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Abstract: Condition monitoring is used to track the unavoidable phases of rolling element bearings
in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The
convolutional neural network (CNN) has been used as an effective tool to recognize and classify
multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of
vibration signals, it is quite difficult to achieve high classification accuracy when directly using the
original signal as the input of a convolution neural network. To evaluate the fault characteristics,
ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into
multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant
IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the
reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration
signal is converted into a 2-D image using a continuous wavelet transform with information from the
damage frequency band. This also transfers the signal into a time-frequency domain and reduces the
nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions,
which possess a discriminative pattern relative to the types of faults, are used to train an appropriate
CNN model. Additionally, with the reconstructed signal, two different methods are used to create
an image to compare with our proposed image creation approach. The vibration signal is collected
from a self-designed testbed containing multiple bearings of different fault conditions. Two other
conventional CNN architectures are compared with our proposed model. Based on the results
obtained, it can be concluded that the image generated with fault signatures not only accurately
classifies multiple faults with CNN but can also be considered as a reliable and stable method for the
diagnosis of fault bearings.

Keywords: bearing fault diagnosis; vibration signal; EEMD; envelope analysis; CWT; time-frequency
representation; CNN

1. Introduction

Heavy and high-power induction motors (IMs) are a crucial component in modern
manufacturing. The complexity of the machinery used in today’s industrial machines, as
well as their mechanical level, has increased with advancements in technology [1]. Among
the various elements used in IMs, bearings are pivotal because they are responsible for more
than 50% of mechanical failures [2]. Generally, electrical stress, unbalanced loads, abrasion,
and overloading are the main causes of faults in rotating machinery. These faults hamper
the structural integrity of IMs and create secondary faults. Failure leads to abnormalities
and unpredicted downtime of the overall system, resulting in huge maintenance costs
and causalities. To identify unusual signals as early as possible, it is necessary to perform
condition monitoring and detect and diagnose fault information in a timely manner [3].
In recent times, real-time monitoring has drawn huge interest in fault diagnosis processes.

Many researchers have investigated numerous aspects of condition monitoring, such
as detecting and classifying various faults [4], diagnosing the severity of faults [5,6], and
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carrying out prognoses [7]. All these approaches require professional experience and
knowledge to correctly extract fault features from signals for classification. Additionally,
these processes not only require large amounts of time but are also expensive. Further-
more, high accuracy in the classification output is not guaranteed [8]. Generally, fault
diagnosis methods can be classified as reactive, preventive, or predictive maintenance
methods. Among them, reactive methods are the most expensive because they take correc-
tive measures after a fault occurs. Preventive measures require more resources for periodic
monitoring, and predictive approaches depend on real-time monitoring and start taking
measures after getting an indication of failure [9]. Fault diagnosis of mechanical equipment
can rely on a quantitative model, a qualitative model, or a data-driven method. The first
two methods depend on the accuracy of the mathematical model and/or significant exper-
tise related to the designed system. The last method relies on the process of data acquisition
and the analysis of the measured data of the rotating machinery to classify faults [10].
Because of improvements in communication technologies and data acquisition sensors,
data-driven methods of fault diagnosis have become a preferred choice for researchers.
Data acquisition, data preprocessing, feature extraction-selection, and fault classification
with a preferable algorithm are the main steps of data-driven fault diagnosis techniques.

The diagnosis of induction motor faults is performed mostly by using different signals
acquired from motors, such as vibration signals [11], acoustic emission signals [12], motor
currents [13], temperature, and thermal images [14]. In vibration signal-based methods,
the signal is acquired through vibration sensors. Then, the frequency analysis is performed
for further fault investigation. In this case, sensors are installed around the bearings
under investigation, and full-time access is mandatory for recording and acquiring data.
Despite containing a huge number of data related to a mechanical fault in vibration data,
accurate extraction of fault characteristic signals is extremely important due to the noisy
environment around the examined components [15].

Signal processing techniques play an essential role in preprocessing as well as in
feature extraction. Most signal processing techniques consist of time-domain analysis,
frequency-domain analysis, or time-frequency domain analysis [16,17]. Generally, the
peak-to-peak amplitude, kurtosis, root mean square, and higher-order statistical moments
are calculated and used as features in the time-domain approach. Fast Fourier Transform
(FFT) and spectral analysis are the most popular approaches for frequency-domain analysis.
Finally, due to the nonstationary nature of the vibration signal, analysis based on the
time-frequency domain is more suitable for bearing fault analysis; this includes techniques
that use the wavelet transform [17], short-time Fourier transformation (STFT) [18], singular
value decomposition [19], local characteristic-scale decomposition (LCD) [20], local mean
decomposition (LMD) [21], empirical mode decomposition (EMD), or ensemble empirical
mode decomposition (EEMD) [22]. Because it is controlled with the basis function, the
wavelet transform cannot attain adaptive decomposition in many cases, which is a major
drawback for signal analysis. Additionally, choosing an accurate mother wavelet for certain
types of fault signals is a challenging task. EMD is widely used to deal with nonlinear and
nonstationary signals, although it possesses large data dimensions and low calculation
efficiency because it includes redundant information [23]. Additionally, mode mixing is a
problem for EMD, where the same IMF can contain oscillations with different time scales.
Additionally, signals containing the same time scales are assigned to different IMFs. As a
result, the IMFs do not accurately reflect the real scenario, and the actual properties of the
signal can be misinterpreted. In this analysis, the EEMD method is applied to a vibration
signal to solve the mode mixing problem of EMD when separating the decomposed signals
to IMFs.

