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Abstract: The de-embedding of measurement fixtures is relevant for an accurate experimental
characterization of radio frequency and digital electronic devices. The standard technique consists
in removing the effects of the measurement fixtures by the calculation of the transfer scattering
parameters (T-parameters) from the available measured (or simulated) global scattering parameters
(S-parameters). The standard de-embedding is achieved by a multiple steps process, involving the
S-to-T and subsequent T-to-S parameter conversion. In a typical measurement setup, two fixtures are
usually placed before and after the device under test (DUT) allowing the connection of the device
to the calibrated vector network analyzer coaxial ports. An alternative method is proposed in this
paper: it is based on the newly developed multi-network cascading algorithm. The matrices involved
in the fixture-DUT-fixture cascading gives rise to a non-linear set of equations that is in one step
analytically solved in closed form, obtaining a unique solution. The method is shown to be effective
and at least as accurate as the standard multi-step de-embedding one.

Keywords: S-parameters; de-embedding; 2-port networks; measurement setup

1. Introduction

The precise characterization and validation of electronics devices for radio frequency
(RF) and high-speed digital applications relies on scattering parameters (S-parameters)
measurements. A well-known preliminary step for an accurate measurement is the calibra-
tion of the vector network analyzer (VNA) which moves the reference planes from the VNA
output ports (usually its connectors) to the end of the cables used for the VNA to the device
under test (DUT) connection [1,2]. This procedure is sufficient as long as the DUT that
needs to be measured can be accessed by the VNA cables through coaxial connectors that
directly match the VNA cables’ impedance [3]. However, very often such coaxial access
points are not directly available for complex devices, unless appropriate test fixtures are
designed to make accessible the DUT through coaxial ports. This is the case concerning the
characterization of on-wafer devices, integrated circuits and packages, single transistors,
connectors for RF and high-speed digital applications, waveguide transitions and other
complex structures [4]. In this case the de-embedding of the test fixtures (usually named
“left” and “right” fixtures) need to be applied in order to extract the impact of their presence
from the overall measured S-parameter. This is done knowing the S-parameter data of the
single fixtures that are applied before and after the DUT [5–9]. Usually the well-known
de-embedding process in frequency domain is based at least on three main conceptual
steps: first, the conversion of the S-parameters in the transfer scattering parameters (T-
parameters) [10], second the algebraic manipulation and inversion of the T-parameter
matrices, and third the final T-to-S parameter transformation. It should be noted that when
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actually implemented each single step calls some others making the real implementation
rather complex.

In this paper a sophisticated but more efficient single step de-embedding process is
proposed to perform the de-embedding of both left and right fixtures of a 2-port system
in only a single step through the solution of a linear system of equations, without the
need for any matrix inversion involved in the aforementioned S-to-T and T-to-S parameter
conversion that introduces the numerical error (typically O(N2) where N is the order
of the matrix) due to the iterative process for the evaluation of the inverse [11]. Once
implemented, the solution is applied directly on the raw measured S-parameters of the
fixture-DUT-fixture system knowing those of each fixture without any conversion to T-
parameters. The analytical solution is an extension of the algorithm developed for the
cascading of two S-parameter blocks in [12]. The algorithm is expanded to the case of three
blocks (or networks) representing the S-parameters of the left fixture (FL), of the DUT and of
the right fixture (FR) based on the cascading of the S-parameter blocks network considered
in [12]. The classical method for the cascading of two networks is here expanded to the
case of three networks that are identified in the following as the left fixture (FL), the DUT,
and the right fixture (FR). The direct solution of the three blocks cascading process gives
rise, through few matrix-algebraic manipulations, to a set of four non-linear equations
in four auxiliary unknowns that are directly and analytically related to the sought DUT
S-parameters (SDUT1,1, SDUT1,2, SDUT2,1, SDUT2,2). This system of non-linear equations has
a closed form solution clear of any numerical error.

It is used for building a linear set of four equations in five unknowns: the four un-
knowns of the DUT S-parameters (SDUT1,1, SDUT1,2, SDUT2,1, SDUT2,2) plus their combination
coming out from the matrix determinant built along the cascading process. By means of a
matrix-algebraic manipulation the problem is reduced to a set of four auxiliary equations
in four unknowns and their solution used to find the valid and unique closed form solution
of the DUT S-parameters.

