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Abstract: In recent years, interest in the health effects of natural antioxidants has increased due
to their safety and applicability in cosmetic formulation. Nevertheless, efficacy of natural antiox-
idants in vivo is less documented than their prooxidant properties in vivo. Plant extracts rich in
vitamins, flavonoids, and phenolic compounds can induce oxidative damage by reacting with various
biomolecules while also providing antioxidant properties. Because the biological activities of natural
antioxidants differ, their effectiveness for slowing the aging process remains unclear. This review
article focuses on the use of natural antioxidants in skincare and the possible mechanisms underlying
their desired effect, along with recent applications in skincare formulation and their limitations.
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1. Introduction

The skin is the body’ s largest living organ, and it protects the body from the outside
environment by maintaining homeostasis, keeping harmful microbes and chemicals out,
and blocking sunlight [1]. The stratum corneum, the outermost layer of the skin, is a
selectively permeable, heterogeneous epidermal layer that provides protection against
dryness and environmental damage while retaining sufficient moisture to function. [2].
Impairment in skin barrier function frequently manifests as altered stratum corneum
integrity, which leads to an increase in transepidermal water loss and a decrease in skin
hydration [3]. The term “cosmeceutical” refers to cosmetics that contain active chemicals
having drug-like properties. Cosmeceuticals with medicinal properties have beneficial local
effects and prevent degenerative skin diseases. [4]. They enhance appearance by supplying
nutrients required for healthy skin. They can improve skin tone, texture, and radiance
while reducing wrinkles. Cosmeceuticals are a rapidly expanding subset of the natural
personal care industry. Although natural ingredients have been used for centuries in
skincare, they are becoming increasingly prevalent in modern formulations [5]. The phrase
“natural” refers to a substance that is derived directly from plants or animal products and
is generated or found in nature [6]. Herbs, fruits, flowers, leaves, minerals, water, and land
can be sources of natural ingredients. Natural ingredients’ efficacy in skincare products is
determined by their in vitro and in vivo efficacy as well as the type of dermatological base
into which they are incorporated. Plants have long been used for medicinal purposes, and it
is likely that new products containing natural oils and herbs will continue to emerge on the
market in the coming years. Before the use of synthetic substances with similar properties,
plants were the primary sources of all cosmetics [7]. Natural plant molecules continue
to pique the interest of researchers. However, using extracts necessitates paying close
attention to extraction methods, plant-to-solvent ratios, and active-ingredient content. The
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use of plant extracts in skincare products is demanded by consumers, who are becoming
increasingly concerned with purchasing ecofriendly products [8]. However, consumers,
are frequently unaware that natural products are complex mixtures of many chemical
compounds that can cause adverse reactions. To avoid this issue, researchers should
chemically characterize their extracts with regard to composition [9]. Furthermore, the
in vitro cytotoxic potential of extracts should be tested in several human cell lines prior
to human use, and the irritant potential of cosmetic formulations can be screened. These
procedures can help to ensure the safety of natural products and thus their acceptability on
the market [10,11]. Bioactive extracts and phytochemicals from various botanicals are used
for two purposes: (1) body care and (2) as ingredients to influence the biological functions of
the skin, providing nutrients for healthy skin [12]. Vitamins, antioxidants, essential oils and
oils, hydrocolloids, proteins, terpenoids, and other bioactive substances are all abundant
in botanical products [13]. These extracts can have a variety of properties depending on
their compositions. Modern skincare cosmetics are distinguished by their multiactivity,
which enables multidirectional complex effects even in relatively simple formulations. The
biologic impacts of the most widely used cosmetic surgery, which involves coating the
epidermis with a hydrolipid occlusion layer or various forms of antiradical protection, are
a good example. The meaning of cosmetic multi-activity is encoded in a legal definition of
cosmetic product use: “keeping (the skin) in good condition” [14–16]. A comprehensive
search was performed to find reports of the use of natural antioxidants in skincare in
PubMed, Science Direct, and Scopus, and the articles satisfying the search criteria were
screened and filtered. In this review article, we summarize the use of natural antioxidants
and their possible mechanisms in skincare applications.

2. Antioxidants

Antioxidants are molecules that can oxidize themselves before or instead of other
molecules. They are compounds or systems that can interact with free radicals and stop a
chain reaction before vital molecules are harmed [17]. Antioxidants are used in food, cos-
metics, beverages, pharmaceuticals, and even the feed industry. They can be used as health
supplements and active ingredients as well as stabilizers [18]. Antioxidants can be syn-
thetic or natural, and both are used in cosmetic products [19]. Synthetic antioxidants (e.g.,
butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and propyl gallate) are
widely used because they are inexpensive to produce [20]. However, research suggests
that excessive consumption of synthetic antioxidants may pose health risks. Despite the
fact that synthetic antioxidants dominate the market, demand for natural antioxidants has
increased in recent years and is expected to continue [21]. This pattern can be explained
by a growing consumer preference for organic and natural products that contain fewer
additives and may have fewer side effects than synthetic ingredients.

