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Abstract: Candida albicans is an opportunistic pathogen that often causes skin infections such as oral
thrush, nail fungus, athlete’s foot, and diaper rash. Under particular conditions, C. albicans alters
the natural balance of the host microbiota, and as a result, the skin or its accessory structures
lose their function and appearance. Conventional antimycotic drugs are highly toxic to host
tissues, and long-lasting drug administration induces the arising of resistant strains that make
the antimycotic therapy ineffective. Among new antimicrobial approaches to combine with traditional
drugs, light-based techniques are very promising. In this study, a panel of dyes was considered for
photodynamic therapy (PDT) applications to control the growth of the model strain C. albicans ATCC
14053. The chosen photosensitizers (PSs) belong to the family of synthetic porphyrins, and in particular,
they are diaryl-porphyrins. Among these, two monocationic PSs were shown to be particularly
efficient In killing C. albicans upon irradiation with light at 410 nm, In a light-dose-dependent
manner. The elicited photo-oxidative stress induced the loss of the internal cellular architecture
and death. The photodynamic treatment was also successful In inhibiting the biofilm formation of
clinical C. albicans strains. In conclusion, this study supports the great potential of diaryl-porphyrins
In antimicrobial PDT to control the growth of yeasts on body tissues easily reachable by light sources,
such as skin and oral cavity.
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1. Introduction

Candida albicans is a dimorphic fungus that grows on different tissues of healthy individuals,
such as the skin, the mouth, mucous membranes, and the intestines. However, under particular
conditions, C. albicans disrupts the natural balance inside the host microbiota and becomes an
opportunistic pathogen [1,2]. In particular, prolonged treatments with antibiotics or corticosteroids,
nutritional deficiencies, or immunosuppressive diseases favor the development of infections known
as candidiasis [3]. Candida spp. infections can develop on the skin [4,5], In the oral cavity [6], In the
urinary tract [7], In the eyes, and in vaginal mucosa [8,9].

C. albicans can colonize skin and its accessory structures, where the formation of biofilm increases
its virulence and favors its permanence In the host. Yeast cells attach to a solid surface and form
microcolonies that join and produce an extremely complex three-dimensional structure, In which
different morphologies coexist: round budding yeast cells and oval pseudohyphal cells, embedded in
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an exopolymeric matrix and held together by hyphae [7]. Candida biofilms form on medical devices,
such as central venous catheters (CVCs) and urinary catheters, pacemakers, mechanical heart valves,
joint prostheses, contact lenses, and dentures [10,11]. If infections spread via the blood stream,
cells grow In blood and pass through the vascular epithelium to colonize other systems [12], such as
bone and fibrous tissue, causing osteomyelitis and hindering the healing of fractures [13].

Conventional antimycotic drugs belong to classes such as polyenes, azoles, allylamines,
echinocandins, and nucleoside analogues that offer disadvantages. Firstly, yeast cells share eukaryotic
organization with host cells, and drug toxicity often represents a difficult issue to overcome [14].
Furthermore, long lasting drug administration induces the selection of resistant strains that make the
antimycotic therapy ineffective [13,15,16]. Pharmacological approaches fail also In eradicating formed
biofilms. Furthermore, common sanitizing agents such as chlorine, phenol, sodium dodecyl sulphate,
and quaternary ammonium salts are not always efficient at killing common Candida sp. strains [17].

Since the inhibition of yeast growth is an important goal to achieve not only In the human body,
but also In safe environments, novel strategies are necessary to control the spread of Candida spp.
Among new antifungal treatments, the light-based ones are very promising. aPDT (antimicrobial
photodynamic therapy) combines the use of non-toxic dyes known as photosensitizers (PSs) with visible
light In an aerobic environment. The PS absorbs visible light and passes from a fundamental state (S0) to
an excited triplet-state PS (T1) [14]. The electron transfer from triplet-state PS to neighboring substrates
generates radicals such as anion superoxide (O2

−), hydrogen peroxide (H2O2), and the hydroxyl radical
(OH.). Furthermore, energy can pass to ground-state oxygen (3O2), forming singlet oxygen (1O2) [5,18].
These reactive species damage proteins, sugars, lipids, and nucleic acids, inducing structural changes
that lead to the loss of cellular function, cell apoptosis, or a compromising fungal virulence arsenal [19].
Sublethal aPDT causes temporary cell growth arrest and a prolonged lag phase (fungistatic effect) [20],
damage to mitochondria [19,21], increased susceptibility to drugs, compromised cell wall functions
(permeability), and an ability to form hyphae [14,22].