The structure of the paper is the following: the S-parameter cascading of two two-
port networks is briefly reviewed in Section 2, and it is expanded for the case of three
two-port networks. Section 3 presents the analytical derivation of the method for the single-
step fixture de-embedding. Section 4 provides some validation examples by comparing
the original DUT S-parameters with those computed after applying the de-embedding
developed here. Section 5 offers some concluding remarks.

2. S-Parameter Cascade of Three Networks
2.1. Review of Two-Network S-Parameter Cascading Algorithm

The two 2-port S-parameter networks FL and FR in Figure 1 are considered, whose
S-parameters are defined by (1) and (2), respectively, and they are assumed to be known.[

bFL,i
bFL,o

]
=

[
SFL 1,1 SFL 1,2
SFL 2,1 SFL 2,2

][
aFL,i
aFL,o

]
(1)

[
bFR,i
bFR,o

]
=

[
SFR 1,1 SFR 1,2
SFR 2,1 SFR 2,2

][
aFR,i
aFR,o

]
(2)

where aα,β and bα,β are the incident and reflected power waves respectively [10]. The
subscript α = FL, FR denotes if the wave belongs to the FL or FR network; the subscript
β = i,o identifies if the wave is at the input or output port of the network.

An overall S-parameters matrix that combines all elements of both networks can be
written as: 

bFL,i
bFR,o
bFL,o
bFR,i

 =


SFL 1,1 0 0 SFL 1,2

0 SFR 2,2 SFR 2,1 0
SFL 2,1 0 0 SFL 2,2

0 SFR 1,2 SFR 1,1 0




aFL,i
aFR,o
aFR,i
aFL,o

 (3)
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Figure 1. Cascade of two 2-port S-parameter networks: “FL” stands for left feature network and 
“FR” stands for right feature network. 
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where aand b are the incident and reflected power waves respectively [10]. The 
subscript  = FL, FR denotes if the wave belongs to the FL or FR network; the subscript  
= i,o identifies if the wave is at the input or output port of the network. 

An overall S-parameters matrix that combines all elements of both networks can be 
written as: 

⎣
⎢
⎢
⎡

ܾி௅,௜
ܾிோ,௢
ܾி௅,௢
ܾிோ,௜ ⎦

⎥
⎥
⎤

=  

⎣
⎢
⎢
⎡
ܵி௅ ଵ,ଵ 0 0 ܵி௅ ଵ,ଶ

0 ܵிோ ଶ,ଶ ܵிோ ଶ,ଵ 0
ܵி௅ ଶ,ଵ 0 0 ܵி௅ ଶ,ଶ

0 ܵிோ ଵ,ଶ ܵிோ ଵ,ଵ 0 ⎦
⎥
⎥
⎤

൦

ܽி௅,௜
ܽிோ,௢
ܽிோ,௜
ܽி௅,௢

൪ (3)

A compact form of the vectors and matrix in (3) can be defined by naming external 
parameters (‘e’) the input waves of network FL and the output waves of networks FR, and 
internal parameters (‘i’) the output waves of network FL and the input waves of network 
FR, according to the order in which each single S-parameter is placed in the matrix in (3). 

തܾ௘ = ൤
ܾி௅,௜
ܾிோ,௢

 ൨ (4a)

തܾ௜ = ൤
ܾி௅,௢
ܾிோ,௜

 ൨ (4b)

തܽ௘ = ቂ
ܽி௅,௜
ܽிோ,௢

 ቃ (4c)

തܽ௜ = ቂ
ܽிோ,௜
ܽி௅,௢

 ቃ (4d)

This leads us to write (3) as in (4e): 

ቈ
തܾ௘
തܾ௜

቉ = ቈܵ௘̿௘ ܵ௘̿௜

ܵ௜̿௘ ܵ௜̿௜
቉ ൤ തܽ௘

തܽ௜
൨ (4e)

In (4e) and in the following the vector and matrix variables will be denoted by one 
( തܾ) or two (ܵ̿) hats, respectively. 

At the boundary between the two networks, the waves must be continuous. In other 
words, the condition (5) applies: 

തܾ௜ = തܽ௜ (5)

By enforcing this continuity condition, one can obtain the expression of the total 
scattering parameters STOT in (6) from the external end ports FLi and FRo of the cascaded 
FL and FR networks. 
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Figure 1. Cascade of two 2-port S-parameter networks: “FL” stands for left feature network and “FR”
stands for right feature network.