3. Natural Antioxidants in Cosmetics

Natural antioxidants used in the cosmetic industry include various substances and
extracts derived from a wide range of plants, grains, and fruits, and are capable of reducing
oxidative stress on the skin or protecting products from oxidative degradation [22]. One of
the major causes of oxidative stress that accelerates skin aging is reactive oxygen species
(ROS) [23]. Intrinsic aging is associated with the natural process of aging, whereas extrinsic
aging is associated with external factors that affect the aging process (e.g., air pollution, UV
radiation, and pathogenic microorganisms). Photoaging is most likely the primary cause
of ROS production [24–28]. Factors that drive the process of skin aging are presented in
Figure 1. Several potential skin targets have been discovered to interact with ROS (e.g.,
lipids, DNA, and proteins) [29]. Antioxidant molecules can be enzymes or low-molecular-
weight antioxidants that donate an electron to reactive species, preventing the radical chain
reaction, which prevents the formation of reactive oxidants, or behave as metal chelators,
oxidative enzyme inhibitors, or enzyme cofactors [30]. Antioxidants can also be used as
stabilizers, preventing lipid rancidity. Lipid oxidation occurs not only in cosmetics but
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also in the human body [31]. Thus, when antioxidants are present in a product, they may
serve multiple functions. The number of radicals increases during the initiation phase of
lipid oxidation. Molecular oxygen and fatty acid radicals react during the propagation
phase, resulting in the formation of hydroperoxide products. Hydroperoxides are unsta-
ble and can degrade to produce radicals, which can accelerate the propagation reaction.
The termination phase is dominated by radical reactions. Antioxidants can inhibit lipid
oxidation by reacting with lipid and peroxy radicals and converting them to more stable,
non-radical products [32–35]. Additionally, antioxidants can deplete molecular oxygen,
inactivate singlet oxygen, eliminate peroxidative metal ions, covert hydrogen into other
antioxidants, and dissipate UV light [36]. Antioxidants can be used in cancer treatments,
because the production of ROS is altered during tumorigenesis, with anti-inflammatory
and antimicrobial effects. Plants are well known for producing natural antioxidant com-
pounds that can reduce the amount of oxidative stress caused by sunlight and oxygen [37].
Plant extracts are used in a variety of patents and commercial cosmetic products. Green
tea, rosemary, grape seed, basil grape, blueberry, tomato, acerola seed, pine bark, and
milk thistle are some of the plant extracts commonly found in cosmetic formulations.
Polyphenols, flavonoids, flavanols, stilbenes, and terpenes are natural antioxidants found
in plant extracts (including carotenoids and essential oils) [38]. Antioxidants are classified
as primary or natural antioxidants and as secondary or synthetic antioxidants according to
their function. Mineral antioxidants (such as selenium, copper, iron, zinc, and manganese),
vitamins (C and E), and phyto-antioxidants are examples of primary antioxidants. Gener-
ally, a mineral antioxidant is a cofactor of enzymatic antioxidants [39–43]. Secondary or
synthetic antioxidants capture free radicals and stop the chain reaction. BHA, BHT, propyl
gallate, metal chelating agents, tertiary butylhydroquinone, and nordihydroguaiaretic acid
are examples of secondary antioxidants [44,45]. The use of plant antioxidants is increasing
and may eventually replace the use of synthetic antioxidants. A natural antioxidant can
be a single pure compound/isolate, a combination of compounds, or plant extracts; these
antioxidants are widely used in cosmetic products. Table 1 presents a summary of natural
antioxidants commonly used in cosmetic preparations. Innate antioxidants act as oxygen
free radical scavengers (singlet and triplet), ROS, peroxide decomposers, and enzyme
inhibitors [46–48]. Polyphenols and terpenes are the most common phyto-antioxidants;
this distinction is based on their molecular weight, polarity, and solubility. Polyphenols
have benzene rings with -OH groups attached. The number and position of—OH groups
on the benzene ring determine their antioxidant activity. Phenolic groups influence protein
phosphorylation by inhibiting lipid peroxidation. The most abundant polyphenols are
flavonoids and stilbenes, and the most abundant terpenes are carotenoids, which act as
singlet oxygen quenchers [49].
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Table 1. Natural antioxidants.

S. No Source Antioxidant Potential Activity Reference

1. Apple Phenolic
compounds

Inhibitors of sulfotransferases,
influence epigenetic processes

and heritable changes not
encoded in the DNA sequence,

DNA protection against UV
radiation

[50,51]

2. Baccharis
species

Phenolic
compounds

Inhibit reactive oxygen and
nitrogen species (RONS),

inhibit carrageenan induced
edema

[52]

3. Basil leaves Phenolic
compounds

Antiacne, antiaging, remove
dead skin cells [53,54]

4. Blueberry
pomace

Phenolic
compounds

Enhance polyphenol oxidase
activity, potent antioxidant [55,56]

5. Cape
gooseberry

Phenolic
compounds and

carotenoids
Anticoagulant, antispasmodic [57,58]

6. Carrot Carotenoids,
anthocyanins

Protection from UV-induced
lipid peroxidation, in treatment

of erythropoietic
protoporphyria

[59,60]

7. Chest nut Polyphenols
Moisturizer, in treatment of
oxidative stress-mediated
diseases and photoaging

[61,62]
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Table 1. Cont.

S. No Source Antioxidant Potential Activity Reference

8. Coffee
leaves

Chlorophylls
and carotenoids

Antioxidant, antimicrobial,
antiaging [63,64]

9. Feijoa Phenolic
compounds Antioxidant, antimicrobial [65,66]

10.
Ginkgo
biloba
leaves

Flavonoids

Prevent UVB-induced
photoaging, anti-inflammatory,

antioxidant, blood
microcirculation

[67,68]

11. Goji berry Phenolic
compounds

Antioxidant, prevent skin
aging, immunomodulatory [69,70]

12. Goldenberry Polyphenols Anti-inflammatory, antiallergic [71]

13. Grape
Anthocyanins
and phenolic
compounds

Protection from UV radiation,
antioxidant and antiaging,

depigmenting,
anti-inflammatory, wound

healing

[72,73]

14. Green
algae

Carotenoids and
phenolic

compounds

Prevention of skin aging,
protection from UVR, inhibition

of melanogenesis,
anti-inflammatory, antioxidant

[74,75]

15. Green
propolis

Phenolic
compounds

Anti-inflammatory,
antimicrobial, wound healing [76,77]