Among photosensitizers, the most investigated ones to control the growth of C. albicans are
phenothiazine, phthalocyanine, and curcumin. Toluidine blue O (TBO) and methylene blue (MB) are
cationic phenothiazines, and their absorption peaks are at 625 and 656 nm, respectively. Both PSs
were able to kill, upon irradiation, suspended and adherent cells of C. albicans, and inhibit germ tube
formation [23–25]. Upon irradiation, the permeability of plasmatic membrane increases, and this
leads to cell death [26–28]. Chemical modifications of phenothiazine influence their photosensitizing
features and chemical properties. For example, the addition of iodine increases both the release of
ROS and lipophilicity. However, In yeast cells, the uptake of hydrophilic molecules is better than
hydrophobic ones [27,29]. Sixty micromolar curcumin affected the biofilm formation of C. albicans
strains, downregulating the transcriptional levels of hypha-specific and biofilm-related genes [30].

The combination of aPDT together with antifungal drugs fluconazole and nystatin reduced the
effect of C. albicans growth. Photodynamic therapy utilizing curcumin and blue light combined in vitro
with fluconazole significantly inhibited C. albicans to a greater extent than PDT alone [31]. In a mouse
model of oral candidiasis, a photosensitizer derived from chlorin e6 combined with nystatin reduced
the fungal viability and decreased oral lesions and inflammatory reactions [32]. New formulations
for the delivery of antifungal photosensitizers make the treatment more efficient. The strategy of
encapsulating phthalocyanine In cationic chitosan/tripolyphosphate nanoparticles increased four-fold
the uptake of the photosensitizer and the enhancement of photoinactivation [33]. aPDT is a suitable
technique, especially for exposed tissues, where light can be easily delivered, such as the skin and the
oral cavity [34].

As diaryl-porphyrins have been shown to be versatile antibacterial and anticancer
photosensitizers [35], the porphyrin family deserves attention as a potential source of anti-Candida PSs.
In this study, eleven synthetic diaryl-porphyrins that differed In the substituent nature and In the total
charge were chosen. These neutral and mono- and di-cationic compounds have not yet been tested on
C. albicans.
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2. Materials and Methods

2.1. Yeast Strains and Culture Conditions

Candida albicans ATCC 14053 was chosen as a fluconazole sensitive model yeast and has previously
been used to perform screening of antifungal compounds [36,37]. The best PSs were tested on three
clinical strains of C. albicans isolated from bladder catheter (Ca1) and urethral swab (Ca2 and Ca3).
C. albicans cells were grown routinely In a yeast extract-peptone-dextrose medium (YPD), In liquid
form or supplemented with 1.5% agar, at 37 ◦C.

2.2. Photosensitizers

The chemical denomination and structure of diaryl-porphyrins used In this study are listed
In Table 1 [35,38,39]. Four porphyrins were neutral (1–4), four were monocationic (5–8), and three were
dicationic (9–11). Porphyrin solutions (0.5 or 1 mM) were prepared In DMSO and stored at 4 ◦C until
needed. Commercial phenothiazines TBO and MB were included In this study for the comparison
with the panel of synthetic porphyrins. TBO and MB (Sigma Aldrich, Milan, Italy) were dissolved
In water (1 or 10 mM) and stored at 4 ◦C.

Table 1. Chemical structure of synthetic diaryl-porphyrins. 1–4 are characterized by a neutral charge
(Ø); 5–8 are monocationic compounds (+); 9–11 present a dicationic charge (++). PS, photosensitizer.

PS Chemical Structure Chemical Denomination Ref

N
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)

1
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2.4. Photo-Spot Test

The photo-spot test previously optimized for Pseudomonas aeruginosa was adapted as follows for
Candida albicans [41]. An overnight culture of C. albicans grown In a YPD medium was centrifuged
(4000 rpm for 10 min), and the pellet was suspended In phosphate buffered saline (KH2PO4/K2HPO4

10 mM, pH 7.4) to reach a cellular concentration of ~107 cfu/mL. The suspension was 10-fold
serially diluted In PBS to obtain samples with decreasing concentrations, from ~107 to ~102 cfu/mL.
The photosensitizers at the chosen concentration were administered to undiluted and diluted samples.
An untreated and DMSO-treated sample were included as a control. C. albicans cells were kept In the
dark to permit the interaction with compounds and avoid the photoactivation of PSs. After 10 min, 1 h,
or 6 h of dark incubation, a volume of 5 µL of each sample was inoculated on YPD agar by replica
plating to obtain yeast spots with decreasing density, from ~106 to ~10 cfu/spot. A first series of
inoculated plates was incubated overnight at 37 ◦C to evaluate the intrinsic toxicity of porphyrins.
A second series was irradiated under a 410 or 650 nm LED to activate porphyrins and phenothiazines,
respectively. The irradiation under a fluence rate of 100 mW/cm2 for 250 and 750 s led to final light
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doses of 25 and 75 J/cm2, respectively. Following overnight incubation at 37 ◦C, the growth spots of
C. albicans were checked. The effect of each treatment on C. albicans was detected as follows. If a certain
treatment prevented the growth of the sample with 10 cfu/spot, a 1 Log unit reduction was considered;
if the treatment prevented the growth of a sample of 102 cfu/spot, a 2 Log unit reduction was considered,
and so on. Therefore, a higher Log unit reduction was associated with higher antifungal activity.
Photo-spot tests were performed at least In triplicate, and the mean data of the growth spot decrease
were expressed as Log unit cfu/spot.

