Despite RVM being extensively used for predicting the
RUL of LIBs [61–63], it is not yet employed for LIB fault diagnosis.

4.4. GPR Based Fault Diagnosis Methods

In recent years, numerous efforts on diagnosis and prognosis of faults in LIB have been
provided; however, the potential of GPR has not yet been deeply explored. In reference [64]
Tagade et al. used GPR for degradation mode diagnosis in LIB. In reference [51] Ortiz et al.
evaluated the classification efficiency of five different supervised ML methods where Gaus-
sian naive Bayes (GNB) is one of the methods employed for the LIB fault detection. The
study showed that each method has its advantages over others where GNB demonstrated
high efficiency in classifying battery cells that are unbalanced and damaged. The funda-
mental concept behind the GNB-based classifier is to build a non-linear smooth curve
differentiating between the faulty and non-faulty cells based on the occurrence probability
of events. The performance of GPR in diagnosis and prognosis in LIB was demonstrated
by Zhang et al. [65]. They used over 20,000 electrochemical impedance spectroscopy (EIS)
spectra to identify degradation patterns where GPR is used to accurately estimate the
capacity and predict the RUL that are key indicators of the battery SoH. In this study, GPR
is not directly used for fault detection/diagnosis in the LIB system. Moreover, recording
training data for ML models through EIS is a complex procedure, is time consuming and
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requires the involvement of domain experts. Either way, significant further research is
required to develop a GPR-based fault diagnostic model for the LIB system.

4.5. LR-Based Fault Diagnosis Methods

Ardeshiri et al. [34] first-ever utilized LR for the fault diagnosis in a battery system.
Alongside high accuracy, Ardeshiri et al. showed that the LR algorithm is the easiest
algorithm to set up and has a good overall performance when compared to four other
ML-based fault diagnostic techniques, namely, k-NN, GNB, KSVM and classical NN.
In this study, the influence of different uncertainties in real-world applications was not
considered while accumulating model training and testing data. Therefore, despite high
accuracy and ease of implementation as indicated by these researchers, significant further
research and development are required before the practical implementation of the proposed
LR-based method.

5. Issues, Challenges and Future Research Scopes in LIB Fault Diagnosis

A detailed discussion on the ML-based detection/diagnosis of different kinds of inter-
nal and external faults in LIB is presented in Section 4. It is evidenced that researchers have
proposed several strategies for the LIB fault diagnosis and they have made considerable
progress on providing safety concerning the LIB system. However, to develop a robust,
reliable, efficient battery fault diagnosis strategy suitable for real-world applications, sig-
nificant further research is still required to address several limitations and to meet future
requirements. The current issues in LIB fault diagnosis along with the future research
scopes and recommendations to the research community are discussed in this section. To
give readers a better understanding, the current issues and future research scopes are
grouped into three categories: Those related to LIB fault diagnosis in general, those related
to specifically ML-based diagnostic strategies, and those related to the system requirement
and practicability.

5.1. Current Issues and Research Scopes Related to LIB Fault Diagnosis in General

The existing literature is lacking in providing a unified understanding of all kinds of
battery fault mechanisms for the wide range of LIB cells. Researchers have explored only
a limited type of LIB fault so far and several battery faults are still not fully understood.
The lack of understanding of the fault behavior affects the effective determination of fault
thresholds for accurate detection as well as prognosis of faults, which leads to a false
alarm, missed detection and time delay in fault detection. Most of the studies used fixed
threshold or double-threshold; however, batteries are exposed to adverse operating and
environmental conditions alongside the natural aging process, which influences the battery
characteristics. The concept of adaptive threshold has not yet been deeply explored. Some
of the ML approaches have proven an adaptive capability that could be properly deployed
through further research to meet the requirement of complex real-world scenarios and to
obtain a reliable fault diagnostic method powered by ML techniques. The increasing neces-
sity and demand of fast charging of LIB, especially in EVs, require a solid understanding of
the degradation mechanism under fast charging conditions. Significant progress is required
to develop a real-time fault diagnosis and prognosis strategy for the LIBs that use fast
charging. Furthermore, it is noticed from the literature and practice that effective charge
equalization in any operating condition is crucial for maintaining the safety of LIB. The
effective charge equalization depends on the real-time monitoring of battery parameters
and the precise estimation of charge. Several cell balancing schemes and ML-based charge
estimation methods were proposed in the literature; however, the interrelation among
precise determination of cell imbalances, effective cell equalization and the fault detection
of LIB has not yet been deeply explored. Often ML-based strategies use real-time monitor-
ing and deterministic methods to obtain different parameters of LIB such as temperature,
terminal voltage and current for fault detection/diagnosis. However, a fault prevision
method powered by ML techniques could be more useful instead of deterministic and
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real-time monitoring. That needs further attention from the researchers. While ML-based
strategies are extensively used for predicting the RUL of LIB, the interrelation between
RUL and fault prediction using ML needs to be investigated. It is also anticipated that
an ML-based constant monitoring system could be the one that better faces the safety
constraints in LIB. Despite few research studies in the medical field [66,67], it has not yet
been investigated in the LIB domain. Therefore, further research is recommended here
as well.