16. Jussara
fruit

Phenolic
compounds Antioxidant, natural coolant [78,79]

17. Kumquat
peel

Phenols and
flavonoids

Antioxidant, anti-inflammatory,
skin lightening, suppression of

lipid accumulation
[80,81]

18. Mango Carotenoids Wound healing, prevent skin
aging, antioxidant [82,83]

19. Myrtle

Phenolic
compounds,

flavonoids, and
anthocyanins

Treatment of burn injury,
anti-inflammatory, antifungal [84,85]

20. Olive Phenolic
compounds

Antioxidant, anticancer,
antiallergic, antiatherogenic,

antimutagenic effects
[86,87]

21. Papaya
seeds

Phenolic
compounds

Antioxidant, insecticidal and
repellent, antibacterial, wound
healing, anti-inflammatory and

immunomodulatory

[88,89]

22. Peach fruit
Flavonoids and

phenolic
compounds

Anticancer, antioxidant [90,91]

23. Peel of egg
plant

Phenolic
compounds,
flavonoids,

tannins, and
anthocyanins

Antioxidant, anti-inflammatory,
antiviral and antimicrobial [92]
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Table 1. Cont.

S. No Source Antioxidant Potential Activity Reference

24. Peppermint
Phenolic

compound and
essential oils

Antioxidant, antiaging [93]

25. Pineapple Polyphenols

Antimalarial, antinociceptive,
and anti-inflammatory

activities, improve skin barrier
function

[94,95]

26. Pomegranate Phenolic
compounds

Anti-inflammatory, antioxidant,
antimicrobial, promote hair

follicles
[96,97]

27. Propolis Phenolic
compounds

Wound healing,
immunomodulatory,
anti-inflammatory

[98,99]

28.
Red

Macroal-
gae

Proteins,
polyphenols and
polysaccharides

Prevent skin-aging processes,
promote transepidermal water
loss, simulate sebum content,
and increase erythema and

melanin production

[100,101]

29. Bananas
Phenolic

compounds and
flavonoids

Provide UV protection,
antimicrobial, wound healing [102,103]

30. Spent grain Phenolic
compounds

Antioxidant, skin lightening,
anti-inflammatory [104,105]

31. Turmeric Phenolic
compounds

Anti-inflammatory, antioxidant,
treatment of psoriasis [106,107]

32. Strawberry
Anthocyanins
and phenolic
compounds

Antimicrobial, antioxidant,
antiaging [108,109]

33. Sweet
potato

Polyphenols and
anthocyanins

Antioxidant, wound healing,
serve as natural, safe and

effective colorants,
antimicrobial, antifungal

[110,111]

34. Tomato Flavonoids and
lycopene

Antioxidant, protection from
cell damage, provide protection
against UV rays, wound repair

[112,113]

35. Horse
radish

Phenolic
compounds and

flavonoids
Antimicrobial, antioxidants [114]

36. Withania
somnifera

Phenolic
compounds Antioxidant, skin whitening [115,116]

4. Vitamins

The consumption and absorption of vitamins and antioxidants, primarily through
diet and, essentially, through the use of manufactured supplements, is critical to human
health [117]. The skin is our largest organ, and as our external environmental barrier, it is
at the forefront of the fight against damaging free radicals from external sources. ROS are
formed by ultraviolet light and environmental pollutants [118]. Free radicals are highly
reactive molecules with an unpaired electron that cause damage to the molecules and
tissues around them. Free radicals cause the most significant damage to biomembranes
and DNA [119]. It is believed that using vitamins and antioxidants in cosmetics on a topical
basis can help to protect from and possibly repair the damage caused by free radicals.
Furthermore, some vitamins may be beneficial to the skin due to their effects, such as
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reduction in pigmentation and bruising, activation of collagen production, keratinization
refinement, and anti-inflammatory effects [120].