Envelope detection (ED) is another effective method used in fault diagnosis. This
high-frequency resonance technique was introduced by Mechanical Technology Inc. [24,25].
A narrow-band, envelope spectrum-based algorithm was applied by Klausen et al. [26],
which can autonomously detect bearing faults by investigating multiple narrow bands
of various faults. In [27], the authors presented an effective technique, named enve-
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lope demodulation, to accurately find the fault signatures in a bearing. Additionally,
Tyagi et al. [28] proposed a method based on the optimum envelope window to overcome
shortcomings of the traditional envelope detection process by using a particle swarm opti-
mization technique for bearing fault analysis. Different envelope detection techniques with
spectral correlation and RMS-based methods can identify different bearing faults. Different
techniques can also increase the computational speed [29]. In [30], EMD is employed to
find an accurate resonant frequency, with the help of envelope analysis for verifying the
characteristic fault frequencies; this can be used to efficiently identify the bearing faults.
The efficiency of the envelope analysis method largely depends on choosing suitable filter
parameters. For this purpose, the fast kurtogram method has been analyzed by many
researchers [31–33]. Envelope analysis based on the kurtogram method is an effective and
convenient approach that can be used to diagnose bearing faults.

Machine learning (ML) algorithms are widely used for fault diagnosis, as fault data
are available from many devices of interest. In [34], the empirical wavelet transform,
fuzzy entropy, and support vector machine (SVM) are applied for signal decomposition,
computing model inputs, classification, and predicting faulty conditions. In [35], a model
for fault classification is built with extreme machine learning, which can extract multi-
scale features from the original signal. Among other approaches, K-nearest neighbors
(KNN) [36], random forest (RF) [37], and artificial neural networks (ANN) [38] have
been successfully implemented for fault diagnosis. Although ML-based fault diagnosis
techniques are performed well and are well-organized, they also have some drawbacks.
First, to make the ML model highly accurate, it needs to extract discriminative features
with signal processing techniques, which require expertise and lots of time. Second, a
similar feature extraction and selection process for a particular type of signal might not
provide satisfactory results for other signals.

In recent times, deep learning (DL) algorithms have been used in various technical
and research fields. Among them, robot vision [39], control systems [40], and power
capacity allocation [41] are some of the most advanced examples. Deep learning has also
become a promising technique in fault diagnosis because of its capability of automatic
feature learning from the original signal. It possesses nonlinear operations for multiple
stages and performs classification based on automatically extracted high-level features.
DL consists of three parts: a deep auto-encoder (DAE), a convolutional neural network
(CNN), and a deep belief network (DBN) [42]. Among recent studies, combining time and
frequency domain features with a sparse auto-encoder and DBN is a popular approach for
bearing fault investigation. Several DBN-based fault diagnosis approaches are published
in [43–45]. The CNN method makes the training process easier because it shares weights
and has sparse connection ability. It has also attracted the attention of researchers for use
in more complex scenarios. Variations of CNN have been applied to the raw signals from
various noisy environments for the diagnosis of bearing faults. More details can be found
in [46–48].

Generally, a representation of a 2-D image explores the local texture fault features,
which can be obtained by applying a time-frequency-based transformation from the time-
domain signal. This method has proven to be efficient for fault diagnosis with a vibration
signal [49,50]. In this case, a 2-D image constructed from only time-domain signals may
not contain the fault characteristics effectively. To address this issue, in this paper we
propose an approach that utilizes EEMD to select dominant modes and then transforms the
vibration signal into 2-D images for accurate bearing fault classification. In recent times, 2-D
images from vibration signals have been generated using an energy distribution map [51]
and bi-spectrum analysis [52], in which discrimination among individual bearing faults
are projected. However, these techniques are unable to show the relationship between the
fault signatures and the projected image. Significant information related to bearing health
can be collected from the periodic impulse behavior due to the rotation at a constant speed
and precise transient response analysis, which can provide fault indication at an early state.
The periodic transient response generates peaks at different frequencies, such as the inner
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race fault frequency (FI), outer race fault frequency (FO), and ball spin harmonics (SF).
Additionally, the performance of the fault diagnosis can be improved by observing signals
from these particular frequency ranges [36,53].