5.2. Current Issues and Research Scopes Related to Specifically ML-Based Diagnostic Strategies

In spite of several advantages, two major limitations of ML-based fault diagnosis
strategies are the time-consuming training process and the requirement of a high volume
of battery data, especially fault data. Almost in all high-power applications, hundreds and
even thousands of individual LIB cells are connected in series and parallel configurations
to obtain desired voltage and current level. The accuracy and reliability of data-driven
ML-based fault diagnosis methods extensively depend on the quantity and the quality of
battery data. Existing studies mostly used a very limited quantity of data and recorded
through the experimental test of a prototype system. Collecting and utilizing battery data,
especially fault data of each cell of a practical LIB pack, is one of the prime challenges
while developing an ML-based fault detection/diagnosis system. Moreover, obtaining the
fault data from the manufacturer is very difficult due to confidentiality and restriction on
data access. The average training time, diagnosis time and total system running time of a
particular ML-based strategy are seldomly reported in the existing literature. However,
they should be mentioned so that researchers could get a reference for further research
and development. This is highly desirable to obtain proper data through appropriate
simulation study for developing ML-based models because simulating real physical faults
in a laboratory is highly risky, costly and may be impractical. Regarding this, high-fidelity
fault simulation tools are necessary, which further demands in-depth knowledge of battery
fault behavior. Therefore, further study is recommended to obtain a clear understanding of
the LIB fault behavior through extensive laboratory experiments with advanced equipment
while maintaining proper safety measures. ML-based methods typically use external
behaviors of the battery by recoding the commonly measured data such as voltage, current
and temperature; however, these are often unable to provide sufficient information about
the internal electrochemical dynamics of the battery. Different conditions could cause the
same fault or even different faults may generate similar external characteristics. Most of the
studies exclusively focused on a single LIB fault mechanism. Relationships among different
fault mechanisms have not yet been established; thus, distinguishing faults accurately to
generate appropriate control action is not possible with the existing techniques. Moreover,
as ML-based techniques are highly dependent on the external parameters that are measured
by sensors, isolating battery faults from sensor faults is a critical issue. That is why
researchers have often assumed either the sensor or battery is trouble free, which may
cause serious consequences in a real-life system. Therefore, further research on the fault
identification methods is recommended besides improvement in fault detection strategies.

5.3. Current Issues and Research Scopes Related to Practicability and System Requirement

The uncertainties during real-life application of LIBs including noise effect, different
temperature conditions and cell aging were not considered during data acquisition in most
of the existing studies. Thus, the effectiveness and accuracy of these diagnostic models
while subjected to real-life situations need further evaluation. Detecting minor faults at an
early stage is indeed a very difficult task; however, it could cause serious damage over a
prolonged period. ML-based techniques have been unable to detect those early state faults
so far. It not only demands very high quantity and high-resolution data but also requires a
highly accurate, fast response, and precise sensors with high-end processors to accurately
detect such faults. Thus, further research on sensing topology, processors and speedy data
analysis is recommended here.
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This review study noticed that the battery data used to formulate the ML-based
strategies were recorded either through a simulation study or through an experimental
test of a prototype system with a limited number of LIB cells. Installing one voltage and
one temperature sensor per cell and one current sensor at each series string in prototype
systems is feasible. However, installing sensors with each cell in a real-life LIB system with
hundreds or even thousands of cells is impractical from a system size, cost and complexity
point of view. While, at the same time, placing one voltage sensor in each parallel string
and one current sensor in each series string reduces the observability and controllability of
the system, resulting in inaccurate determination of fault location. Future research should
focus on the diagnosis and detection methods with improved fault locating features with
the minimum deployment of sensors or even sensorless strategies.