2.5. Binding Assay

The relative efficiency of porphyrins or phenothiazines In binding C. albicans cells was determined
by an indirect method [42]. C. albicans overnight cultures were centrifuged (4000 rpm for 10 min) and
10-fold diluted In sterile deionized water. Photosensitizers were added to the cells at a concentration of
30 µM. The following control samples were prepared: PS alone, untreated cells, and cells supplemented
with 4% DMSO (v/v) as a control of porphyrin solvent. All the samples were incubated In the dark
at room temperature for 1 h to allow the interaction between PS and cells. After dark incubation,
samples were centrifuged (4000 rpm for 10 min), and the visible spectra of the supernatant were
recorded (k = 380–700 nm). A calibration plot (µM vs. ODx) was obtained for each PS. The amount of
PS not bound to the yeast cells was inferred by interpolating the data on the calibration plot. The values
were represented as percentages of bound PS. The experiments were performed in triplicate.

2.6. Photoinactivation of Suspended Cells

C. albicans was grown overnight In YPD and then 100-fold diluted In PBS to a final concentration
of 105 cfu/mL. The chosen diaryl-porphyrins were administered at 10 µM, and an untreated sample
or solvent (2% DMSO) was also included as the control. The cells were incubated In the dark for 1 h
In gentle agitation at 50 rpm at 37 ◦C. Thereafter, cells were kept In the dark or irradiated under a
blue LED at 410 nm (100 mW/cm2) for 12.5 and 25 min to reach final light doses of 75 and 150 J/cm2,
respectively. The following control samples were established for each PDT experiment: PS-untreated
and dark-incubated (−PS, −light), PS-treated and dark-incubated (+PS, −light), and PS-untreated and
irradiated samples (−PS, +light). After irradiation or dark incubation, the yeast concentration was
determined using the viable count technique and expressed as cfu/mL. Briefly, an aliquot of each sample
was 10-fold serially diluted, and then microliters of each diluted and undiluted sample were plated on
YPD agar plates. After overnight incubation at 37 ◦C, a colony count was performed, and the cellular
concentration (cfu/mL) was determined. The PDT experiments were performed at least in triplicate.

2.7. Confocal Microscopy Analysis

The effect of PDT on C. albicans cells by chosen diaryl-porphyrins was evaluated
through confocal laser scanning microscopy (CLSM; Leica Microsystems, Wetzlar, Germany).
C. albicans cells were photoinactivated following the treatment for suspended samples and
irradiated at 150 J/cm2. After irradiation, a fluorescent boron-dipyrromethene dye (BODIPY
4,4-difluoro-1,3,5,7-tetramethyl-8-(2-methoxyphenyl)-4-bora-3a,4a-diaza-s-indacene) was added to
the yeast suspension (5 µM) [43]. Cells were incubated with the fluorochrome for 30 min at 37 ◦C on
a shaker at 50 rpm. Afterward, samples were centrifuged at 10,000 rpm for 10 min, and the pellet
was suspended In 20 µL of PBS. A volume of 10 µL of suspension was placed between a microscope
glass and a coverslip slide for CLSM acquisition. Pictures were obtained using a 63/5.0 objective lens
(488 nm laser) and were edited by the free open source program ImageJ (National Institute of Health,
Bethesda, USA). To assess the efficacy of the photodynamic treatment, the cell viability was checked
through the viable count technique as previously described.
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2.8. Biofilm Photoinactivation Assay