In the majority of works, after EEMD decomposition, statistical, time domain, and
frequency domain features are created and used for fault classification with machine
learning algorithms. In this work, the innate ability of CNN with image data is leveraged
by using 2-D images in the training phase. Our proposed approach utilizes selective
intrinsic mode functions (IMFs) from EEMD and wavelet transform to generate an image
dataset. Of all the IMFs produced after performing EEMD on vibration signals, the most
relevant IMFs are selected based on kurtosis value. Thus, the selected IMFs contain the
fault signature, which is validated by performing envelope analysis. Envelope analysis
ensures that even after reconstruction the signal still contains the fault components. After
selecting the one-dimensional IMF components, they are converted into two-dimensional
spectrogram images using continuous wavelet transform (CWT), which is a technique
of transforming the time-domain signal into a time-frequency domain based on Fourier
Transform (FT) and Short-Term Fourier Transform (STFT). Comparing to FT and STFT,
the application of wavelet transform is favorable because it can extract temporal and
spectral information. The basic idea of wavelet transform is to find the correlation of a
mother wavelet (a zero-averaged waveform of effectively limited duration) with a signal
of interest at different points. The shape and position of the mother wavelet can be varied
using its scale and location parameter. There are several mother wavelets available for
finding a distinctive shape within a signal. Generally, the similarity of the mother wavelet
basis function and the inspected signal plays the main role when choosing the most
appropriate wavelet.

In addition, images generated from raw vibration signals with two other techniques, con-
ventional wavelet spectrogram, and defect signature wavelet image generation method [54]
are also used to train the CNN model to establish the validity of our proposed image
generation technique. Finally, a CNN is trained with a portion of this image data. Two
well-known CNN architectures, namely, AlexNet and LeNet, are also trained with the same
data to compare our proposed model.

The major contributions of this work can be listed as follows:

• A pipeline to convert 1-D (the IMFs obtained from vibration signal after EEMD) signal
to 2-D image signal involving CWT.

• A CNN-based classifier model for bearing fault classification. The CNN architecture
is less complex as a small number of hidden layers is used.

• A laboratory dataset collected from a bearing testbed with multiple bearing faults is
used to validate the performance of the described approach. Additionally, some other
well-known CNN methods described in the literature are applied for comparison.

The rest of this paper is organized as follows. Section 2 presents the test rig, description
of the experiment setup, and details of the data acquisition process. Section 3 provides
a detailed description of the overall process utilized in this paper to investigate various
faults. Section 4 explains the experimental evaluation of the proposed approach from the
dataset using the evaluation parameters. Our proposed method is also compared with
state-of-the-art approaches. Finally, Section 5 includes our concluding remarks.

2. Experimental Testbed

Figure 1 shows the structure of the bearing testbed designed by the Ulsan Industrial
Artificial Intelligent (UIAI) Laboratory of Ulsan University, Ulsan, South Korea used in this
analysis. The data collected from bearings can be classified into four different conditions:
normal, outer damaged bearings, inner damaged bearings, and bearings with damage in
the roller. During the experiment, a three-phase motor drove the testbed under a fixed
speed of 1800 rpm, and the motion was transmitted from the rotor shaft to the main
shaft by the belt installed on both sides of the testing bearings. The maximum signal was
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recorded from the left side of the target bearing with the help of a vibration and acoustic
emission accelerometer.
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Figure 1. Structure of the bearing testbed setup.

The data acquisition system is described in Table 1. A bearing of model FAG NJ206-
3-TVP2 was used in this testbed, which is a cylindrical type of model. An accelerometer
(model PCB-622B01) and AE sensors (R15I-AST type) were used to record the vibration
and AE signals, respectively, and both were connected with an NI-9234 DAQ device to
collect accurate data from the Integrated Electronics Piezo-Electric (IEPE) sensors.

Table 1. Specifications of the data acquisition system.

Devices Specification

PCB-622B01 (Vibration sensor)

Measurement range: ±490 m/s2

Frequency: 0.2–15,000 Hz

Sensor sensitivity: 100 mV/g

R15I-AST (AE sensor)

Operating range: 50–400 kHz

Resonant frequency: 150 kHz (Ref in V/µbar)

Peak sensitivity: −22 dB (Ref in V/µbar)

DAQ-type NI 9234

Dynamic range: 102 dB

Resolution: 24-bit

Operating temperature: −40 ◦C–70 ◦C
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The vibration data was collected at a sampling rate of 25 kHz, and five minutes of
continuous data was collected for all bearing conditions. Later, the data were segmented
into 1-s sections, and each 1-s signal contained 309 data samples for each type of fault.
The test can be performed again for another type of fault by replacing the testing bearing
in this same testbed.

