SUPPLEMENTARY MATERIAL

Article

Bioactive metabolites of the stem bark of Strychnosaff. darienensis and evaluation of their antioxidant and UV protection activity in human skin cell cultures

Aikaterini Travasarou¹, Maria T. Angelopoulou², Konstantina Vougogiannopoulou¹, Adamantia Papadopoulou², Nektarios Aligiannis¹, Charles L. Cantrell³, Dimitris Kletsas², Nikolas Fokialakis^{1,*}, and Harris Pratsinis^{2,*}

- ¹ Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, 15771, Greece
- ² Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, 15310, Greece
- ³ Natural Products Utilization Research Unit, USDA/ARS, National Center for Natural Products Research, University, Mississippi, 38677, USA
- * Correspondence: fokialakis@pharm.uoa.gr; Tel.: +30-210-727-4727 hprats@bio.demokritos.gr; Tel.: +30-210-650-3572

Table of contents

Figure S1: The extraction procedure using different pH treatments	3
Table S1: FCPC gradient system used for separation of fraction M1	4
Table S2: NMR spectral data of p-hydroxybenzoic acid (1)	5
Table S3: NMR spectral data of vanillic acid (2)	6
Table S4: NMR spectral data of luteolin (3)	7
Table S5: NMR spectral data of 3-O-methyl quercetin (4)	8
Table S6: NMR spectral data of strychnobiflavone (5)	9
Table S7: NMR spectral data of minaxin (6)	11
Table S8: NMR spectral data of 3', 4', 7-trihydroxy-flavone (7)	12
Table S9: NMR spectral data of syringaresinol-6-D-glucoside (8)	13
Table S10: NMR spectral data of balanophonin (9)	14
Table S11: NMR spectral data of ficusal (10)	15
Table S12: NMR spectral data of venoterpine (11)	16
Table S13: NMR spectral data of 11-methoxyhenningsamine (12)	17
Table S14: NMR spectral data of diaboline (13)	19
Table S15: NMR spectral data of 11-methoxy diaboline (14)	20

Figure S1: The extraction procedure using different pH treatments

Table S1: FCPC gradient system used for separation of fraction M1	L.

Gradient System		Solv	vents	
Gradient System	C-Hex	EtOAc	EtOH	H ₂ O
S1	14	1	5	10
S2	12	3	5	10
S3	10	5	5	10
S4	7	8	5	10
S5	5	10	5	10
S6	3	12	5	10
S7	1	14	5	10

Table S2: NMR spectral data of p-hydroxybenzoic acid (1), (δ (ppm) and *J* (Hz), CD₃OD), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ Η NMR δ (ppm) / J (Hz)	¹³ C NMR δ (ppm)
1	-	125.4
2/6	7.86 (2H, d, <i>J</i> = 8.6)	115.2
3 / 5	6.78 (2H, d, <i>J</i> = 8.6)	132.5
4	-	161.6
7	_	172.8

Table S3: NMR spectral data of vanillic acid (**2**), (δ (ppm) and *J* (Hz), CD₃OD), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ Η NMR δ (ppm) / J (Hz)	¹³ C NMR δ (ppm)
1	-	125.4
2	7.58 (1H, d, <i>J</i> =1.9)	113.4
3	_	148.3
4	-	151.3
5	7.55 (1H, dd, <i>J</i> = 8.2 / 1.9)	124.5
6	6.85 (1H, d, <i>J</i> = 8.2)	115.3
7	_	171.6
OCH₃	3.91 (3H, s)	56.1

Table S4: NMR spectral data of luteolin (3) (δ (ppm) and *J* (Hz), CD₃OD), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
2	-	166.1
3	6.57 (1H, s)	103.9
4	-	183.9
5	_	163.2
6	6.23 (1H, d, <i>J</i> = 2.1)	100.1
7	-	166.4
8	6.47 (1H, d, <i>J</i> = 2.1)	95.0
9	-	158.4
10	-	105.3
1'	-	123.7
2'	7.40 (1H, d, <i>J</i> = 2.0)	114.2
3'	_	147.0
4'	-	151.0
5'	6.93 (1H, d, <i>J</i> =8.2)	116.1
6'	7.41 (1H, dd, <i>J</i> = 8.2/ 2.0)	120.3

Table S5: NMR spectral data of 3-*O*-methyl quercetin (4), (δ (ppm) and *J* (Hz), CD₃OD), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
2	-	157.4
3	_	139.1
4	-	179.9
5	-	163.1
6	6.18 (1H, d, <i>J</i> = 2.0)	100.3
7	-	165.9
8	6.40 (1H, d, <i>J</i> = 2.0)	95.0
9	-	158.3
10	-	105.1
1'	-	122.7
2'	7.61 (1H, d, <i>J</i> = 2.2)	116.1
3'	-	146.1
4'	-	149.9
5'	6.91 (1H, d, <i>J</i> = 8.4)	116.2
6'	7.55 (1H, dd, <i>J</i> = 8.4/ 2.2)	122.1
3-0CH ₃	3.80 (3H, s)	60.2