Candida albicans strains grown overnight In a YPD medium were centrifuged at 4000 rpm for 10 min.
The pellets were 100-fold diluted In deionized water, and a volume of 250 µL was dispensed In 24 well
microtiter plates. Cells were treated for 1 h In the dark at 37 ◦C with 20 µM porphyrins or 2% DMSO
v/v, and untreated cells were also kept as a control. Afterwards, cells were kept In the dark or irradiated
by 410 nm light (150 J/cm2). After dark incubation or irradiation, wells were filled with a further 250 µL
of YPD medium and incubated at 37 ◦C for 24 h, to allow biofilm formation. Biofilm biomass was
determined by crystal violet staining: upon removal of the supernatants, zero-point-five milliliters
of a crystal violet (Sigma Aldrich, Milan, Italy) 0.1% solution were added, and after 20 min, a wash
with deionized water was performed. After solubilization with 33% v/v acetic acid for 10 min,
spectrophotometric measurement was performed at 590 nm. Adherent and planktonic populations of
biofilm were also evaluated by a colony count method. Briefly, planktonic biomass was collected by the
supernatant, and the adherent phase was collected by the wells upon the removal of the supernatant
and the scraping of adherent cells In 0.5 mL of phosphate buffer. Collected samples were 10-fold
serially diluted In a sterile phosphate buffer and plated on YPD agar plates. Upon overnight incubation,
colonies were counted, and cfu/mL and cfu/well values were determined for planktonic and adherent
populations, respectively. All experiments were independently repeated at least three times.

2.9. Statistical Analyses

Photoinactivation experiments on yeast suspended cells and biofilm formation were performed at
least three times with different cultures, and statistical significance was assessed by one way ANOVA.

3. Results

3.1. Effect of Diaryl-Porphyrins on Candida albicans Viability

In the literature, most of the studies In the field of photoinactivation of Candida albicans have been
performed with commercial phenothiazines, toluidine blue O (TBO) and methylene blue (MB). In the
present study, we investigated a panel of synthetic diaryl-porphyrins as potential photosensitizers.
Since In photodynamic therapy, the ideal PS should not display intrinsic toxicity, this feature was
investigated. Furthermore, as porphyrins were dissolved In DMSO, the effect of this solvent on
C. albicans viability was ruled out (Figure 2). C. albicans cells showed a different degree of sensitivity to
porphyrins administered at 10 µM (Figure 2). The neutral porphyrins (1–4) did not display any toxicity
to yeast cells, even at the longest dark incubation time. Among the monocationic diaryl-porphyrins,
two PSs (5,6) showed a low degree of toxicity, causing the depletion of the samples with the lowest
cellular densities (10 and 102 cfu/spot). The dicationic porphyrins were the most intrinsically toxic,
and among these, Porphyrin 10 prevented the growth of the sample of 104 cfu/spot upon 6 h of dark
incubation. Under the same experimental setup, the commercial PSs, MB and TBO, at 10 µM did not
show any dark toxicity (data not shown).

In bacterial cells, the interaction between photosensitizers and the cell wall is very important and
is predictive for photodynamic activity. Thus, the interaction between diaryl-porphyrins and yeasts
was evaluated through a binding assay. Indeed, mono- and di-cationic porphyrins were more prone
than neutral ones to bind C. albicans cells (Figure 3). Most of the cationic molecules showed more
than 90% of binding to the cells, except for Porphyrins 6 and 9, which showed a binding yield of ~80
and 65%, respectively. On the other hand, neutral porphyrins (1–4) were not as able to interact with
yeast cells as cationic ones, showing a binding yield of less than 5%. In these experimental conditions,
the binding yield of commercial phenothiazines was ~49% and 25% for TBO and MB, respectively.
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Figure 3. Evaluation of porphyrins binding to Candida albicans cells, presented as a percentage of PS
bound to cells upon 1 h of dark incubation of the porphyrins (1–11) and yeast cells. The neutral (Ø),
monocationic (+), and dicationic (++) porphyrins were administered at a concentration of 30 µM.

3.2. Photodynamic Activity of Diaryl-Porphyrins on Candida albicans

The diaryl-porphyrins that did not show any degree of dark toxicity were further investigated for
their potential of killing C. albicans cells upon irradiation with blue light. For this reason, PS 5, 10, and 11
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were not included In the following investigations. Since blue light alone, In many microorganisms,
induces the arising of photo-oxidative stress [44], the effect of light at 410 nm on yeast cells was
evaluated through the photo-spot test assay. No toxic effect was observed upon irradiation of 25
and 75 J/cm2 (Figure 4). The irradiation was performed after 10 min, 1 h, or 6 h of dark incubation.
The photodynamic effect elicited by PSs was more efficient as dark incubation and light doses increased.
Among neutral porphyrins, PS 3 and 4 were more efficient than PS 1 and 2 In causing photo-oxidative
stress. Indeed, under the strongest PDT conditions (6 h dark incubation, 75 J/cm2), Porphyrins 1
and 2 caused a low killing rate, reaching yields of reduction of ~3.3 and 2 Log units, respectively.
The neutral porphyrins 3 and 4 inhibited the yeast growth of samples at the highest density, 106 and
105 cfu/spot, respectively. Cationic porphyrins were more active on yeast cells, compared to neutral
ones. Under mild PDT conditions—the shortest dark incubation (10 min) and the lowest radiant
exposure (25 J/cm2)—Porphyrins 7–9 were very active. Increasing dark incubation up to 6 h and
radiant fluence up to 75 J/cm2, PSs reached the highest killing rate detectable In the chosen setup.Cosmetics 2020, 7, x FOR PEER REVIEW 9 of 19 
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Figure 4. Photodynamic inactivation of Candida albicans by the photo-spot test with the diaryl-porphyrins
(1–9). The neutral (Ø), monocationic (+), and dicationic (++) porphyrins were administered at a
concentration of 10 µM. Values of Log10 reduction were observed after irradiation with 410 nm of blue
light at radiant exposures of 25 and 75 J/cm2, after increasing dark incubation periods (10 min, 1 h,
and 6 h). Data are the mean of at least three independent experiments. Representative photo-spot
pictures upon 6 h of dark incubation and 75 J/cm2 irradiation are illustrated In the last column.

