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Abstract: The main contribution of this paper is to show a new AC/DC converter based on the
rearrangement of the flyback converter. The proposed circuit only manages part of the energy
and the rest is delivered directly from the source to the load. Therefore, with the new topology,
the efficiency is increased, and the stress of the components is reduced. The rearrangement consist of
the secondary of the flyback is placed in parallel with the load, and this arrangement is connected
in series with the primary side and the rectified voltage source. The re-arranged flyback is only
a reductive topology and with no magnetic isolation. It was studied as a power supply for LEDs.
A low frequency averaged analysis (LFAA) was used to determine the behavior of the proposed
circuit and an equivalent circuit much easier to analyze was obtained. To validate the theoretical
analysis, a design methodology was developed for the re-arranged flyback converter. The designed
circuit was implemented in a 10 W prototype. Experimental results showed that the converter has a
THDi = 21.7% and a PF = 0.9686.

Keywords: lighting; light-emitting diodes; LED driver; electrolytic-capacitor-less converter; partial
power processing converters; power factor correction (PFC)

1. Introduction

Nowadays, LEDs are considered the future of lighting, since they have an increasing
demand caused by the long useful life that they have, around 50,000 h [1] and the lighting
efficiency they present, which can reach up to 160 lm/W in the laboratory. Power supplies
must meet power quality standards, which contemplate total harmonic content (THDi) at
the input current and power factor (PF) [2]. The guidelines for lighting systems connected
to the line are specified in the IEC61000-3-2 class C standard [3].

In general, it is common to find LED power supplies with a power factor correction
(PFC) stage, after the bridge of the rectifier diode, to ensure regulatory compliance. The
single-stage PFC converter has the advantage of having high efficiency since only one
converter processes the total energy.

However, the power supply also must convert the AC power from the main line to
the constant power that the LED needs for good performance [4,5], but to achieve this,
it is necessary to have an element that can store a large amount of pulsing energy. A
large capacitor could solve this problem; however, large capacitance values are generally
handled in electrolytic capacitors, which generate a bottleneck due to their short lifespan,
compared to LEDs, so it is recommended to avoid their use [6–8].
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To avoid the use of the electrolytic capacitor, another converter is usually added,
in series or parallel to try to reduce the low-frequency current ripple that is supplied to
the LED and operate with a low capacitance value. This solution generates a two-stage
converter; the first with the task of the PFC and the second that must compensate for the
low-frequency ripple; this latter maintains the advantage of a fast control action [9,10].
This allows the use of film capacitors that have a lifespan similar to that of LEDs [1,7,8].
However, the overall efficiency of the lighting system is decreased and therefore reduces the
ratio lumens per watt (lm/W). This is because the total energy of the system is processed
twice.

Some works seek alternative solutions through other techniques, such as integrated
converters [11–18], harmonic injection [19–21], ripple cancellation and ripple ports [17,22–31],
and power decoupling techniques were also analyzed [32–35].

All of them have a PFC converter as the first stage and make some adjustments in the
operation of the circuit to change the energy processing and eliminate the low-frequency
ripple current. In these converters, the energy is not processed twice, since they follow the
principle of reduced redundant energy processing (R2P2) [18,22,36–38]. They prevent the
energy processed by one converter from being completely processed by another converter.
Some of these jobs are called 1.5-stage converters by themselves.

In this work, a converter is presented that does not seek to solve the output capacitor
problem. However, the principle of reduced redundant power processing (R2P2) is taken
further and created a 0.5-stage converter, which can improve the efficiency of any PFC
converter and still comply with corresponding regulations.

The proposed converter is a re-arranged variation of the flyback converter; placing
the secondary of the flyback in parallel with the load and this arrangement is connected in
series with the primary side and the rectified voltage source. This configuration allows part
of the energy from the source to pass directly to the load, and another part to be processed
by the rearranged flyback converter, thus increasing the efficiency of the entire system. To
analyze the proposed circuit, a low frequency averaged analysis (LFAA) was carried out,
which resulted in an equivalent circuit that was very easy to evaluate and thus determine
its behavior and design method. As the flyback converter is an isolated topology, it is
possible to use some other of the aforementioned methods, such as ripple ports, to be able
to eliminate low-frequency ripple current in the load. This paper is organized as follows:
Section 2 presents and explains the operation and mathematical analysis of the converter.
Section 3 focuses on converter design and simulation in Spice. Section 4 shows the results
obtained, and finally, in Section 5, the main conclusions of this document are presented.