A compact form of the vectors and matrix in (3) can be defined by naming external
parameters (‘e’) the input waves of network FL and the output waves of networks FR, and
internal parameters (‘i’) the output waves of network FL and the input waves of network FR,
according to the order in which each single S-parameter is placed in the matrix in (3).

be =

[
bFL,i
bFR,o

]
(4a)

bi =

[
bFL,o
bFR,i

]
(4b)

ae =

[
aFL,i
aFR,o

]
(4c)

ai =

[
aFR,i
aFL,o

]
(4d)

This leads us to write (3) as in (4e):

[
be
bi

]
=

 =
See

=
Sei

=
Sie

=
Sii

[ ae
ai

]
(4e)

In (4e) and in the following the vector and matrix variables will be denoted by one (b)

or two (
=
S) hats, respectively.

At the boundary between the two networks, the waves must be continuous. In other
words, the condition (5) applies:

bi = ai (5)

By enforcing this continuity condition, one can obtain the expression of the total
scattering parameters STOT in (6) from the external end ports FLi and FRo of the cascaded
FL and FR networks.

=
STOT =

=
See +

=
Sei

(
=
I d −

=
Sii

)−1=
Sie (6)

where
=
I d is the identity matrix with the same size of

=
Sii.

2.2. Single Step S-Parameter Cascading Algorithm for Three 2-Port Networks

The process described above in (1)–(6) is extended to the case of interest based on
the three 2-port networks in Figure 2. Since this configuration is preparatory for the
de-embedding technique, the three networks are identified as FL, FR and DUT placed
in between.
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Figure 2. System of three 2-port S-parameter networks to be cascaded.

The S-parameters associated to each of these networks are given by (1) for FL, by (2)
for FR and by (7) for the DUT.[

bDUT,i
bDUT,o

]
=

[
SDUT 1,1 SDUT 1,2
SDUT 2,1 SDUT 2,2

][
aDUT,i
aDUT,o

]
(7)

As done in (3) for the simple case of two networks, the S-parameters of the three
networks in Figure 2 can be arranged into a single matrix. This is done in (8) where the
four S-parameter elements of the three networks are arranged such that the same boundary
conditions in (5) apply.

bFL,i
bFR,o
bFL,o

bDUT,i
bDUT,o
bFR,i

 =



SFL 1,1 0 0 SFL 1,2 0 0
0 SFR 2,2 0 0 SFR 2,1 0

SFL 2,1 0 0 SFL 2,2 0 0
0 0 SDUT 1,1 0 0 SDUT 1,2
0 0 SDUT 2,1 0 0 SDUT 2,2
0 SFR 1,2 0 0 SFR 1,1 0





aFL,i
aFR,o

aDUT,i
aFL,o
aFR,i

aDUT,o

 (8)

In order to map (8) into (4), the size of the sub-matrices defined in (4) will be the

following: 2 × 2 for the
=
Se,e, 2 × 4 for the

=
Se,i, 4 × 2 for the

=
Si,e, and 4 × 4 for the

=
Si,i. This

matrix arrangement will make possible a direct calculation of the cascaded S-parameters

according to (6), with
=
STOT representing the S-parameters between the external end ports

FLi and FRo in Figure 2.

3. Single-Step Algorithm for Device under Test (DUT) De-Embedding

The S-parameter matrix equation in (6) is written in different form as in (9):

STOT − See = Sei(Id − Sii)
−1

Sie (9)

It gives rise to a set of four non-linear equations as explicitly written in (10):

STOT1,1 − SFL1,1 +
SFL1,2 SFL2,1SDUT1,1+SFL1,2 SFL2,1SFR1,1(SDUT1,2 SDUT2,1 −SDUT1,1 SDUT2,2)

(SFR1,1 SDUT2,2 + SFL2,2 SDUT1,1+ SFR1,1SFL2,2(SDUT1,2 SDUT2,1 −SDUT1,1 SDUT2,2) − 1) = 0

STOT1,2 +
SFL1,2SFR1,2SDUT1,2

(SFR1,1 SDUT2,2 + SFL2,2 SDUT1,1+ SFR1,1SFL2,2(SDUT1,2 SDUT2,1 −SDUT1,1 SDUT2,2) − 1) = 0

STOT2,1 +
SFL2,1SFR2,1SDUT2,1

(SFR1,1 SDUT2,2 + SFL2,2 SDUT1,1+ SFR1,1SFL2,2(SDUT1,2 SDUT2,1 −SDUT1,1 SDUT2,2) − 1) = 0

STOT2,2 − SFR2,2 +
SFR1,2SFR2,1SDUT2,2+SFR1,2SFR2,1SFL2,2(SDUT1,2 SDUT2,1 −SDUT1,1 SDUT2,2)