The photodynamic activity of porphyrins was compared with that elicited by commercial
phenothiazines. TBO and MB administered at 10 µM and irradiated by red light at 650 nm (25 and
75 J/cm2) did not impair the viability of C. albicans. It was necessary to increase concentrations up to
780 µM for MB and 670 µM for TBO, to obtain a killing rate comparable to that of the most active
porphyrins. The irradiation by the red light (75 J/cm2) of phenothiazines at those high concentrations,
after 1 h of dark incubation, caused a depletion of 3 and 2 Log units, respectively (data not shown).
However, phenothiazine upon 6 h of dark incubation at these concentrations displayed a certain degree
of dark toxicity: 3.0 and 3.3 Log unit reductions for MB and TBO, respectively.

The preliminary screening ruled out the porphyrins with an intrinsic toxicity and a low
photoactivity. Thus, only neutral and cationic porphyrins (3, 4, 7–9) that showed a strong
photoinactivation rate (≥5 Log unit reduction) were used to photoinactivate suspended cells of
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C. albicans. In the chosen experimental condition, blue light (75 and 150 J/cm2) did not affect the
viability of untreated or 1% DMSO-treated yeast cells (Figure 5). The neutral porphyrins 3 and 4
showed a different photodynamic activity: the former caused a 3 Log unit decrease at the highest
radiant exposure, while the latter reduced the yeast viability up to the detection limit of the system
(10 cfu/mL) upon 75 and 150 J/cm2. Mono- and di-cationic compounds (7–9) showed a very high
inactivation rate, significantly reducing the cellular viability of about 4 Log units, independent of the
administered light dose (Figure 4).Cosmetics 2020, 7, x FOR PEER REVIEW 10 of 19 
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Figure 5. Photodynamic treatment of Candida albicans cells with Porphyrins 3, 4, 7–9. The neutral
(Ø), monocationic (+), and dicationic (++) porphyrins were administered at a concentration of
10 µM and activated by blue light irradiation at 75 and 150 J/cm2. Control samples In the dark are
also presented (black bars). Untreated and solvent-treated samples (2% DMSO) were also included.
Values, presented as cfu/mL, are the mean of at least three independent experiments, and the bars
represent standard deviations. Statistical analyses were performed by one way ANOVA (* p < 0.05;
*** p < 0.0001).

The BODIPY (4,4-difluoro-1,3,5,7-tetramethyl-8-(2-methoxyphenyl)-4-bora-3a,4a-diaza-s-indacene)
chosen as a fluorescent tracer for confocal microscopy analyses highlighted the effect of the
photodynamic treatment on yeast cell morphology. The untreated and DMSO-treated cells kept
In the dark (Figure 6a,c) showed a typical compartmentalization of eukaryotic cells, with the biggest
compartment, compatible with the nucleus, appearing dark and not permeable to fluorophore. In a few
cells In each field, a diffuse fluorescence signal did not enable recognition of any organelles, and this
feature was compatible with a non-viable yeast. The untreated yeasts kept In the dark were comparable
to DMSO-treated ones. The dark incubation of neutral and mono-cationic diaryl-porphyrins did
not alter the yeast architecture compared to the controls (Figure 6e,g,i,m). A different distribution
of fluorophore was observed upon the dark incubation of C. albicans with the dicationic porphyrin
9: no organelle was recognizable, and BODIPY was accumulated especially In a central region of
the cytoplasm (Figure 6o), even if cellular viability did not change compared to control samples
(DMSO and untreated cells). Furthermore, no morphological changes could be appreciated upon the
blue light irradiation of untreated (Figure 6b) and DMSO-treated samples (Figure 6d). On the other
hand, blue light irradiation (150 J/cm2) of the neutral porphyrins 3 and 4 determined an important
alteration of yeast structure (Figure 6f,h): the cell dimensions greatly decreased as compared to the
dark controls; the fluorescent signal was foggy; and the compartmentalization was not as clear as In the
corresponding controls. The photoactivation of the cationic porphyrins 7 and 8 caused a complete loss
of organelle identity, and BODIPY radiated a very bright fluorescent signal. Furthermore, the cellular
morphology passed from spherical to an egg-shaped one (Figure 6l,n). A similar impairment of the
cell architecture was observed upon irradiation of Porphyrin 9 (Figure 6p).
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3.3. Photodynamic Activity of Diaryl-Porphyrins on Clinical Isolates of Candida albicans