2. Mathematical Analysis of the Proposed Circuit

The interface between the AC power supply and an LED load is called online LED
driver, the driver should have a power factor greater than 0.9 according to the U.S. Energy
Star program [2]. The LED drivers must also comply with the current harmonics level
specified in IEC 61000-3-2 Class C [3]. Therefore, a Power Factor Converter (PFC) should
be used to meet the usual requirements for an LED power supply. In Figure 1 the proposed
topology is shown. The converter consists of a variation of the flyback converter in which
the secondary stage is connected in parallel with the LED lamp and these in turn in series
with the primary stage.
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Figure 1. Proposed topology: Rearranged flyback converter, with primary and secondary in series. 

In order to carry out the analysis of the rearranged flyback converter, a low-frequency 
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complies with the corresponding regulations, knowing its efficiency, and evaluating its 

feasibility of implementation. The LFAA model the behavior of the flyback converter at 
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of the flyback converter, the primary side can be represented as a loss-free resistance (RF), 

this resistance represents the average power delivered to the primary side of the flyback 

converter (PFi), the energy “consumed” by this resistance is transferred to the secondary 

side of the flyback converter that is modeled as a direct current voltage source (VF), as 

shown in Figure 2. 

On the LED side, it can be modeled as a series direct DC voltage source with a resis-

tor, as shown in Figure 3. 

Figure 4 shows the equivalent low-frequency scheme corresponding to the circuit 

proposed in Figure 1. Where: vr is the rectified Voltage, ir is the rectified Current, VF is the 
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senting the primary of the flyback converter, VD representing the LED threshold voltage 
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Figure 1. Proposed topology: Rearranged flyback converter, with primary and secondary in series.

In order to carry out the analysis of the rearranged flyback converter, a low-frequency
average analysis (LFAA) was used; This is used to know in a general way if a topology
complies with the corresponding regulations, knowing its efficiency, and evaluating its
feasibility of implementation. The LFAA model the behavior of the flyback converter at
the frequency line. At this frequency and due to the discontinues conduction mode (DCM)
of the flyback converter, the primary side can be represented as a loss-free resistance (RF),
this resistance represents the average power delivered to the primary side of the flyback
converter (PFi), the energy “consumed” by this resistance is transferred to the secondary
side of the flyback converter that is modeled as a direct current voltage source (VF), as
shown in Figure 2.
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Figure 2. Flyback model in DCM for the LFAA.

On the LED side, it can be modeled as a series direct DC voltage source with a resistor,
as shown in Figure 3.
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Figure 4 shows the equivalent low-frequency scheme corresponding to the circuit
proposed in Figure 1. Where: vr is the rectified Voltage, ir is the rectified Current, VF
is the average voltage in the secondary of the flyback converter, RF Loss-free resistance
representing the primary of the flyback converter, VD representing the LED threshold
voltage of the LED model, RD is the resistance of the LED model.
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The loss free resistance is evaluated with the following expression:

RF =
PFi

I2
Rrms

=
PFi

2
T
∫ T

2
0 i2r dt

(1)

where IRrms is the RMS value of ir.

2.1. Analysis of the Power Factor (PF) and the Current Total Harmonic Distortion (THDi) Using
LAAA

In Figure 4, it is observed that the LED is powered by the voltage source VF, it is
interesting to obtain the expression of ir. applying Kirchhoff’s voltage law to the scheme
we obtain:

vLED = VF = VD + iD · RD (2)

ir =
vr −VF

RF
(3)

Additionally, the following observations were made:

1. The topology is reductive, so it is always true that VF < Vr, where Vr is the peak
voltage of vr(t), as shown in (4).

2. There will be current flow through RF if vr > VF, when vr < VF the current ir(t) = 0, as
Vr approaches VF there will be very long death times. Therefore, the ir waveform will
be the same as iac at T/2 as shown in Figure 5.
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vr = Vr|sin ωt| (4)

where tx is a constant that represents the dead time, which is given by:

tx =
sin−1

(
VF
Vr

)
2π f

=
sin−1(m)

ω
(5)
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where m = VF/Vr is the gain of the proposed converter, ω is the angular frequency and f is
the line frequency.

In order to calculate the PF and THDi in the proposed converter, it is necessary to
know the harmonics of the input current waveform (iac), shown in (6). For this, tx can be
used in the integration limits of the calculation of the Fourier coefficients of iac in (7) and
verify if the topology meets the requirements of IEC61000-3-2 class C.

iac =

{ Vr sin(ωt)−VF
RF

tx < t < T
2

Vr sin(ωt)+VF
RF

T
2 < t < T − tx

(6)

iac = a0︸︷︷︸
dc

+
50

∑
n=1

(an cos(nωt) + bn sin(nωt))︸ ︷︷ ︸
ac

(7)

The waveform being analyzed (iac) is an odd function, therefore there are only odd
harmonics. The THDi is obtained from (8), where I1 is the fundamental component that is
defined in (9), and In is the amplitude of the n-th harmonic that is defined in (10).