5. Vitamin A

Vitamin A was the first vitamin to be approved by the Food and Drug Administration
as an anti-wrinkle agent that improves the appearance of the skin’ s surface and has
antiaging properties. Vitamin A is a fat-soluble substance that belongs to the retinoid
family [121]. Aside from retinol, that group includes structurally related substances with
retinol-like biological properties. Because the biological activities of the substances vary, it
is given in retinol equivalents for standardization [122]. Vitamin A and its derivatives are
among the most effective antiaging agents. Cell apoptosis, differentiation, and proliferation
are all regulated by retinoids. Retinoids’ anti-wrinkle properties promote keratinocyte
proliferation, strengthen the protective function of the epidermis, limit transepidermal
water loss, prevent collagen degradation, and inhibit metalloproteinase activity [123,124].
Retinoid activity is associated with a high affinity for nuclear receptors, specifically retinoid
acid receptors and retinoid X receptors. For many years, vitamin A, its derivatives, and
beta-carotene (pro vitamin A) have been popular cosmetic additives. Carrots, tomatoes,
and other yellow vegetables are good sources of beta-carotene [125]. Vitamin A is primarily
found in animal foods such as egg yolk and liver. As a precursor to vitamin A, beta-carotene
is a powerful lipid-soluble antioxidant capable of quenching singlet oxygen—a highly
reactive free radical [126]. Singlet oxygen can cause DNA damage and is mutagenic. Beta-
carotene has been shown to have photoprotective effects on the skin. It provided protection
against UVA radiation effects in studies on mouse and guinea-pig skin. Furthermore,
both beta-carotene and vitamin A were discovered to be photoprotective, as they reduced
the amount of lipid peroxyl radicals in UV-exposed murine skin [127,128]. However,
because beta-carotene is unstable, other forms of vitamin A are commonly used in cosmetic
formulations. Vitamin A and its derivatives, particularly retinol, are among the most
effective antiaging agents [129]. Fat-soluble retinol enters the stratum corneum and (to a
lesser extent) the dermis. It is critical to increase retinol penetration, thereby broadening its
spectrum of activity, and to control a potential action in laboratory tests before improving
procedure effectiveness. After entering the keratinocyte, retinol penetrates its interior and
binds to an appropriate receptor [130,131]. Retinol-binding protein receptors in the cytosol
have a high affinity for retinol. Retinoids may influence transcription and growth factor
secretion in the epidermis. They are responsible for the proliferation of the epidermis’ living
layer, the strengthening of the epidermis’ protective role, and the reduction in excessive
transepidermal water loss. Furthermore, retinoids protect against collagen degradation,
reduce the activity of metalloproteinase, and promote angiogenesis in the dermal papillary
layer. Retinol loosens the connections between epidermal cells, allowing keratosis to
occur [132,133]. Furthermore, it promotes epidermis turnover and the proliferation of
epidermal cells in the basal layer and stratum corneum. The proliferation AP-1 transcription
factor, which is activated by various stimuli, growth factors, and cytokines, plays an
important role in keratinocytes. The AP-1 complex, which includes the c-Jun/c-fos and
c-Jun transcription factor, was increased in retinol-treated aged human skin. Because
retinoids have anticomedogenic properties, they regulate the shedding process within
sebaceous gland ducts [134]. Most importantly, retinoids inhibit the activity of enzymes
involved in lipogenesis as well as sebocyte differentiation and cellular division [135].
Furthermore, they reduce skin discoloration, reduce pigmentation by approximately 60%,
and contribute to the proper distribution of melanin in the skin. Topically applied retinoids
also influence melanocyte function, resulting in a regular melanin distribution in the
epidermis [136]. They are widely used in various cosmetic formulations. Examples of
vitamin A and derivatives in cosmetics are presented in Table 2.
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Table 2. Vitamin A uses in cosmetics and skincare.

S. No. Vitamin A and Its
Derivatives Functions Application References

1. Retinol

Inhibits collagenase
and the expression
of MMP, stimulates
GAGS synthesis and

collagen type 1

Used in
dyspigmentation,

dryness,
anti-wrinkle

treatment

[137]

2. Retinoic acid

Reduces
inflammation in

sebaceous glands,
inhibits keratosis,

stimulates
epidermal cell
proliferation

Used in treatment of
psoriasis, chronic

inflammation of hair
[138]

3. Retinyl acetate and
palmitate

Stimulates
epidermal cell
proliferation,

regulation of sebum,
coverts into retinoid

acid

Stabilizes properties
in wrinkle treatment,
acts as antioxidant

[139]

4. Retinaldehyde

Stimulates
epidermal cell
proliferation,
oxidizes into
retinoic acid

Works as stabilizer
in treatment of

wrinkle
[140]

5. Naphthalenecarboxylic
acid

Acts as a strong
modulator for

keratinization in
hair follicles,

increases
proliferation,

changes expression
of genes and

synthesis of mRNAt

Reduces
inflammation, acne,
excessive keratosis

[141]

6. Tazarotene

Regulates
keratinocyte

differentiation,
proliferation, and

inflammation

Used in treatment of
psoriasis and acne,

works as
photoprotection

from sunlight

[142]

6. Vitamin B

Vitamin B is a water-soluble nutrient found in a variety of foods, particularly whole
grains and green leafy vegetables. Panthenol is the alcohol version of pantothenic acid,
which is known as vitamin B5. It has been used in hair care products for many years
because it acts as a humectant, increasing the water content and improving the elasticity of
hair [117]. Panthenol is an effective moisturizer in cosmetics because of its ability to attract
water into the stratum corneum and soften the skin. Niacinamide belongs to the vitamin
B family [143]. It is produced in the body by the conversion of nicotinic acid, which has
the same vitamin activity as its amide. Because niacinamide is involved in cellular energy
metabolism, DNA synthesis regulation, and transcription processes, various biological
effects can be observed after in vitro and in vivo substitution [144]. Niacinamide is a potent
inhibitor of the nuclear poly (ADP-ribose) polymerase-1 (PARP-1) that regulates NF-B-
mediated transcription and is thus critical for the expression of adhesion molecules and pro-
inflammatory mediators [145]. The anti-inflammatory effects of niacinamide are primarily
based on the inhibition of leucocyte chemotaxis, the release of lysosomal enzymes, and
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the transformation of lymphocytes, rather than on direct vasogenic effects. By inhibiting
keratinocyte factors, niacinamide prevents the reversible transfer of melanosomes from
melanocytes to keratinocytes. This distinguishes niacinamide from other “lightening”
substances that directly inhibit tyrosinase (e.g., arbutin and kojic acid). By inhibiting
keratinocyte factors, niacinamide prevents the reversible transfer of melanosomes from
melanocytes to keratinocytes. This distinguishes niacinamide from other “lightening”
substances that directly inhibit tyrosinase (e.g., arbutin and kojic acid). Niacinamide’s
photoprotective effect is based on both photocarcinogenesis inhibition and protection
against UV-induced immunosuppression [146,147].