The ability to form a biofilm, both on inert surfaces and on biological tissues, makes microorganisms
more difficult to eradicate. Thus, the potential of aPDT through diaryl-porphyrins In inhibiting the
biofilm formation of C. albicans was considered. For this purpose, the assay was limited to Compounds
7 and 8, which showed the best results among the tested diaryl-porphyrins against C. albicans strain.
In addition to the ATCC strain, three clinical isolates (Ca1, Ca2, and Ca3) were considered. Among these,
two strains—Ca2 and Ca3—were as prone as the ATCC strain to form hyphae under the chosen growth
conditions (Figure 7). The clinical strains formed a biofilm comparable to that of the ATCC 14,053 strain,
for both adherent biomass and adherent cell density ~107 cfu/well (Figure 8, Table 2). The administration
of 4% DMSO as a control did not alter the biofilm formation of any of the studied strains.

The irradiation with light at 410 nm of all the fungal strains treated with PS 7 and 8 greatly
impaired their ability to form biofilm compared to the control samples (−PS, −Light; −PS, +Light;
+PS, −Light) (Figures 7 and 8). The impairment of total adherent biomass, formed by both matrix and
cellular components, was statistically significant, as shown by OD590 values derived by the crystal
violet staining (Figure 8).
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Figure 8. Inhibition of biofilm formation of four Candida albicans strains, ATCC 14,053 (a), Ca1 (b),
Ca2 (c), and Ca3 (d), by photodynamic inactivation with Porphyrins 7 and 8. Porphyrins were activated
by 410 nm blue light, 100 mW/cm2 for 25 min, corresponding to 150 J/cm2. The graphs report values of
the absorbance at 590 nm (OD 590) of biofilm staining with crystal violet. Dark control samples are
presented as black bars and light-treated samples as striped bars. Data represent the mean of at least
three independent experiments ± the standard deviation. Statistical analyses were performed by one
way ANOVA (* p < 0.05; ** p < 0.01; *** p < 0.0001).
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Table 2. Inhibition of the biofilm formation of four Candida albicans strains (ATCC 14053, Ca1, Ca2,
and Ca3) by photodynamic inactivation with Porphyrins 7 and 8. Porphyrins were activated by 410 nm
blue light, 100 mW/cm2 for 25 min, corresponding to 150 J/cm2. The table reports the results of the
viable count of yeast cells belonging to adherent (cfu/well) and planktonic (cfu/mL) populations of the
biofilm. Data are presented as the mean of three independent experiments ± the standard deviation.
Statistical analyses were performed by one way ANOVA (* p < 0.05; ** p < 0.01; *** p < 0.0001).

Adherent Biomass (cfu/well) Planktonic Biomass (cfu/mL)

C. albicans Strain DARK LIGHT 150 J/cm2 DARK LIGHT 150 J/cm2

C. albicans
ATCC 14053

Untreated 6.1 ± 0.85 × 107 6.63 ± 1.3 × 107 3.85 ± 3.9 × 106 3.77 ± 2.6 × 106

DMSO 4% 6.1 ± 1.2 × 107 5.55 ± 1.48 × 107 1.32 ± 1.7 × 106 1.98 ± 2.4 × 106

7 5.87 ± 1.7 × 107 9.67 ± 1.6 × 104 * 2.85 ± 2.7 × 106 2.53 ± 4.2 × 102 **
8 6.45 ± 0.07 × 107 5.5 ± 6.3 × 10 *** 2.3 ± 2.4 × 106 10 ± 0.0 ***

C. albicans Ca1

Untreated 4.93 ± 0.7 × 107 4.9 ± 1.6 × 107 3.87 ± 2.7 × 106 6.17 ± 3.5 × 106

DMSO 4% 5.35 ± 0.2 × 107 6.15 ± 0.07 × 107 2.41 ± 3.1 × 106 2.83 ± 3.1 × 106

7 5.3 ± 0.5 × 107 1.1 ± 1.9 × 105 * 2.73 ± 1.1 × 106 5 ± 8.6 × 104 *
8 6.25 ± 0.07 × 107 10 ± 0.0 *** 2.65 ± 3.6 × 106 10 ± 0.0 ***