Despite high accuracy and efficiency, most of the data-driven ML-based fault diag-
nostic methods are unfit for practical application due to increasing stringent accuracy
requirements. Most of the real-world applications of LIB pack such as EV, grid-tied power
storage uses very high voltage and current level; thus, even a small inaccuracy may cause
serious detrimental impacts on the system as well as on the users. The effectiveness of the
proposed ML-based methods needs to be experimentally verified using the data of a real-
life LIB system. Finally, the performance and accuracy of data-driven ML-based techniques
are highly dependent on the programming complexity, quantity of data and processing
power of the microcontroller. Advanced sophisticated battery-driven systems demand
highly accurate and real-time fault detection and thereafter generating appropriate control
action. Existing literature is unable to provide proper guidance regarding the selection
of hardware. Therefore, further research and hardware development of fault diagnostic
systems are recommended to minimize the reaction/approach time alongside the higher
accommodating capacity of advanced ML algorithms and a large volume of data. Recently,
a few studies have introduced the concept of cloud computing and parallel processing
techniques to speed up the computation and learning processes of BMS. However, a cloud-
based fault diagnosis method for LIB has not yet been developed. Cloud-based computing
and integrated management of monitoring, diagnosis, prognosis and maintenance of LIB
pack over the whole lifespan would be a future trend in the development of effective BMS
for LIBs.

6. Conclusions

The fault detection/diagnosis in the lithium-ion battery (LIB) system has become a
crucial task of the battery management system (BMS) with the increasing application of LIBs
in highly sophisticated devices as well as high power applications. Realizing the promising
future and several notable advantages of ML-based data-driven fault diagnosis techniques,
a critical review of state-of-the-art ML-based fault diagnosis techniques is presented in
this article. Special emphasis is given to the current issues and future challenges to
provide a ready reference and guideline to researchers aiming to build a highly efficient,
reliable, adaptive and easy to implement LIB fault diagnosis/detection strategy with better
generalization capability.

In general, ML algorithms can be classified based on learning approaches, namely,
supervised learning, unsupervised learning and reinforcement learning. Here, ML-based
fault diagnosis models are categorized based on the type of ML approaches employed
by the researchers. Overall, it is noticed that ML-based methods have been very recently
adopted, and supervised learning-based approaches are mostly used. Among several other
ML algorithms, Artificial Neural Network (ANN), Random Forest (RF) classifier, Support
Vector Machine (SVM), Gaussian Process Regression (GPR) and Logistic Regression (LR)
algorithms have been employed so far. It is also noticed that among these five approaches
ANN-based techniques are most commonly used and considerable progress has been made
by adopting advanced Neural Networks (NNs) and fusion with other algorithms such as
Genetic Algorithm Back Propagation Neural Network (GA-BPNN) and Long Short-Term
Memory Recurrent Neural Network (LSTM-RNN). The characteristics of LIB are highly
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nonlinear and ANN-based methods showed the best results in capturing the nonlinearities.
Despite high accuracy and adaptability to uncertainties the major limitations of ANN-
based methods are the requirement of a large training data set, a large memory size, a
time-consuming training process and poor generalization capability. SVM-based methods
are the second most popular followed by ANN-based methods due to the lesser training
data requirement, faster prediction and good performance in capturing the nonlinearities of
LIB. Selecting a good kernel function and extensive quadratic programming are the major
challenges. The remaining ML-based fault diagnosis methods have been very recently
adopted. Despite their impressive performance in a laboratory test using a prototype
system, it is too early to judge their performance in a real-world system. Significant
further research and development are recommended before practical application. Overall,
ML-based strategies are also very effective in capturing the nonlinearities of LIB, are
highly efficient and are accurate in fault diagnosis. However, the requirement of high
volume and quality of training data, especially battery fault data, algorithmic complexity,
computational time, and large memory requirement, are some of the common limitations
of the current strategies.

Apart from the specific issues and challenges of ML-based techniques, there are
several other general issues and challenges of LIB fault diagnosis. Some of these include:
The adoptive fault threshold selection, assumption-free fault isolation, absence of fault
simulation tools, limitation of hardware and early fault detection. The development of a
fault-diagnosis scheme adaptive to cell aging, cell inconsistencies, measurement noises and
the uncertainties of real-life applications is also a vital challenge. Moreover, the battery fault
mechanisms and characteristics of all kinds of faults in LIB are still not fully understood.
Owing to the inherent limitation of a single fault diagnosis method, a promising trend is
to combine multiple fault features and multiple diagnostic methods aiming to improve
accuracy and robustness. It could be stated as a concluding remark that ML-based fault
diagnostics of LIBs are still at their early stage. However, with the continuous enrichment
of the ML theory and the development of low-cost powerful microcontrollers alongside the
increasing availability of battery data in the era of big data, and highly advanced testing
equipment, ML-based fault diagnostic methods will inevitably become the next generation
of intelligent battery fault detection/diagnosis strategies.
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