7. Vitamin C

Vitamin C, i.e., ascorbic acid (AA), is a hydrophilic molecule that can be found in its re-
duced form (ascorbic acid or ascorbate) or in its oxidized form dehydroascorbic acid, which
is a byproduct of two-electron oxidation of AA [148]. Vitamin C is a powerful antioxidant
that can neutralize oxidative stress via an electron donation/transfer process. In addition
to regenerating other antioxidants in the body, such as alpha-tocopherol, vitamin C can
reduce the amounts of unstable species of oxygen, nitrogen, and sulfur radicals (vitamin
E) [149,150]. Furthermore, research with human plasma has shown that vitamin C is effec-
tive for preventing lipid peroxidation caused by peroxide radicals. Additionally, vitamin C
promotes iron, calcium, and folic acid absorption, which prevents allergic reactions, and
a decrease in the intracellular vitamin C content can lead to immunosuppression [151].
Vitamin C is required for the synthesis of immunoglobulins, the production of interferons,
and the suppression of interleukin-18, (a regulating factor in malignant tumors) production.
When applied topically, vitamin C can neutralize ROS caused by solar radiation and envi-
ronmental factors such as smoke and pollution [152]. Vitamin C has proven be effective for
the treatment of hyperpigmentation, melasma, and sunspots. This appears to be related to
its ability to obstruct the active site of tyrosinase—the enzyme that limits melanogenesis. Ty-
rosinase catalyzes the hydroxylation of tyrosine in 3,4-dihydroxyphenylalanine, resulting in
the formation of a precursor molecule of melanin [153]. Furthermore, vitamin C promotes
keratinocyte cell differentiation and improves dermal–epidermal cohesion [154,155].

8. Vitamins E and K

Vitamin E is a lipid-soluble vitamin found in various foods, particularly soy, nuts,
whole-wheat flour, and oils. Because of its ability to reduce lipid peroxidation, it has nu-
merous health benefits for the eyes and cardiovascular system [156]. Numerous cutaneous
benefits have been demonstrated when vitamin E is applied topically. The most important
property of vitamin E is its strong antioxidant capacity. The term “protector” has been
used to describe the actions of vitamin E and its derivatives because of their ability to
quench free radicals, particularly lipid peroxyl radicals [157,158]. Several studies have
indicated that they can reduce UV-induced erythema and edema. Clinical improvement in
the visible signs of skin aging has been linked to reductions in both skin wrinkling and skin
tumor formation [159]. Tocopherol and its acetyl ester derivative, tocopherol acetate, have
been studied extensively. While tocopherol is the most active form of vitamin E, topically
applied vitamin E esters have also been shown to penetrate the epidermis [156,160].

Phytonadione (vitamin K) is required for the hepatic production of several clotting
factors. Vitamin K is primarily obtained from green leafy vegetables as well as from
intestinal bacteria [161]. In clinical practice, it is used to reverse prothrombin deficiency
states caused by coumadin use. Because parental vitamin K improves bleeding time, there
is a rationale for using topical vitamin K to correct and prevent some of the vascular
manifestations of aging [162]. Topical 1% vitamin K applied twice daily was found to be
effective for both accelerating the resolution of bruising and reducing future bruising. This
was attributed to the ability of vitamin K to prevent and remove extravasated blood in the
skin as well as the ability of retinol to correct certain aspects of photoaging [163].
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9. Polyphenols

Botanical compounds from a variety of chemical classes, including polyphenols,
monoterpenes, flavonoids, organosulfides, and indoles, have been shown in mouse models
to have antimutagenic and anticarcinogenic properties when administered topically or
orally [164]. These compounds’ mechanisms of action include anti-inflammatory and
immune response stimulation, detoxification, antioxidant modulation, and gene expression
alteration [165]. Research has revealed that these compounds act via multiple pathways
and thus maintain tissue homeostasis via multiple mechanisms [166]. Polyphenols have
been extensively studied and are reported to have antioxidant and anti-inflammatory
properties. Polyphenolic compounds are found in various plants, including tea leaves,
grape seeds, blueberries, almond seeds, and pomegranate extract [167]. The beneficial
properties of polyphenols have been supported by several studies on skin cells and on
human skin; thus, these compounds are increasingly being incorporated into cosmetic
and medicinal products [168]. The main polyphenols in green tea are catechins gallocat-
echin, epigallocatechin, and epigallocatechin-3-gallate (EGCG). Research indicates that
EGCG inhibits UVB-induced hydrogen peroxide release from cultured normal epidermal
keratinocytes and suppresses MAPK phosphorylation. Furthermore, EGCG reduces inflam-
mation by activating NFkB. Other phenolic acids found in green tea include gallic acids
and theanine, as well as the alkaloids caffeine, theophylline, and theobromine. Theaflavins,
which are found in black tea, have been shown to inhibit UVB-induced AP-1 induction
by suppressing the action of extracellular-regulated kinase (ERK) and c-jun N-terminal
kinase (JNK). Tea polyphenols can also prevent UVB-induced phosphatidyl-inositol 3-
kinase activation (IP3K) [169,170]. On a molecular level, oral green tea administration to
SKH-1 mice increased the number of UV-induced p53- and p21-positive cells, as well as
the number of apoptotic sunburn cells [171]. In addition to reducing the amount of ROS in
the skin, tea polyphenols provide photoprotection by counteracting UVB-induced local
and systemic immunosuppression. UVR-induced changes in the IL-10/IL-12 cytokines are
inhibited by EGCG. This is achieved by inhibiting the infiltration of IL-10 secreting CD11b+
macrophages into the irradiated site via antigen-presenting cells in the skin and draining
lymph nodes [172].

The polyphenolic phytoalexin component resveratrol is responsible for many of the
beneficial effects of grape seeds, including the antioxidant, anti-inflammatory, and antipro-
liferative activity. The most extensively studied polyphenol is resveratrol (3,5,4′-trihydroxy-
trans-stilbene) [164]. Resveratrol’s protective benefits were demonstrated in in vivo studies,
with topical application to SKH-1 hairless mice prior to UVB exposure resulting in sig-
nificant inhibition of UV-mediated edema and inflammation. Resveratrol’s protective
effects were discovered at the molecular level through inhibition of the inflammation
mediator COX-2, inhibition of ornithine decarboxylase, reduction in hydrogen peroxide,
and decreased lipid peroxidation. The antioxidant property of resveratrol is critical to
its protective effect [173]. Resveratrol reduces UVA-induced oxidative stress in human
keratinocytes by downregulating the Keap1-a protein that binds to Nrf2 and marks it for
degradation. Furthermore, SIRT1 protects against UVB and ROS-induced cell death by
modulating p53 and c N-terminal kinase of c-Jun (JNK) [174].