C. albicans Ca2

Untreated 4.75 ± 0.07 × 107 4.6 ± 0.1 × 107 6.6 ± 3.3 × 106 2.3 ± 0.1 × 106

DMSO 4% 5 ± 0.4 × 107 4.35 ± 0.9 × 107 3.5 ± 2.1 × 106 2.4 ± 1.2 × 106

7 3.95 ± 0.6 × 107 10 ± 0.0 *** 1.65 ± 0.2 × 106 10 ± 0.0 ***
8 4.7 ± 0.0 × 107 10 ± 0.0 *** 3.4 ± 0.1 × 106 10 ± 0.0 ***

C. albicans Ca3

Untreated 6.67 ± 3.1 × 107 3.33 ± 2.3 × 107 1.57 ± 1.5 × 107 3.57 ± 1 × 106

DMSO 4% 5.6 ± 0.2 × 107 5.9 ± 0.4 × 107 2.7 ± 2.2 × 106 4.05 ± 0.9 × 106

7 3.27 ± 1.4 × 107 2.26 ± 3.8 × 105 4.57 ± 3.6 × 106 9.01 ± 10 × 103 *
8 4 ± 2.6 × 107 3.36 ± 5.7 × 103 ** 2.9 ± 0.7 × 106 16.7 ± 11 ***

On the other hand, when the cellular populations of planktonic and adherent phases were
evaluated, some differences between the two monocationic diaryl-porphyrins were observed. Compound 8
was more active than 7 In impairing the viability of biofilm cells. Indeed, the diaryl-porphyrin 8,
upon irradiation, caused the depletion of adherent and planktonic cells of all C. albicans strains
considered In this study (Table 2)

4. Discussion

Photodynamic inactivation is a technique that can be displayed to treat fungal infections and to
sanitize environments. Among the research that has reported the effectiveness of aPDI In controlling
the growth of Candida albicans, most studies have used methylene blue (MB) and toluidine blue-O (TBO)
as photosensitizing agents [23,45]. Recently, a mixed porphyrin formulation, containing mono-, di-,
tri-, and tetra-Py(+)-Me, was shown to control C. albicans In plasma and In whole blood efficiently [46].
Thus, porphyrins, widely investigated to photoinactivate bacteria, represent a family of promising
photo-antifungals [47]. Among porphyrins, novel diaryl-porphyrins were active against Bacillus subtilis,
Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa [35,38]. Porphyrins can be chemically
modified to yield a wide array of PSs featuring different substituents In the four available meso
positions of the tetrapyrrole ring, to enhance their phototherapeutic effects [48]. In this study, a panel
of diaryl-porphyrins bearing different substituents, In positions 5 and 15, conferring a different total
charge, was considered. Among the neutral PSs, two non-symmetrical diaryl porphyrins bearing one
pentafluorophenyl In position 5 differ by the length of the para-bromoalkoxy pendant of the phenyl
In position 15, 4C In 1 and 8C In 2, respectively [39]. The neutral porphyrin 3 bears one pendant
of 4C, and the symmetrical PS 4 bears two identical pendants of 4C [35]. The four mono-cationic
PSs are non-symmetrical, bearing a phenyl (5,6) or a pentafluoro-phenyl (7,8) In position 5 and a
pyridinobutoxy-phenyl (5,7) or pyridinooctaoxy-phenyl (6,8) In 15, respectively [35,39]. The three
dicationic porphyrins are symmetric and bear a benzyl group as the alkylating group of the pyridyl
substituent (9), or alkoxy-linked pyridinium at the end of one 4C (10) or 8C (11) carbon chains [35,38].