3. Proposed Bearing Fault Classification Approach

The main target of this study is to classify different bearing faults by investigating
the vibration signal using a convolutional neural network. CNNs are well suited for
classification from 2-D images, but the vibration signal is 1-D in nature. Therefore, in this
paper, an approach is proposed that can transform the vibration signal into a 2-D image
to take advantage of the CNN model. By applying EEMD, the intrinsic mode functions
(IMFs) are calculated; these represent the decomposition of the vibration signal in different
frequency bands. However, it has been observed that not all of the decomposed IMFs
contain useful information pertaining to the faults. To find the dominant IMFs, the kurtosis
value is utilized. Additionally, reducing the number of IMFs will reduce the computation
complexity. Finally, the selected IMFs that contain fault information are used to rebuild
the signal. After that, the new signal is transformed into a 2-D image using CWT with
the particular fault frequency range. The proposed method is presented in Figure 2 and
explained in the following sub-sections.
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3.1. Ensemble Empirical Mode Decomposition (EEMD)

To deal with nonlinear and nonstationary signals, Haung et al. [55] proposed a signal
analysis method in 1998 referred to as empirical mode decomposition (EMD). This approach
decomposes any complex signal into a residual portion and several multi-scale intrinsic
mode functions (IMFs). Every IMF is represented by a function, which must satisfy
two conditions:

1. The extrema points and the number of zero crossings must be less than or equal to 1
for the overall dataset.

2. The mean value of the local maximum envelope signal and the envelope defined by
the local minima are zero at all points.

Although the resultant signal obtained after performing EMD includes most of the
vital information of the raw time signal, it experiences an endpoint effect and mode mixing
problem where a portion of the IMF may have properties that are quite similar to adjacent
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IMFs. To solve this issue, Wu and Huang [56] proposed the ensemble empirical mode
decomposition (EEMD) method, in which white noise was first added to the signal and
then EMD was implemented to reconstruct a new signal. The resultant signal comprises the
average values of all modes and efficiently eliminates the limitations of EMD to generate a
more accurate set of true IMFs. The basic steps of the EEMD method are given below:

Step 1: White noise is added to the original time series data.

Xi(t) = X(t) + wi(t),

where i = 1, . . . , M and wi(t) represents the white noise, which has a new normal distribu-
tion for each trial. Additionally, M indicates the number of trials.

Step 2: The updated time-series signal is decomposed by EMD and all the IMFs ci(t)
and one residual component r(t) are extracted.

X(t) =
k

∑
i=1

ci(t) + r(t)

Step 3: If i < M, repeat step 1 and step 2 by adding different series of white noise every
time to get the ensemble of IMFs.

Step 4: All the ensemble IMFs are calculated by taking the average as follows:

cj(t) =
1
M

M

∑
i=1

cij(t)

Here, cj(t) represents the j-th IMF value decomposed by EEMD (j = 1, . . . , N) when
the i-th white noise is being added.

The workflow of the EEMD method is presented in Figure 3.
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The eight IMFs and one residual signal for the roller bearing are presented in Figure 4,
where each IMF contains an individual frequency range. The corresponding Fourier
spectra for each of the IMFs are shown in Figure 5, clearly exhibiting that, with EEMD, the
generated IMFs contain the signals of different frequency ranges.
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Though the EEMD method solved the mode mixing problem, it is still necessary to
find out the most important IMFs that exhibit substantial fault information. The resultant
IMFs possess high cardinality and can be signal- or noise-dominant functions. Therefore,
using all IMFs in fault detection may result in lower efficiency, as not all IMFs contain
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fault information. If the number of selected IMFs becomes too low in the selection state,
useful information related to faults may be skipped and the accuracy of fault detection
could be low. On the other hand, too many IMF components can create confusion between
effective feature information and false components, as well as increase the computational
complexity [57]. Several methods are proposed for designing an efficient fault diagnosis
system by identifying appropriate IMFs for a faulty condition. For example, Lei and
Zuo [58] utilized a sensitivity factor calculated from a correlation coefficient to select IMFs.
In [59], a degree-of-presence and Kullback-Leibler divergence-based matrix was introduced
for selecting informative IMFs.

Kurtosis values of IMFs can also be used to select the most suitable IMFs related to
fault signatures, as demonstrated in a few previous studies. This statistical indicator is
utilized in [31] to detect the impulse components that occurred due to the presence of faults
in signals. In [60], based on the kurtosis value, an IMF selection method is used with the
EEMD method to extract fault signatures. After that, with the reconstructed signal, the
characteristic frequency ratio was calculated between healthy and faulty bearings, and a
lower boundary was applied to distinguish between them.