THDi = 100 ·

√√√√ 50

∑
n=3

(
In

I1

)2

(8)

I1 = 2 cos(ωtx) sin(ωtx)− 4m cos(ωtx)− 2ωtx + π (9)

In =
−4

n(n− 1)(n + 1)
sin
(nπ

2

)2


m ·
(
n2 − 1

)
cos(nωtx)+(

n2+n
2

)
sin((n− 1)ωtx)−(

n2−n
2

)
sin((n + 1)ωtx)

 (10)

Returning to (8) and assuming the main voltage is sinusoidal the PF is obtained by:

PF =
1√

1 + THDi2
1002

(11)

Figure 6 shows the plot of (8), assuming THDi ≤ 32%., it can be seen that the gain m
can vary from 0 to 0.46. If m > 0.46 the THDi will be very high and the power factor PF
very low.
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Regarding the requirements of the IEC61000-3-2, Figure 7 shows the curves for the
odd harmonics from n = 3 to n = 15, it is observed that the topology is limited in a range of
0 < m < 0.41.
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From Figure 8, where (11) is plotted, it can be seen that the topology meets the
requirements of a PF > 90 without a problem in a range of 0 < m < 0.41.
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From this section it is concluded that the proposed topology complies with all applica-
ble standards in the range of 0 < m < 0.41.

2.2. Analysis of the Power Flow in the Converter

In order to analyze the power flow in the proposed converter the following concepts
are defined in Table 1.

Figure 9 shows the power flow diagram of a conventional flyback compared with the
proposed rearranged flyback. In this diagram, it is easier to understand the operation of the
proposed converter, in which it is observed as part of the input power Pi is supplied directly
to the load, while the other fraction is processed by the PFi flyback converter. Therefore,
the total efficiency concerning the conventional flyback will be improved.
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Table 1. Power flow concepts.

Symbol Description Definition

PL Average power consumed by the load PL = 1
T
∫ T

0 vLEDiddt (12)
Pi Average power delivered by the main source Pi =

1
T
∫ T

0 vrirdt (13)

PFi
Average power delivered to the primary side of the

flyback converter PFi =
1
T
∫ T

0 vRFirdt (14)

PFo
Average power delivered by the secondary side of the

flyback converter PFo = 1
T
∫ T

0 VFirdt (15)

Q
Ratio between the power processed by the flyback

converter and the input power of the proposed
converter

Q = PFi
Pi

(16)

η Efficiency of the proposed converter η = PL
Pi

(17)

ηF Efficiency of the flyback ηF = PFo
PFi

(18)
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Average power delivered by the secondary side 

of the flyback converter 0

1 T

Fo F rP V i dt
T

 
 (15) 

Q 

Ratio between the power processed by the fly-

back converter and the input power of the pro-

posed converter 

Fi

i

P
Q

P


 (16) 

η Efficiency of the proposed converter L

i

P

P
 

 (17) 

ηF Efficiency of the flyback 
Fo

F

Fi

P

P
   (18) 
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Figure 9. Power flow diagrams, (a) conventional flyback and (b) proposed rearranged flyback. Pi is
the input power to the converter.

The percentage of power processed by the flyback is called the constant Q. The range
of Q must be 0 < Q < 1, if Q is greater than 1 there is no point in implementing the topology
since instead of having benefits, low efficiency and greater electrical size would be obtained
concerning an isolated basic flyback.

According to Figure 9 the total efficiency η of the converter will be:

η =
PL
Pi

= Q(ηF − 1) + 1 (19)

This equation was plotted in Figure 10 assuming an arbitrary value for the flyback
efficiency ηF = 0.9. As can be seen in this figure, regardless of the Q value, the efficiency of
the proposed converter will always be greater than the efficiency of a conventional flyback.
Total efficiency will increase as the flyback converter processes less energy.
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Substituting (3) and (4) in the expressions of Table 1 with the definition of m:

PFo =
VF
T
2

∫ T/2−tx
tx

irdt

= mV2
r (2ωmtx−πm+2 cos(ωtx))

RFπ

(20)

PFi =
RF
T
2

∫ T/2−tx
tx

i2r dt

=
V2

r (2 cos(ωtx)[sin(ωtx)−4m cos(ωtx)]+(π−2ωtx)(1+2m2))
RFπ

(21)