Sulforaphane, a natural antioxidant found in broccoli, has anticarcinogenic, antidia-
betic, and antimicrobial properties. Topical application of sulforaphane extracts to mouse
skin protected against UVR-induced inflammation and edema by activating Nrf2 and con-
sequently upregulating phase 2 antioxidant enzymes. According to research, the activity
of Nrf2 decreases as we age [175]. The reasons for Nrf2′s reduced activity are unknown,
but there is evidence that Nrf2 loses its ability to bind to the antioxidant response element
sequence in antioxidant genes [176]. Importantly, Nrf2 agonists, such as lipoic acid and
sulforaphane, appear to be able to reverse the ability of Nrf2 to bind to the cis-element.
Sulforaphane has been shown to restore Nrf2 transactivation and provide cytoprotection
against UVB-induced injury of human lens epithelial cells not only by increasing the ex-
pression of phase 2 enzymes but also by increasing the amount of the antioxidant enzyme
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catalase. The restoration of Nrf2 activity in aging cells as well as cells exposed to UVB indi-
cates that sulforaphane is a natural compound with important preventative and therapeutic
effects [177].

Turmeric is a popular spice with anti-inflammatory properties. Its active ingredients
are bisdemethoxycurcumin, demethoxycurcumin, and curcumin [178]. Curcumins reduce
inflammation by inhibiting the NFkB and MAPK signaling pathways and reducing the ex-
pression of inducible nitric oxide and COX2. Additionally, curcumins inhibit UVB-induced
TNF mRNA expression and reduce matrix metalloproteinase-1 (MMP-1) expression in
keratinocytes and fibroblasts [179]. A recent study found that tobacco smoke—a major
risk factor for skin cancer—induced epithelial–mesenchymal transition via the Wnt/b-
catenin signaling pathway, and that curcumin reversed the effect. Curcumin anticancer
activity appears to occur via the inhibition of the Sonic hedgehog and Wnt/b-catenin
pathways, which reduces the expression of cancer stem cell markers such as CD44 and
ALDH1A1 [180].

In recent years, the photoprotective effects of various groups of multicellular algae
have been demonstrated. Mycosporine-like amino acids are UV-absorbing compounds
that are abundantly produced by many algae species and have long been used in com-
mercial sunscreens [181]. In addition to their UV-absorbing properties, algae extract can
protect against UVR-induced ROS. Corallina pilulifera methanol extract exhibited po-
tent antioxidant activity, protecting against UVA radiation-induced oxidative stress [182].
Many brown-algae species have exhibited photoprotective properties. Ecklonia cava is
high in polyphenols, which protect against photo-oxidative stress. Similarly, extracts
from Unidaria crenata had significant free radical scavenging abilities and reduced UVB-
induced apoptosis and lipid and protein oxidation in keratinocytes [183]. Fucoxanthin,
a carotenoid isolated from the brown algae Sargassum siliquastrum, has been shown to
reduce fibroblast apoptosis caused by UVB exposure. Fucoxanthin is found in many other
brown algae species, including Undaria, Hijikia, and Sargassum; it has been shown to
reduce UVB-induced photoaging in mice by reducing VEGF and MMP-13 expression [184].
Other components of the brown algae sargassum sagamianum, such as plastoquinones,
sargaquinoic acid, and sargachromenol, have been shown to provide UVB protection,
indicating the abundance of photoprotective compounds in algae extract [185].

Proteins, minerals, carbohydrates, polyphenols and vitamins are among the active
components found in aloe vera leaf extracts. Aloe vera has various beneficial properties,
including antioxidant, antibacterial, anti-inflammatory, and immunity-regulating proper-
ties [186]. Because of its antibacterial properties, aloe vera gel can be used to treat skin
conditions such as acne vulgaris. Aloe vera was shown to reduce UVA-induced redox
imbalance, reduce UVA-associated lipid membrane oxidation, and increase overall cell
survival in HaCaT keratinocytes. In a mouse model, oral aloe vera supplementation re-
duced UVB-induced apoptosis of epithelial cells as well as MMP-2 and MMP-13 formation
and the depth of UV-associated wrinkling [187]. Furthermore, research into the effects of
combining natural antioxidants for skin topical application has yielded promising results.
Topical delivery of aloe vera and curcumin resulted in enhanced antioxidant protection.
The benefits of various combinations of phytoproducts have only recently been studied,
and they represent a vast area that needs to be explored further [188].