Kurtosis is a higher-order statistical feature of time series data. The kurtosis value of a
time series observation indicates how outlier-prone the time series distribution is. Kurtosis
of a time series observation is expressed as:

K =
1
N

N

∑
i=1

[
xi − µ

σ
]

4

(1)

Here, xi is the i-th time series point, while µ, σ, and N represent the mean, standard
deviation, and length of the time series data, respectively. Changes in the kurtosis value
of time series data point to corresponding changes in the physical system from which the
time series data was obtained. Generally, when a normal distribution is considered, the
value of kurtosis is equal to 3. In Figure 6, kurtosis values of random observations from
the dataset in use are presented. It can be noticed that when the bearing is not faulty the
kurtosis value is very close to 3. Alternatively, for a bearing with a fault, the kurtosis of
the time series data is much higher than 3. Therefore, in this work, the value of kurtosis is
considered a crucial parameter that can be used to discover relevant IMFs, in which fault
information is significantly noticeable.
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The original signals and reconstructed signals after removing the unnecessary IMFs
based on kurtosis for every bearing condition are presented in Figure 7.
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3.2. Envelope Analysis for Bearing Fault Analysis

When operating rotating machinery, various types of damage, such as pitting, mis-
aligned raced damage, spalling, and waviness can occur because of manufacturing mal-
functions, incorrect installation, material fatigue, and so on. Each type of bearing fault can
be characterized by a specific frequency, which depends on various parameters associated
with the geometric characteristics of the bearing. The fault-specific frequency occurs due to
the increase of the vibration energy because of the interaction between the defects and the
bearing surface. The defect frequencies for the inner race fault (FI), outer race fault (FO),
and roller faults (SF) can be defined as:

FI =
Nball

2
× fm ×

(
1 +

(
Dball
Dcage

× cos β

))
(2)

FO =
Nball

2
× fm ×

(
1−

(
Dball
Dcage

× cos β

))
(3)

SF =
Dcage

2Dball
× fm ×

(
1−

(
Dball
Dcage

× cos β

)2
)

(4)

Here, Nball , Dball , Dcage, β and fm define the ball numbers, the ball diameter, the diam-
eter of the cage, the contact angles of the balls, and the rotational frequency, respectively.

A high peak is generated in the FFT spectrum because of the increasing energy.
Generally, in the high-frequency region, it becomes difficult to distinguish the damage
frequency with the FFT method because of the amplitude modulation. To resolve this
matter, the Hilbert transform is combined with envelope analysis, which is used as a
demodulation technique. This helps to amplify the fault impulse with a bandpass filter,
which includes the fault frequency range and rejects the carrier signal.

However, when the FFT is applied to generate the envelope spectrum, it may lose
some time information regarding the exact time in which the impulse appeared. To address
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this issue, a new spectrogram produced by the continuous wavelet transform (CWT) is
utilized; this represents the time and frequency domain signal envelope [54].

The main idea of the Hilbert transform is to transfer the time domain vibration signal
into the Hilbert domain, s̃(t), by applying the convolution between s(t) and the signal

(
1

πt

)
,

which implies [s̃(t) = s(t) ∗ (1/πt)] [61]. The convolution results in a signal with a complex
form, which can be defined as sa(t) = s(t)+ js̃(t). Then, the signal envelope is computed as
the absolute value of |sa(t)| with env(t) = |sa(t)| = |s(t) + js̃(t)|. The envelope spectrum
is presented in Figure 8 and is then obtained with the square root of the FFT and the
envelope signal. Considering the mathematical approach, the rectified signal is equivalent
to the square root of the squared signal, which is also true when calculating the envelope
signal. It is better to apply the square root operation, which helps to visualize superfluous
components of the original signal, which can make it difficult to extract useful information.
Additionally, it is not easy to remove high harmonics with a low pass filter or create aliasing
in the required measurement range. The convolution method produces results with various
frequencies, including the spacing of sidebands, which contains the modulated information
of the desired signal. Next, the resultant envelope signal is used as an input for the
continuous wavelet transform.
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3.3. Generating a 2-D Defect Signature Image with a Wavelet Transform

The CWT is recognized as an appropriate method for investigating nonlinear and
nonstationary signals since it shifts a time-domain signal into a time-frequency domain.
As the result, this method yields correlation coefficients through a convolution operation
between a mother wavelet and the original signal. There are two important parameters
associated with mother wavelet functions. The first one is a scaling parameter, which allows
for modifying the shape of the mother wavelet by stretching or contracting. The second
parameter is called the shifting parameter and helps to control the movement of the mother
wavelet function along the signal being investigated. By varying the scaling parameter and
performing shifting with the mother wavelet, the dynamic frequency characteristic of the
signal can be obtained.
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The process of detecting the rolling-element bearing local faults using the wavelet
transform has been analyzed by many researchers. Here, the filter includes the fault-
associated frequency band to create a 2-D representation after generating the envelope
signal. The squared module values of the wavelet coefficients and analyzing the squared
envelope signals in the frequency domain help extract important information for fault
diagnosis. Each type of fault is associated with the specific fault frequencies, and the
envelope analysis can be used to extract repetitive transient peaks in the frequency domain
as well as the modulation patterns depending on the fault types.