Pi =
1
T
2

∫ T/2−tx
tx

vrirdt

= V2
r (2 cos(ωtx) sin(ωtx)−4m cos(ωtx)−2ωtx+π)

RFπ

(22)

Q =
−2ωm2tx + πm2 − 2m cos(ωtx)

cos(ωtx) sin(ωtx)− 2m cos(ωtx)−ωtx + π/2
+ 1 (23)

Iravg = 1
T
2

∫ T/2−tx
tx

irdt

= Vr(2ωmtx−πm+2 cos(ωtx))
RFπ

(24)

In Figure 11, the graph (23) is obtained, in which it is observed that when m increases,
Q decreases; this is favorable since the flyback by processing fewer power benefits the total
efficiency of the system.
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3. Design of the Rearranged Flyback

For the implementation of the rearranged flyback converter circuit, LEDs were pur-
chased from the manufacturer Seoul Semiconductor with part number SAW0LH0A. An
array of 8 LEDs was made in parallel, which is shown in Figure 14.

The resulting specifications of the LED array are shown in Table 2, which will be used
to simulate at low frequency.

Table 2. Technical specifications of the LED test lamp.

VD RD ID VLED PL

56 V 28.1 Ω 160 mA 60.5 V 9.68 W

In order to calculate the components of the converter, some design parameters must
be proposed, which are shown in Table 3, among them it is worth noting that the flyback
dead time is defined in DCM for AC-DC converters [16]. With the values of Table 3, and
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the equations previously developed, the necessary values for the implementation of the
converter are shown in Table 4.

Table 3. Design parameters proposed.

Parameter Equation and Value

Line voltage vac = 127 Vrms
Peak voltage Vr = 127 ·

√
2 ≈ 180 V

Proposed flyback efficiency ηF = 0.95
Average tensionin the secondary VLED = VF = 60.5 V

Proposed duty cycle D = 0.405
Switching frequency fs = 107 kHz

Proposed duty cycle of discharge Desc = 0.302
Proposed voltage ripple %VRip = 16%

EMI capacitor used Cemi ≈ 92 nF

Table 4. Design of the proposed converter.

Parameter Equation and Value

Gain m = VF
Vr

= 60.5V
180V ≈ 0.336

Dead time of ir. tx =
sin−1(m)

ω = 909.26 µs
THDi THDi = 22.56%

PF PF = 97.55%
Primary winding impedance RF = 971.918 Ω,

Primary winding power PFi = 5.904 W,
Average input current iravg = 62.41 mA

Electrical Size Q = PFi
Pi

= 60.9%
Average flyback output power PFo = ηFPi ≈ 5.6 W
Average voltage at the primary Vin =

√
PFi.RF ≈ 75.6 V

Average current in the secondary Io = PFo
VF
≈ 92.65 mA

Flyback converter gain M = Vo+Vdiode
Vin

= 60.5+1
75.7 ≈ 0.813

Discontinuity parameter k =
√

Desc ≈ 0.248
Primary inductance Lp =

D2∗V2
in

2∗PFi∗ fs
≈ 757 uH

Transformation relation N = D
M∗Desc ≈ 1.659

Secondary inductance Ls =
Lp

N2 ≈ 278.4 uH
Capacitor C = Pi

4·π·60Hz·V2
F ·Vrip

≈ 22 uF

Calculated EMI inductor Lemi ≈ 1

Cemi ·
(

2·π· f
10

)2 ≈ 2.7 mH

In order to evaluate the proposed circuit before the implementation, a simulation of
the circuit was made in Spice. In Figure 12, The schematic is shown, and the results of the
simulation are shown in Figure 13.
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Figure 12. Proposed circuit simulated in spice.
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4. Experimental Results

A laboratory prototype has been built to carry out experimental tests and evaluate
the performance of the proposed converter. an IR2106 driver and a MOSFET IRF840 were
used. The prototype for experimental tests is shown in Figure 14.

Figure 15 shows the main line current and voltage waveforms. As can be seen in
this Figure the current waveform shows the death time tx predicted by the LFAA and this
waveform is similar to the theoretical waveform shown in Figure 5.

The THDi of the input waveforms of Figure 15 was measured with the HIOKI model
PW3198 power quality analyzer, which is shown in Figure 16, which shows that the THDi
is close to 21.7% and the harmonics are within the requirements of the EN 61000-3-2 class
C standard. As for the PF obtained in experimental tests with the energy quality meter, it is
shown to be 0.9686 in Figure 17.