(SFR1,1 SDUT2,2 + SFL2,2 SDUT1,1+ SFR1,1SFL2,2(SDUT1,2 SDUT2,1 −SDUT1,1 SDUT2,2) − 1) = 0

(10)

The system of equations in (10) involves the variables SDUT1,1, SDUT1,2, SDUT2,1SDUT2,2
that represent the target unknown S-parameters of the DUT that should be computed. For
the sake of convenience, the following equalities can be adopted:

Y(1) = SDUT1,1 (11a)

Y(2) = SDUT1,2 (11b)

Y(3) = SDUT2,1 (11c)
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Y(4) = SDUT2,2 (11d)

C = SDUT1,2 SDUT2,1 − SDUT1,1 SDUT2,2 (11e)

Using these notations, the system in (10) becomes equal to the non-linear system
in (12): 

STOT1,1 − SFL1,1 +
SFL1,2 SFL2,1Y(1)+SFL1,2 SFL2,1SFR1,1C

(SFR1,1 Y(4)+ SFL2,2 Y(1)+ SFR1,1SFL2,2C − 1) = 0

STOT1,2 +
SFL1,2SFR1,2Y(2)

(SFR1,1 Y(4)+ SFL2,2 Y(1)+ SFR1,1SFL2,2C − 1) = 0

STOT2,1 +
SFL2,1SFR2,1Y(3)

(SFR1,1 Y(4)+ SFL2,2 Y(1)+ SFR1,1SFL2,2C − 1) = 0

STOT2,2 − SFR2,2 +
SFR1,2SFR2,1Y(4)+SFR1,2SFR2,1SFL2,2C

(SFR1,1 Y(4)+ SFL2,2 Y(1)+ SFR1,1SFL2,2C − 1) = 0

(12)

Finally, posing SS1 = STOT1,1 − SFL1,1 and SS2 = STOT2,2 − SFR2,2, (12) can be
rewritten as:

SS1 SFL2,2 + SFL1,2 SFL2,1 0 0 SS1 SFR1,1
SFL2,2 STOT2,1 SFL1,2SFR1,2 0 SFR1,1 STOT2,1
SFL2,2STOT1,2 0 SFL2,1SFR2,1 SFR1,1STOT1,2

SS2 SFL2,2 0 0 SS2SFR1,1 + SFR1,2SFR2,1




Y(1)
Y(2)
Y(3)
Y(4)


=


−( SS1 SFR1,1SFL2,2 + SFL1,2 SFL2,1 SFR1,1)C + SS1

−SFR1,1SFL2,2STOT2,1C + STOT2,1
−SFR1,1SFL2,2STOT1,2C + STOT1,2

−( SS2SFR1,1SFL2,2 + SFR1,2SFR2,1SFL2,2)C + SS2


(13)

That in compact form is equivalent to (14):

AY = B (14)

All components of the solution are linearly dependent on C. The solution of the
non-linear equation system in (13) can be achieved by a two step process: first, the linear
system (13) can be solved first as function of the parameter C, and then the non-linear
equation in (11e) can be solved. By assuming that the matrix A is not singular, the unique
solution of the linear system depending on C is given by (15):

Y =
SFL1,2SFR1,2SFL2,1SFR2,1

det(A)

·



(
−
(

S2
FR1,1SFL1,2SFL2,1STOT2,2 − S2

FR1,1SFL1,2SFL2,1SFR2,2 + SFR1,1SFL1,2SFR1,2SFL2,1SFR2,1

)
C

− (SFL1,1SFR1,2SFR2,1 − SFR1,2SFR2,1STOT1,1)

)
SFL2,1SFR2,1STOT1,2(SFR1,1SFL2,2C + 1)
SFL1,2SFR1,2STOT2,1(SFR1,1SFL2,2C + 1)(

−
(

S2
FL1,1SFR1,2SFR2,1STOT1,1 − S2

FL2,2SFR1,2SFR2,1SFL1,1 + SFL1,2SFR1,2SFL2,1SFR2,1SFL2,2

)
C

− (SFL1,1SFL1,2SFR2,2 − SFL1,2SFL2,1STOT2,2)