Flavonoids are the most abundant group of active plant compounds; over 5000 flavonoids
have been extracted and identified. Many papers have been written about flavonoids and
their activities [189]. Flavonoids are derivatives of 1,3-diphenylpropan-1-one (chalcone); the
best known groups are the cyclic compounds containing the phenylchromone system (benzo-
gamma-pyrone). Flavonoids are found in nature in the form of glycosides (sometimes called
bioflavonoids). Flavonoid glycosides are composed of an actual flavonoid (aglycon) and a
hydrocarbon. The most common flavonoid glycosides are disaccharide rutinose (D-glucose
bound to L-rhamnose) and monosaccharide rhamnose. The pairs quercetin/rutin and
diosmetin/diosmin are two examples of aglycons and their corresponding glycosides [190].
The most well-known activity of flavonoids on the skin is associated with their antioxidant
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properties. Most phenol-containing flavonoids have a relatively high reduction potential
and are forms of resonance-stabilized anion radicals. Flavonoids’ scavenging activity is
heavily influenced by their structural and physicochemical properties (i.e., logP) [191].
There are always mixtures of many compounds from this group in commonly used plant
extracts in the form of aglycones and lipophilic glycosides. This enables a broad spectrum
of antiradical activity; commonly used natural flavonoid mixtures scavenge nearly all
types of free radicals and ROS [192–194]. It is important that these compounds have a
high affinity for singlet oxygen and the ability to reduce tocopheryl and tocotrienol anion
radicals [195]. Various factors that induce ROS generation are inhibited by flavonoids,
preventing further ROS generation and skin aging (Figure 2). Flavonoids derived from
green-tea leaves/seeds and wine grape leaves, as well as oligomers of these compounds
found in Mediterranean pine bark (Pycnogenol), are considered to be the most effective for
protecting the skin from free radicals. The antiradical activity of flavonoids is supported by
their ability to absorb ultraviolet radiation in a wide range, with maximum far ultraviolet
B (250–280 nm) and A (350–385 nm). Many flavonoids have a strong affinity for protein
structures. On the molecular level, these interactions can be divided into two categories: (1)
The first category includes Van der Waals interactions between aromatic rings and lipophilic
amino acid residues. Such bonds are particularly preferred in the case of isoflavones and
flavonols with planar, polarizable structures that exhibit electron delocalization within all
three rings. (2) Flavonoids’ hydroxyl or ketone groups form hydrogen bonds with protein
chains’ carbonyl or hydroxyl groups. The bond’s strength is determined by the proton
acidity, which is particularly high in flavones and flavonols. Compounds with a carbonyl
group at position 4 increase the acidity of hydroxyl groups at position 7, resulting in partial
dissociation and ionic- bond formation with basic amino acid residues [189].
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With regard to cosmetic activity, one of the most important properties of flavonoids
binding to proteins is their affinity for both types of estrogenic receptors. Isoflavones have a
powerful effect. Genistein’s affinity for estrogen receptors and 17-estradiol is estimated to be
0.7% and 13.0%, respectively [196]. Binding of genistein or another flavonoid elicits receptor
dimerization and appropriate gene induction. Hence, this activity is comparable to typical
estrogen activity [197]. A higher plasma concentration of the active property compensates
for the relatively low activity (estimated in relation to the activity of estrogenic receptors
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and 17-estradiol as 0.025% and 0.8%, respectively) [198]. The anti-inflammatory activity of
flavonoids demonstrates their multi-activity. This action is commonly exploited in the field
of cosmetology. These compounds’ activity stems from their complex interactions with
proinflammatory factors and enzymes, which either directly or indirectly participate in
the generation or propagation of inflammatory stages. Because of their ability to scavenge
free radicals, flavonoids inhibit the oxidative processes of membrane lipids, resulting in
arachidonic acid release. Additionally, because of their affinity for proteins and metals,
chelation flavonoids (for example, apigenin glycosides found in chamomile) inactivate 5-
lipoxygenase and cyclooxygenase, both of which play important roles in the transformation
of arachidonic acid into proinflammatory leukotrienes (LTs) and prostaglandins [199]. The
effect of flavonoids on blood vessels is important for their anti-inflammatory and anti-
irritant properties. Flavonoids reduce tissue congestion and have potent antiedematous
properties. Thus, they alleviate inflammatory symptoms [200].

Histamine, which is released during inflammation and allergy, travels through vessels
surrounding tissues and basophiles, i.e., blood cells, and significantly increases the vessel
permeability [201]. Quercetin, kaempferol, and myricetin all inhibit mast cell histamine
release. Additionally, numerous flavonoids influence basophile histamine release [202];
in this case, the inhibition is solely determined by the structure of the flavonoid. Within
this scope, only compounds with a ketone group at position 4 and a C2–C3 double-bond
in the pyrone ring are active. Hence, this is the same class of compounds that inhibit
the TXA2 receptor [203,204]. Glycosides (rutin and naringin) and flavanones (taxifolin
and hesperidin) are inactive due to a lack of a C2–C3 bond. Furthermore, cyanidin and
catechin, which lack the ketone group, are inactive. Quercetin is considered to be effective
for inhibiting histamine release. Morin, which differs from quercetin only in one ring’s OH
group configuration and does not inhibit histamine release, demonstrates the importance
of the position of the OH group for flavonoid activity [205].

Cosmetic Nanoformulation Containing Natural Antioxidants

Treatment with active phytomolecules has recently gained much interest in the field
of the pharmaceutical healthcare system. The application of nanotechnology has enhanced
the cosmetics field in recent years [206]. Many varieties of nanoparticles, such as polymeric
nanoparticles, nanosuspensions, nanoemulsions, liposomes, niosomes, dendrimers, have
taken over the field of cosmetic formulations. The use of nanoformulation helped to
overcome poor bioavailability; reduced hematological toxic effects; and decrease other side
effects, such as alopecia, nausea, vomiting, diarrhea, fatigue, and skin rash [207]. Table 3
lists some of the nanoformulations used in cosmetic applications.

The use of engineered nanomaterials has garnered much attention in cosmetics manu-
facturers to harvest the potential of nanocosmetics in their formulations [208]. Moreover,
great concern regarding their safety has been raised, and much exploration is necessary
to determine their efficacy in delivering active ingredients into the skin. The new reg-
ulation formed by European Union has passed amendments in its cosmetics directory
for safer nanocosmetics to enter into the market, safeguarding the beauty and health of
consumers [209].
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Table 3. List of nanoformulations in cosmetics.