Since In bacteria, the binding is predictive for a good photoactivity, the interaction between
diaryl-porphyrins and C. albicans cells was evaluated. Indeed, their charge greatly influences their
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binding to the fungal cell: the cationic ones were more prone than neutral ones to bind cells. The cell
wall of C. albicans is composed of a skeleton of polysaccharide fibrils formed by β-(1,3)-glucan that
is covalently linked to β-(1,6)-glucan and chitin, a β-(1,4)-linked polymers of N-acetylglucosamine.
This robust exoskeleton is a scaffold for the external protein layer formed by mannoproteins and a
smaller amount of chitin. Proteins are highly glycosylated by N-linked and O-linked mannosylation
and phosphomannosylation [49]. It was proven that the loss of the mannan fraction reduces the
phosphate content and that, therefore, the loss of negative charge In the cell wall impairs the binding
of cationic dyes such as Alcian blue [50]. The complex molecular architecture of the cell wall confers
a negative charge to the C. albicans cell. Thus, the overall negative charge of the cell wall favors the
interaction by electrostatic force with cationic diaryl-porphyrins better than neutral ones. Donnelly and
Wainwright reported that hydrophilic dyes containing positive charges, such as phenothiazines, favor a
better uptake into yeast cells [27,29]. Cormick reported that tri- and tetra-cationic porphyrins were
more tightly bound to C. albicans cells than anionic porphyrins, supporting the requirement of a positive
charge on porphyrins to promote the electrostatic interaction with the outer cell wall [51]. On the other
hand, among PSs, the phthalocyanines, which are mostly hydrophobic, are less efficient antimycotic
agents [26].

However, even if a good binding yield is crucial, a certain intrinsic toxicity should be avoided.
Indeed, among the diaryl-porphyrins showing a good binding yield, few (5, 10, 11) were intrinsically
toxic, regardless of irradiation and elicited photo-oxidative stress. Their toxicity was directly dependent
on dark incubation time and inversely dependent on fungal cell concentration. Under the tested
conditions, the neutral porphyrins did not show any toxicity to C. albicans.

The blue irradiation of non-toxic diaryl-porphyrins showed that the cationic ones were more
active than neutral ones. Cationic PS 7–9 needed the shortest dark incubation (10 min) and the
lowest radiant fluence (25 J/cm2) to accomplish cell killing. On the other hand, under these mild
conditions, the neutral PS 4 did not show any killing effect. Furthermore, the photo-fungicidal
effect of cationic PSs increased with increasing light energy and dark incubation. Taken together,
these results supported that the PS binding seemed to be predictive of a very good photoactivity.
Interestingly, microscopy analyses showed that 7–9, upon irradiation (150 J/cm2), caused the most
relevant changes In C. albicans cells: the dimensions were increased compared to dark incubated cells,
and no organelles were visible In the cytoplasm according to the imminent burst and loss of cellular
identity. The neutral PSs, upon the same irradiation, caused an important change In the distribution of
fluorophore, but the compartmentalization has not yet been perceived. Since no breakage In the cell
wall was visible and structural alterations were associated with the cytoplasmic environment, it could
be hypothesized that, upon irradiation, the main damage occurred inside the cell and not at the cell
wall level. Based on these observations, the cationic diaryl-porphyrins were the best anti-Candida
photosensitizers: no intrinsic toxicity, a high binding yield, and a photo-fungicidal effect under mild
conditions. In general, our results were In accordance with the requirement of cationic charges for an
efficient photokilling of C. albicans [51].

Since biofilm formation is a trait favoring fungal virulence, a strategy devoted to preventing
its development is very important. In the life cycle of C. albicans biofilm, the adherence to an inert
surface or tissue is essential to the following initiation step and maturation [52]. This study identified
7 and 8 as optimal diaryl-porphyrins to photoinactivate C. albicans cells. Both cationic PSs inhibited
the formation of an adherent biomass. In particular, Compound 8, with the longest chain, was more
efficient than 7, at inhibiting the planktonic and sessile cellular populations of the biofilm of both
C. albicans ATCC 14053 and three C. albicans clinical isolates. It is worth noting that, In C. albicans,
the response to PDT was strain-dependent, as previously observed In bacterial species. Indeed, it was
observed that the bactericidal effect of the PDI In Staphylococcus aureus was strain-dependent [53].
Since there are few studies aimed at investigating the effectiveness of photodynamic therapy to treat
C. albicans infections [54], an optimized PDT protocol based on diaryl-porphyrins should be applied to
host cell lines to rule out any toxic effects and should be tested in vivo to evaluate their photoactivity
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In skin and oral districts. For this aim, photoactivable keratin sponges functionalized with porphyrins
were proposed as a scaffold for the antimicrobial treatment of skin [55].

5. Conclusions

In conclusion, the resistance to antifungals developed by C. albicans strains is an issue that makes
the management of infected patients difficult. This study supported the great potential of a light-based
antimicrobial approach, known as photodynamic therapy, as an antifungal treatment. In particular,
monocationic diaryl-porphyrins were shown to be optimal photosensitizers under studied settings.
The presence of one positive charge on the porphyrin periphery favored the binding to the fungal cell
without eliciting an intrinsic toxic effect. Upon irradiation with blue light, the candidate PSs killed
the C. albicans cells and inhibited biofilm formation, compromising the viability of both adherent and
planktonic phases. These porphyrins represent potential broad-spectrum photo-antimicrobial agents.
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