The instantaneous voltage of the LED lamp obtained in experimental tests is shown
in Figure 18. The average voltage applied to the LED was VLED = 60.5, the same of the
specifications, the voltage ripple obtained was 18.16%. The instantaneous current of the
LED lamp obtained in experimental tests is shown in Figure 19. The average current
applied to the LED was ILED = 160.3 mA, the current ripple obtained was 212%. Finally, in
Figure 20 the instantaneous output power in the LED is shown. which shows an average
power of Po = 10.62 W.
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Figure 20. Instantaneous power in experimental tests of the LED lamp. 3 W/div, average power in
the LED 10.62 W.

Finally, Tables 5 and 6 summarize what was obtained in the implementation of the
topology and the percentages of error obtained, and as expected, there are parameters such
as in the case of THDi with a higher percentage of error, this is since losses of the elements
used were not considered, in addition to this the construction of the prototype, to mention
the manual manufacture of the transformer, which can considerably affect the performance
of the entire system.

It should be noted that the flyback only processes 63% of the input power.
Finally, Table 7 shows a small comparison with a couple of similar power topologies. It

can be seen that the topology has a good efficiency and power factor compared to the other
two topologies, and even less energy stored in the capacitor is reported, which translates
into a physically smaller capacitor. However, it has a greater current ripple.

Table 5. Summary of results of the topology.

Parameter Ideal PSpice Prototype

THDi 22.58% 19% 21.7%
PF 97.55% 97.9% 96.86%

Average lamp voltage VLam 60.5 V 60.56 V 60.5 V
Voltage ripple percentage 16% 14.86% 18.16%

Average lamp current ILam 160 mA 159 mA 163 mA
Current ripple percentage 0 194.8% 212.1%
Average lamp power PLam 9.68 W 9.62 W 10.61 W
Average rectified power Pi 9.68 W 10.4 W 11.55 W

Processed power Q 60.96% 61.5% 62.94%
Flyback efficiency ηF 95% 90% 88%

Efficiency w/o bridge rectifier ηT 95% 92.5% 91.4%
Efficiency AC line-lamp ηS 95% 90.8% 88.79%
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Table 6. Error rates in the topology.

% Error Ideal-Spice Ideal-Prototype Spice-Prototype

THDi −15.85 −3.89 14.21
PF 0.358 −1.014 −1.36

Average lamp voltage VLam 0.099 0 −0.099
Voltage ripple percentage −7.25 13.3 22.2

Average lamp current ILam −0.625 0.18175 0.8176
Current ripple percentage - - 8.88%
Average lamp power PLam −0.6198 9.607 10.29
Average rectified power Pi 7.43 19.3 11.05

Processed power Q 0.885 3.24 2.34
Flyback efficiency ηF −5 −7.36 −2.2

Efficiency w/o bridge rectifier ηT −2.63 −3.78 −1.189
Efficiency AC line-lamp ηS −4.42 −6.53 −2.21

Table 7. Comparison with other reported topologies.

Topology Potencia de
Lámpara THDi PF Efficiency Current

Ripple Capacitor Output
Voltage

Energy in the
Capacitor

[15] 20 W - 80.3% 80% 14.6% 10 uF 390 V 760 mJ
[13] 9.8 W 17% 97% 87% 14.1% 4.7 uF 243 V 138 mJ

This paper 10.61 W 21.7% 96.56 88.79% 212.1% 22 uF 66 V 47.9 mJ

5. Conclusions

Through this document, a new converter has been evaluated which is based on a
variant of the flyback converter and is used as a power supply in solid-state lighting
systems.

The proposed converter consists of a rearrangement of the components of the conven-
tional flyback, the secondary is placed in parallel with the LED load and this set is in turn
placed in series with the primary and the voltage source.

The primary advantage of this converter is the partial processing of energy, which
goes beyond the principle of reduced redundant energy processing (R2P2) [16], one part of
the energy is directly delivered to the load and the other part is processed by the converter.
Since in this rearrangement the flyback converter processed less energy, the stress in the
components is lower than in a conventional flyback. As well, this operation allows the
efficiency of the proposed converter to always will be greater than the conventional flyback
converter. The main disadvantages are the converter have not magnetic isolation, it is a
reductive topology and the power factor depends on the gain m of the converter.

The mathematical analysis of the topology of the retrofitted flyback converter was
performed and it was shown that it complies with the requirements established by the
IEC61000-3-2 class C standard and the FIDE directives in an interval of 0 < m < 0.41, with a
THDi = 21.7% and a PF = 0.9686.

In order to validate the mathematical calculations, a 10 W prototype was built. Experi-
mental results show the rearranged flyback processed only 63% of the input power and the
other 37% flows directly to the load.
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