When the time-frequency analysis is more important than the localization of transient
points for an oscillatory signal, the bump wavelet is considered a better choice than the
mother wavelet. It provides better separation of start and end times for every component
and can be used to achieve high precision in every completed test. The relationship of
the scale and center frequency of this symmetrical frequency wavelet can be expressed
as follows:

Ψ̂bump(ζ) = e
1− 1

1−σ2(ζ−v)2 χ(v−1/σ,v+1/σ)(ζ). (5)

Here, σ > 0, v > 0, and σ, v > 1, which is the general convention for CWT. In this
equation, the window lengths of the wavelets can be controlled by adjusting σ, and this
can also modify the shape of the transformed signal. The bump wavelet provides good
frequency localization in comparison with other existing wavelets due to its band-limited
characteristic. In Equation (5), χ represents the indicator function and the peak frequency is
denoted by ζψ = v, where ζψ := argmax

ζ

∣∣∣ψbump(ζ)
∣∣∣. However, the different fault signature

characteristics associated with the mother wavelet location and properties of the subsequent
child wavelet are controlled by the translation matrix, v. Regarding the vibration signal, the
slow variation elements are captured by the stretched wavelet, whereas the fast variation
elements are captured by shrinking the wavelet. Due to this property of the wavelet
transform, the signals containing different types of frequency components can be efficiently
investigated. Also, it provides the foundations for analyzing any concealed elements of the
transient impulse. The bump wavelet possesses a symmetrical representation concerning
the peak frequency. It worth noting that since the mother wavelet acts as a band-pass
filter, the defect frequency ranges should be specified. To determine the fault frequency
ranges accurately and extract the fault information precisely, it is necessary to analyze the
fine-resolution frequency band. During this analysis, multiple fault frequencies of bearings
are analyzed by varying the cutoff frequencies of the bandpass filter. The range of wavelet
coefficients can be defined as below:

Pi,j = f (ω)With w = 0. fmax and fmax = max(FO, FI, SF)× k + fside. (6)

Here, fside and k represent the highest defect frequency of the sideband and the allowed
number of the harmonic, respectively. However, the range of the cutoff frequency starts at
0 Hz for determining the fine resolution in terms of the frequency. These provisions are
used to create 2-D coordinate matrices. Using the colormap, the vertex colors are defined
such that they correspond to the coefficients of the matrix, which finally results in a 2-D
spectrogram, provided in Figure 9.

Finally, the generated 2-D images are divided into training and testing datasets and
are fed into the input of the CNN model.

3.4. CNN Model

The convolutional neural network (CNN) is one of the most effective models in
deep learning. It was mainly introduced to deal with images. The CNN model can
automatically learn high-dimensional features, which makes it very effective in target
detection, optical character recognition (OCR), video analysis, and image classification
applications. Overfitting is a common problem in machine learning methods, but this can
be solved with CNN by performing large-scale deep learning and sharing weights [62].



Electronics 2021, 10, 1248 13 of 20

The CNN model is predominately made up of a convolution layer, pooling layer, fully
connected layer, and output layer. Due to its complex mechanism, it can easily reveal
the inner rules and diverse presentation levels of sample data. It can also reduce the
dependence on training data with the help of some optimization parameters, such as batch
normalization, dropout layers, rectified linear units, and so on [63].
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3.4.1. Convolution Layer

The core building block of the CNN model is known as the convolution layer. This
is the segment of the network where heavy computation occurs. The convolution layer
consists of several learnable kernels, and convolution operation is carried out between
these kernels and the input image to produce feature maps. Then, it provides inputs to the
activation functions to perform a nonlinear operation. After completing the overall process,
a 2-D image will be mapped into a different feature matrix. The convolution operation can
be defined as:

Xl
j = f

(
m

∑
i=1

Xl−1
i .ωl

ij + bl
j

)
(7)

Here, Xl
j is the output of the convolution layer, i and j mean the i-th input feature map

and j-th output feature map, respectively. Additionally, l represents the l layer, Xl−1
j implies

the i-th input feature map in the (l − 1) layer, ωl
ij is the weight matrix, bl

j contains the
bias value, and f (.) indicates the activation function. Among various activation functions,
ReLU is most used because of its ability to increase nonlinearity in CNN, which can be

represented as xj
i = max(0, xj′

i ). When the input data has high variations with large
complexity, several convolution layers are used to build a deep CNN to diagnosis all
variant features accurately.