Table S6: NMR spectral data of strychnobiflavone (5), (δ (ppm) and J (Hz), CD₃OD), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
2	-	160.7
3	_	138.9
4	_	179.0
5	_	162.8
6	6.05 (1H, d, <i>J</i> = 1.8)	99.5
7	_	166.1
8	5.69 (1H, d, <i>J</i> = 1.8)	94.3
9	_	158.1
10	_	105.1
1'	_	123.6
2'	_	121.3
3'	_	145.4
4'	_	149.4
5'	7.01 (1H, d, <i>J</i> =8.3)	114.8
6'	7.15 (1H, d, <i>J</i> =8.3)	122.7
2"	_	157.4
3"	_	139.6
4"	_	179.1
5"	_	161.8
6"	6.16 (1H, s)	99.8
7"	_	164.2

8"	_	103.6
9"	_	155.5
10"	-	104.6
1'''	_	122.7
2'''	7.55 (1H, d, <i>J</i> =2.2)	116.7
3'''	_	145.9
4'''	_	149.6
5'''	6.72 (1H, d, <i>J</i> = 8.5)	115.9
6'''	7.16 (1H, dd, <i>J</i> = 2.2 / 8.5)	122.2
3–OCH ₃	3.72 (3H, s)	60.1
3''-OCH3	3.37 (3H, s)	60.6

Table S7: NMR spectral data of minaxin (6) (δ (ppm) and *J* (Hz), DMSO), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ CNMR
	δ (ppm) / J (Hz)	δ (ppm)
2	_	149.9
3	_	132.8
4	_	174.2
5	_	161.6
6	6.16 (1H, d, <i>J</i> = 1.9)	98.7
7	_	163.9
8	6.42 (1H, d, <i>J</i> = 1.9)	93.9
9	_	156.0
10	_	104.4
11	5.17 (2H, s)	63.1
1'	_	119.9
2'	_	115.5
3'	_	140.9
4'	6.89 (1H, d, <i>J</i> =8.3)	114.9
5'	7.19 (1H, d, <i>J</i> =8.3)	114.3
6'	_	149.1

Table S8: NMR spectral data of 3',4',7-trihydroxyflavone (7)(δ (ppm) and *J* (Hz), CD₃OD), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
2	_	166.2
3	6.62 (1H, s)	105.4
4	-	180.2
5	7.97 (1H, d, <i>J</i> = 8.0)	127.8
6	6.95 -6.91 (1H, *)	116.5
7	-	165.0
8	6.95 -6.91 (1H, *)	103.6
9	-	159.3
10	-	117.4
1'	-	123.9
2'	7.39 (1H, *)	114.7
3'	-	147.1
4'	-	150.8
5'	6.95 -6.91 (1H, *)	116.7
6'	7.40 (1H, *)	120.4

*These ¹H NMR signals are overlapped

Table S9: NMR spectral data of syringaresinol- θ -D-glucoside (8), (δ (ppm) and *J* (Hz), CD₃OD), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
1	-	138.5
2/6	6.61 (1H, s)	103.1
3 / 5	-	152.8
4	-	134.5
7	4.76 (1H,d, <i>J</i> = 4.4)	86.0
8	3.09 (1H, m)	54.6
9	H-9a 4.30 (1H, m) H-9b 3.93 (1H, m)	72.2
1'	-	131.7
2' / 6'	6.58 (1H, s)	102.9
3' / 5'	-	146.9
4'	-	134.0
7'	4.74 (1H, d, <i>J</i> = 4.5)	86.5
8'	3.09 (1H, m)	54.6
9'	4.30 (1H, m) 3.93 (1H, m)	72.2
3-OMe / 5-OMe	3.90 (6H, s)	56.7
3'-OMe / 5'-OMe	3.89 (6H, s)	56.7
1"	4.54 (1H, d, <i>J</i> =7.7)	106.6
2"	3.67 (1H, *)	74.0
3"	3.59 (1H, *)	77.0
4"	3.63 (1H, *)	70.7
5"	3.40 (1H, m)	76.5
6"	3.93 (1H, *) 3.81 (1H, dd, 11.9 / 5.2 Hz)	62.8

*These ¹H NMR signals are overlapped

Table S10: NMR spectral data of balanophonin (9), (δ (ppm) and *J* (Hz), CD₃OD), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
1	-	133.5
2	6.97 (1H,d, <i>J</i> =1.6)	110.3
3	_	148.4
4	-	147.7
5	6.81 (1H, d, <i>J</i> =8.0)	116.0
6	6.84 (1H, dd, <i>J</i> = 8.0/ 1.6)	119.6
7	5.62 (1H, d, <i>J</i> =6.8)	89.7
8	3.59 (1H, m)	54.6
9	3.87 (2H, m)	64.3
1'	-	129.2
2'	7.25 (1H, s)	114.1
3'	-	145.8
4'	-	152.7
5'	-	130.8
6'	7.31 (1H, brs)	120.2
7'	7.64 (1H, d, <i>J</i> =15.7)	156.0
8'	6.71 (1H, dd, <i>J</i> =15.7 / 7.8)	126.8
9'	9.61 (1H, d, <i>J</i> =7.8)	195.6
3'-OCH ₃	3.93 (3H, s)	56.7
3-0CH ₃	3.84 (3H, s)	56.3