)


(15)

where det(A) is the determinant of the matrix A in (14) given by:

det(A) = SFL2,1SFR2,1SFL1,2SFR1,2
·[(SS1 SFL2,2 + SFL1,2 SFL2,1)(SS2SFR1,1 + SFR1,2SFR2,1)− SS1 SS2 SFR1,1SFL2,2]

(16)

By replacing the solutions (15) into (11e) a second degree equation is obtained, whose
roots are given by:{

λ1 = − 1
SFR1,1SFL2,2

λ2 =
SFL1,1STOT2,2− SFL1,1SFR2,2+ SFR2,2STOT1,1− STOT1,1STOT2,2+ STOT1,2STOT2,1

AA

(17)

AA = (SFL1,1SFL2,2 − SFL1,2SFL2,1 − SFL2,2STOT1,1)
·(SFR1,1SFR2,2 − SFR1,2SFR2,1 − SFR1,1STOT2,2)− SFL2,2SFR1,1STOT1,2STOT2,1

(18)
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According to (17) two separate solutions of the non-linear system (12) should be found,
Y1 and Y2 coming from λ1 and λ2 in (17), respectively. However, the solution Y1 is not
acceptable since the determinant of the matrix to be inverted in (9) is always zero, as in (19).

det(I − SDUT) = −(SFR1,1Y1(4) + SFL2,2Y1(1) + SFR1,1SFL2,2λ1 − 1) = 0 (19)

Therefore, the only and unique solution to the problem in (12) is given by Y2 in (20),

Y2 =
1

AA


(STOT1,1 − SFL1,1)(SFR1,2SFR2,1 − SFR1,1SFR2,2 + SFR1,1STOT2,2)− SFR1,1STOT1,2STOT2,1

SFL2,1SFR2,1STOT1,2
SFL1,2SFR1,2STOT2,1

(STOT2,2 − SFR2,2)(SFL1,2SFL2,1 − SFL2,2SFL1,1 + SFL2,2STOT1,1)− SFL2,2STOT1,2STOT2,1

 (20)

where the scalar variable AA in the denominator of (20) is given by the expression in
(18). Y2 is a vector containing the elements from (11a)–(11d), that is to say, the wanted
S-parameters of the DUT that need to be computed at the end of the de-embedding process.
Please note as the entries of Y2 are the basic algebraic operations applied to the scattering
parameters of the total system (feature-DUT-feature) and of the left and right feature.

4. Validation of the Proposed Single-Step De-Embedding

The single step de-embedding process described in Section 3 is implemented and
validated in this Section based on a practical example of a multi-pin connector model
suitable for a non-return to zero (NRZ) bit-rate up to 56 Gbps. The NRZ coding is often
used for data signaling in telecommunications.

The connector itself, the DUT in Figure 3a,b, is described in [13], developed in the form
of a full wave three-dimensional model by SAMTEC [14], and its S-parameters evaluated
up to 50 GHz. The S-parameters and the equivalent circuit of the left (FL) and right (FR)
fixtures in Figure 3b,c. have been derived in [15]. Based on [15], a single-ended line
of the stand-alone connector model is extracted from the multiport S-parameters, and
it is embedded in between the corresponding single-ended circuit models of the fixture
according to Figure 3a. A more detailed description of the FL and FR fixtures is provided in
Figure 3b,c. The S-parameters STOT from Port 1 to Port 2 in Figure 3a have been measured
in [15] up to 50 GHz. All the four blocks of S-parameters (for the original DUT, for the two
fixtures and for the entire system from Port 1 to Port 2) in this work have been considered
as input data for this work.
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original multiport model.

The validation of the single-step procedure consists in finding the S parameters of
the DUT (the vector Y2 from (20)) from the knowledge of STOT (from Port 1 to Port 2 in
Figure 3a) and comparing them with other independent solutions. The de-embedded DUT
S-parameters from (20) (named “Single-Step De-Embed.” in Figure 4) are compared:

1. to those of the standalone original DUT known by measurement and modeling as
shown in [15] and considered as reference result. They are named “Orig. DUT” in
Figure 4;

2. to those obtained by applying the classic standard two-step S-to-T and T-to-S parame-
ter conversion named “S-T conv. De-embedding” in Figure 4;

3. to those computed by applying a numerical iterative solution to the non-linear set of
equations in (13) based on the MATLAB built in function fsolve [16] named “Numerical
calc.” in Figure 4.