3.4.2. Pooling Layer

The pooling layer is a down-sampling layer generally linked with the convolution
layer to reduce the size of the feature map to reduce the network computation time and
maintain the same invariance of the distinctive characteristic scale. This reduction is
performed by keeping the exact features unchanged and making the output less sensitive
to environmental change. Among different pooling approaches, such as average pooling,
max pooling, logarithmic pooling, and norm pooling, max pooling is largely applied in
CNN. This can be written as follows:

Xa,b
i = max

(
Xa′ ,b′

i : a ≤ a′ < a + p, b ≤ b′ < b + p
)

(8)

Here, Xa,b
i and Xa′ ,b′

i denote the (a, b) pixel of the ith feature map after and before the
max-pooling operation, respectively. Further, p expresses the stride size of the pooling
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window, which should be greater than 1. However, if p becomes too high, information
related to that CNN layer may be lost.

3.4.3. Fully Connected Layer

The fully connected layer takes the results from the convolution and pooling layers
and classifies the image. In this work, the SoftMax activation is used in the dense layer to
classify different classes. The output of the fully connected layer can be defined as:

yi = f
(

ωixi−1 + bi
)

(9)

Here, yi, xi−1, ωi, and bi represent the output of the fully connected layer, feature
vectors (one-dimensional), weight coefficients, and bias, respectively.

The CNN model implemented in this work includes two convolution layers with
32–3 × 3 and 64–3 × 3 filters for an input image size of 128 × 128 × 3. Here, 128 represents
the image length and width and 3 indicates the three channels of the RGB image. The max-
pooling layer has a size of 2 × 2. Additionally, to ensure better regularization in each layer,
a dropout value of 0.5 is applied. The structure of the CNN model used in this study is
provided in Figure 10.
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Figure 10. Convolutional neural network architecture.

In this CNN model, the trainable parameters are first initialized and then optimization
is performed with the adaptive moment estimation (Adam) algorithm to reduce the error
between the original and predicted values. The categorical cross-entropy is applied to
measure the training error. Several types of CNN models were examined by varying each
of the described layers, and it was observed that the extensive deep version of CNN not
only failed to provide better accuracy but also took a large amount of time for training.
The proposed CNN model runs at 50 epochs to extract features for each type of bearing
condition. Other conventional deep neural network architectures, such as LeNet-5 [64] and
AlexNet [65], were also trained with the same 2-D image to allow for comparison with the
results of the proposed model.

3.5. Performance Evaluating Parameters

The performance of the proposed model was initially described with a confusion
matrix, which gave a numerical representation of correct and incorrect predictions made
by the model. Later, some other evaluation parameters, such as the precision, sensitivity,
specificity, F1-score, and overall accuracy, were computed from the entries of the confusion
matrix. Table 2 lists the expressions for the parameters. Here, TP, TN, FP, and FN correspond
to true positive, true negative, false positive, and false negative, respectively.
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Table 2. Model evaluation parameters.

Accuracy = TP+TN
TP+FP+TN+FN Sensitivity = TP

TP+FN

Precision = TP
TP+FP Speci f icity = TN

FP+TN

F1 = 2 × Precision×Sensitivity
Precision+Sensitivity

4. Experimental Results

The vibration signal recorded from the testbed described in Section 2 is converted into
a 2-D image. Each observation of the vibration signal has a duration of 1 s. To produce a
distinctive image dataset for the CNN model, each instance of the signal is passed through
EEMD decomposition, signal reconstruction, envelope analysis, and spectrogram creation.
Figure 9. depicts three sample spectrogram images for different fault conditions, which are
distinguishable by visible inspection. Later, the proposed CNN model is employed with
the images containing the invariant signatures of different faults to automatically extract
and learn features. While training the CNN model, a total of 988 samples is considered
for training purposes. After that, 248 samples are used simultaneously for validation
during every epoch. To validate the proposed method, two other popular CNN models,
i.e., AlexNet and LeNet-5, are trained with the same dataset. The classification results for
these models are compared with the proposed model. Additionally, two other methods,
i.e., the conventional wavelet spectrogram (CWS) and the defect signature wavelet image
(DSWI) generation method [54], are applied to create 2-D images. These images are
compared with the image created using the proposed method. Figure 11. displays the
images for different conditions produced by the three approaches.
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Here, the images generated from the conventional wavelet spectrogram do not reveal
any distinct fault signatures for any fault conditions of the bearings. However, the other
two methods do show different patterns depending on the fault that occurs in the bearings.
More specifically, because we applied EEMD on the original signal and reconstructed the
signal based on the kurtosis value, our proposed method generated images that show more
noticeable differences between the different fault signatures. This method also indicates
a strong correlation with the specific damage frequencies. This type of image can be
provided as the input to the CNN model to evaluate the classification accuracy. The
confusion matrices obtained from the proposed model for three different image generation
techniques from the vibration signal are provided in Figure 12. From the confusion matrices,
it can be observed that the image generated with the proposed method, i.e., a combination
of EEMD and envelope analysis with CWT, shows comparable classification performance.
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Two CNN architectures commonly used for image processing, i.e., AlexNet and
LeNet-5, are also trained with the generated images. The confusion matrices obtained for
all of these CNN models are given in Figure 13. The accuracy values indicate that every
model is very successful in classifying the faults. Thus, it indicates that the image dataset
produced from our proposed approach is quite efficient for bearing fault diagnosis.
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Other evaluation parameters are presented in Table 3 for comparison. AlexNet and
LeNet exhibit slightly better performance when images produced with our proposed
method are used. Additionally, when the CNN architecture discussed in this paper is
combined with the image set, an accuracy of 99.19% is achieved, which is slightly higher
than the other two models.
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Table 3. The evaluation parameters for different CNN architectures.