Plant Active
Compound System Application Reference

White tea Phenolic
compounds

Polymeric
nanoparticle

Protect bioactive
compounds, enhance

subsequent bioactivity
and bioavailability

[210]

Centella
asiatica

Asiaticoside
Madecassoside

Asiatic acid
Madecassic acid

Nanoencapsulation Enhance skin protection
activity [211]

Camellia
sinensis

Phenolic
compounds Nanoemulsion Improve emulsion

stability [212]

Hibiscus
sabdariffa

Polyphenolic
compounds Liposome

Protect and deliver
water-soluble functional

compounds
[213]

Curcuma
longa

Phenolic
compounds
(curcumin)

Liposome,
ethosome,

transferosome

Better skin penetration
and protect skin from

hydration
[214]

Fraxinus
angustifolia

Phenolic
compounds Ethosome Increase intracellular

antioxidant activity [215]

Aloe vera Phenolic
compounds Liposomes

Enhance bioavailability
and increase the

collagen synthesis
[216]

Orthosiphon
Stamineus

Phenolic
compounds

(rosmarinic acid,
eupatorin)

Liposome
(lecithin)

Improve the extract’s
solubility and
permeability

[217]

Vitis
vinifera

Phenolic
compounds Nanoemulsion Improve solubility and

antioxidant efficiency [218]

Panax quin-
quefolius

Saponin
(Ginsenoside) Liposome Increase intracellular

antioxidant activities [219]

Polygonum
aviculare

Phenolic
compounds

(quercetin and
myricetin)

Liposome Improve transdermal
drug delivery [220]

Phyllanthus
urinaria

Phenolic
flavonoids,
saponins

compounds

Nanoemulsion Improve drug delivery
to the skin [221]

Achyrocline
satureioides

Flavonoid
compound
(quercetin)

Nanoemulsion Increase in drug
absorption on skin [222]

10. Limitations of Natural Antioxidants in Skincare

Topical antioxidants, mostly in the form of cosmetic preparations, have been widely
used and are safe. However, the practical relevance of the effects described here cannot
be proven explicitly, because there is a scarcity of clinical data, and the available data are
of limited relevance. Furthermore, the data and publications available frequently do not
indicate what galenic concept the preparations were based on or whether the cutaneous
bioavailability of antioxidants in the target compartment was validated. Nonetheless,
the data provide interesting points for dermatologists to consider with regard to topical
therapy. Topical application of vitamins and other natural ingredients can cause contact
dermatitis, erythema multiforme, and xanthomatous reactions in rare cases. However, due



Cosmetics 2021, 8, 106 15 of 24

to the lack of separation techniques, many plant extracts are yet to be investigated for their
compounds [223]. Although these compounds are safer than synthetic antioxidants, cos-
metics containing natural antioxidants are more expensive than those containing synthetic
antioxidants. Furthermore, even though preliminary research shows promising effects,
validation with clinical results is necessary. Natural antioxidants are prone to degrade,
and their bioavailability is limited by low absorption. Polyphenols present in herbs have
low stability, and their sensitivity to light and heat limits their use in cosmetics. Cosmetics
containing plant extracts in contact with skin causes allergic reactions. Moreover, various
forms of adverse effects may occur due to antioxidants, such as acute toxicity, skin and eye
irritation, skin sensitization, and photosensitization.

11. Conclusions

Consumers are increasingly turning away from synthetic chemicals in beauty and
cosmetic products in favor of natural alternatives. Plant extracts can be used in cosmetic sci-
ence to beautify and maintain the physiological balance of human skin due to the inherent
economic potential in the exploitation of natural resources in ecosystems. Additionally, they
are biodegradable and have lower toxicity than synthetic cosmetic ingredients. However,
several by-products of plant-processing industries (for example, the food industry) pose a
significant disposal problem. Some of these by-products, however, are promising sources
of compounds with biological properties suitable for cutaneous application. Thus, natural
plant extracts derived from both naturally occurring plants and industrially processed
plants can be used to create natural topical antioxidants, lighteners, and preservatives,
maximizing the utility of products that are currently underutilized or discarded. As pri-
mary ingredients in cosmetics, vitamins and antioxidants are extremely popular. There
is substantial scientific evidence, as well as anecdotal experience, of the benefits of these
more bioactive cosmetics for consumers. To be beneficial, an ingredient must be stable in
production, storage, and use; nontoxic to the consumer; and active at the target site once
applied. More research is needed to improve the penetration of these bioactive cosmetics
into the skin. Perhaps instrumentation, e.g., iontophoresis, is needed to improve delivery
into the skin. Market-driven economics clearly suggest that antioxidant and vitamin for-
mulations are popular and well liked. However, the instability and hydrophilic nature of
vitamins limit their use. In recent years, drug delivery systems have been developed, and
they appear to overcome these limitations through improved encapsulation and targeted
delivery. Furthermore, research has led to a better understanding of these molecules,
which has resulted in the development of more stable derivatives with different chemical
properties. Topically, vitamins are effective for treating hyperpigmentation, differentiating
keratinocytes, preventing skin photodamage, and improving dermal–epidermal junction
cohesion. Flavonoids, multi-active ingredients found in many cosmetics, are primarily
used for their antioxidant and soothing properties. Despite their multifunctional properties,
flavonoids are underutilized. The objective of this study was to discuss the potential appli-
cations of flavonoids as the main active ingredients in cosmeceuticals. We discussed major
potential antioxidants from plant sources that can be used in cosmetics. Although the use
of antioxidants is promising, there are limited clinical trials in humans examining the role
of antioxidants in preventing skin aging. Thus, further experimental data can be explored
in the future, and synergistic effects are recommended for better efficacy in combination.
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