The overall comparisons of the obtained DUT S-parameters S21, S11, and S22 are
reported in Figure 4.
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Figure 4. Comparison of the S-parameters obtained by: 1. the standalone original device under test
(DUT) considered as reference (continuous line “Orig. DUT”), 2. the classic standard two-steps S-to-T
and T-to-S parameter conversion (dashed line “S-T conv. De-embed”), 3. the single-step procedure
(circles “Single-Step De-embed.”) and 4.by the numerical iterative solution (dash-dot line “Numerical
calc.”). (a) S21, (b) S11, (c) S22.

By starting with a simple visual inspection of Figure 4 it is evident that the accuracy of
the solution in (20) is good. In order to better quantify the differences of the S-parameters
of the DUT obtained after de-embedding by the different approaches with respect to those
of the standalone original DUT considered as reference, Tables 1 and 2 have been compiled.
In Table 1 each entry of the Table represents the maximum value of the magnitude of the
difference (or maximum absolute error) between the Sij by each method and the same
S-parameter of the standalone original DUT.

In Table 2 each entry of the Table represents the root mean squared difference between
the Sij by each method and the same S-parameter of the standalone original DUT.

The results in Tables 1 and 2 confirm the high level of accuracy of the single-step
de-embedding procedure and show some weakness on the direct numerical solution of the
non-linear system (13) especially for the S22 parameter whose error, although small, is not
acceptable, since it is only one order of magnitude smaller than its absolute value. Both
tables also intend to show that, from the accuracy point of view, the single step method
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is as accurate as the standard one performed in multiple steps. The main advantages of
the new algorithm can be summarized as: (1) it uses a closed form solution without any
approximation or inherent numerical error; (2) it is performed in one step so it is about
3× faster than the classic one: given the normalized execution time of the classic standard
de-embedding procedure is 1, the normalized execution time of the single step procedure
is 0.333 on the same hardware platform. This latter feature is very important when the
de-embedding procedure should be repeated several times, as there are many frequencies
of the spectrum of the sought DUT scattering parameters (usually several thousands).

Table 1. Maximum absolute error for the de-embedding methods considered.

Method S11 S22 S21

Classic standard three-step
(S-T conv. De-embedding) 6.15 × 10−9 + j × 1.08 × 10−8 1.09 × 10−9 + j × 3.9 × 10−9 2.04 × 10−8 + j × 3.8 × 10−9

Proposed
single step (Single-Step

De-embed.)
6.15 × 10−9 + j × 1.08 × 10−8 1.09 × 10−9 + j × 3.9 × 10−9 2.04 × 10−8 + j × 3.8 × 10−9

Numerical solution
(Numerical calc.) 1.08 × 10−5 + j × 1.4 × 10−5 0.03 + j × 0.025 1.30 × 10−4 + j × 7.33 × 10−4

Table 2. Root mean squared difference for the considered de-embedding methods.

Method S11 S22 S21

Classic standard three-step (S-T conv.
De-embedding) 9.26 × 10−18 7.76 × 10−18 2.09 × 10−17

Proposed single step (Single-Step
De-embed.) 9.26 × 10−18 7.76 × 10−18 2.09 × 10−17

Numerical solution (Numerical calc.) 3.29 × 10−11 2.20 × 10−4 6.51 × 10−8

5. Conclusions

A complete closed form method is proposed in this paper to de-embed the side
fixtures within the three network fixture-DUT-fixture system typically encountered in the
experimental setups for RF and digital device characterization. The method can be readily
implemented and provides the DUT S-parameters in a single calculation step, without
relying on the S-to-T parameter conversion typical of the classic de-embedding procedure.
Furthermore, this standard procedure is applied in three steps, to remove the effect of left
and right fixtures separately.

The method is instead a single-step process in which the final results are obtained just
calculating the entries of the vector Y2 in (20); it is developed based on the direct solution
in closed form of a non-linear system of equations in which it is identified as the valid and
unique solution. The proposed de-embedding technique is demonstrated as accurate as
the standard de-embedding, more accurate of the numerical solution attempted on the
original non-linear system mentioned above, and faster than the standard one. Equation
(3) is scalable, and can be extended not only to more blocks but also to blocks with a higher
number of input and output ports. This is the aim of future research actions.

The proposed method can be further extended to the more general cases of higher
port count rather than the simple two-port network systems.
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