AlexNet LeNet Proposed CNN

CWS DSWI Our Method CWS DSWI Our Method CWS DSWI Our Method

Precision 0.91 0.98 0.98 0.89 0.95 0.98 0.95 0.98 0.99

Sensitivity 0.90 0.97 0.99 0.88 0.96 0.99 0.95 0.99 0.99

Specificity 0.91 0.98 0.98 0.90 0.96 0.99 0.94 0.99 0.99

F1-score 0.91 0.98 0.98 0.89 0.96 0.98 0.95 0.98 0.99

Accuracy (%) 90.72 97.98 98.38 89.11 95.97 98.79 95.56 98.79 99.19

The DL models were running on Windows 10 having a 3.60 GHz CPU of Intel with
16 GB RAM. With the constructed 2-D images corresponding to different bearing faults,
the LeNet, AlexNet, and our proposed CNN model took 303.177 s, 983.20 s, and 503.568 s,
respectively, to produce the outputs. The training time can be reduced significantly by
using GPU programming-based implementation. Observing this, it can be concluded that
the LeNet model is faster than the other two, but the proposed model attains the highest
accuracy although its training takes twice more time than the LeNet model.

5. Discussion

The evaluation parameters used in this study indicate that the proposed method is
effective and reliable. Due to the noise produced in the surrounding of the induction motor,
it is essential to remove the noisy components from the signal for extracting fault-associated
frequencies more accurately. In this regard, the EEMD method was applied to filter out
the noise components presented in the high-frequency range from time-series data and
reconstruct the signal with selected IMFs. The reconstructed signal contains the fault-
associated frequencies, which are verified by the envelope spectrum. The combination
of the EEMD-CWT approaches is applied in this work for converting the 1-D signal into
a 2-D image and reflects the repetitive fault signatures in its pattern. Though the CNN
method has performed better with two-dimensional space data, finally a simple CNN
model has been built to evaluate the classification performance. In the future, the proposed
model can be trained with the real-time data obtained from the device and provide a good
solution to prevent equipment failure in the industry. To operate with the real-time data
for diagnosing bearing faults with the proposed model, an intermediate system (private
cloud) should be added between the sensors and the cloud to turn the real-time data into
training and testing data sets according to the preprocessing method, to be sent to the
machine-learning model in the public cloud [66]. In real-time monitoring, the security and
privacy of DL models are a significant concern nowadays. An adversary can manipulate
the model by intervening either in the training and/or testing phase as described in [67].
However, since the goal of this work was to build a fault classification approach based
on spectrogram imaging of the vibration signals, security aspects have not been analyzed,
which could be a future scope of this work.

6. Conclusions

In this paper, a data-driven intelligent fault diagnosis method for bearings is presented
that involves an EEMD-CWT based 2-D spectrogram image generation technique from a
1-D vibration signal for the CNN model. In the image generation phase, ensemble mode
decomposition (EEMD) is applied to decompose the signal into multiple IMFs, and the
kurtosis value is used to extract effective IMFs that contain bearing fault signatures. Then,
with these extracted IMFs, the signal is reconstructed and ready to generate a 2-D represen-
tation of the signal. Using this signal, we then utilize envelope analysis and the continuous
wavelet transform with the individual damage frequency band, which finally produces a
2-D image that has discriminative patterns that show a strong correlation with the defect
frequencies of bearings. We also propose a customized CNN architecture that can efficiently
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extract all the necessary features related to various faults from the images to ensure the
high performance of the model. Two previously established image generating techniques
are also used to validate our proposed image generation technique, and two commonly
used CNN models demonstrated better classification results with our generated images.
By analyzing all the experimental findings, we find that our overall method achieves more
than 99% accuracy, which is also true for the other performance measuring parameters.
Therefore, the combination of the EEMD-based signal reconstruction method, new time-
frequency–based 2-D-fault-indicating image generation, and deep learning-based method
can be an efficient classification approach for various faults in rolling element bearings.
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