Table S11: NMR spectral data of ficusal (**10**), (δ (ppm) and *J* (Hz), (CD₃)₂CO), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
1	-	133.5
2	7.03 (1H,d, <i>J</i> =1.6)	110.3
3	-	147.9
4	-	148.4
5	6.82 (1H, d, <i>J</i> =8.0)	116.1
6	6.87 (1H, dd, <i>J</i> = 8.0/ 1.6)	119.8
7	5.67 (1H, d, <i>J</i> =6.8)	89.7
8	3.66 (1H, m)	54.1
9	3.91 (2H, m)	64.1
1'	-	132.4
2'	7.53 (1H, brs)	121.2
3'	-	130.8
4'	-	154.9
5'	-	145.8
6'	7.42 (1H, s)	113.5
7	7.64 (1H, d, <i>J</i> =15.7)	156.0
8	6.71 (1H, dd, <i>J</i> =15.7 / 7.8)	126.8
9	9.81 (1H, d, <i>J</i> =7.8)	191.2
5'-OCH ₃	3.91 (3H, s)	56.7
3-0CH ₃	3.82 (3H, s)	56.3

Table S12: NMR spectral data of venoterpine (**11**), (δ (ppm) and *J* (Hz), CDCl3,), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
1	8.40 (1H, s)	146.0
2	_	141.9
3	3.26 (1H, qd, <i>J</i> = 7.2/ 2.6)	43.7
4	1.37 (3H, d, <i>J</i> =7.2)	12.4
5	4.59 (1H, ddd, <i>J</i> = 5.4/ 2.6/ 2.2)	75.9
6	3.13 (1H, dd, <i>J</i> = 16.9/ 5.4)	42.0
	2.94 (1H, dd, <i>J</i> = 16.9/ 2.2)	
7	-	151.3
8	7.21 (1H, d, <i>J</i> =4.9)	121.3
9	8.38 (1H, d, <i>J</i> =4.9)	147.1

Table S13: NMR spectral data of 11-methoxyhenningsamine (**12**), (δ (ppm) and *J* (Hz), CDCl₃), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
2	4.36 (1H, d, <i>J</i> =10.4)	63.5
3	4.19 (1H, brs)	59.5
4	-	-
Б	3.60 (1H, m)	51 /
5	2.96 (1H, *)	51.4
6	2.04 (1H, m)	27.4
0	1.77 (1H, dd, <i>J</i> = 12.7/4.6)	57.4
7	-	53.2
8	-	123.7
9	7.03 (1H, d, <i>J</i> =8.3)	122.0
10	6.63 (1H, dd, <i>J</i> =8.3/2.1)	110.3
11	-	160.3
12	7.68 (1H, d, <i>J</i> =2.1)	105.6
13	-	143.2
1/	1.68 (1H, d, <i>J</i> =14.9)	25.5
14	2.34 (1H, ddd, <i>J</i> =14.9/ 3.5/ 2.8)	ZJ.J
15	2.87 (1H, brs)	32.8
16	1.87 (1H, d, <i>J</i> =10.4)	44.5
17	5.86(1H, s)	101.7
10	4.39 (1H, m)	
10	4.12 (1H, dd, <i>J</i> =14.3/4.5)	04.2
19	6.09 (1H, brs)	129.3
20	-	138.0
21	3.95 (1H, d, <i>J</i> =15.6)	52.2
21	2.97 (1H, *)	05.2
11-0CH₃	3.81 (3H, s)	55.6
0 <u>CO</u> CH ₃	-	168.5
OCO <u>CH</u> ₃	2.09 (3H, s)	20.8

N <u>CO</u> CH₃	-	170.1
NCO <u>CH</u> ₃	2.37 (3H, s)	24.1

* Overlapping of ¹H NMR signals was observed

Table S14: NMR spectral data of diaboline (**13**), (δ (ppm) and *J* (Hz), CDCl3), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
2	4.94 (1H, d, <i>J</i> =11.9)	63.5
3	4.54 (1H, brs)	60.6
4	-	-
5	4.03 (1H, m)	
6	2.09 (1H, m) 1.98 (1H, m)	37.2
7	-	53.2
8	-	132.8
9	7.30 (1H, d, <i>J</i> =7.5)	122.93
10	7.20 (1H, *)	125.7
11	7.35 (1H, t, <i>J</i> =7.5)	129.5
12	7.21 (1H, *)	117.9
13	-	140.9
14	1.60 (1H, m) 2.37 (1H, m)	24.0
15	3.62 (1H, brs)	27.9
16	1.71 (1H, m)	49.3
17	5.34 (1H, s)	96.5
18	4.77 (1H, d, <i>J</i> =15.4) 4.12 (1H, *)	51.4
19	6.12 (1H, brs)	134.4
20	-	138.0
21	4.14 (1H, *) 3.24 (1H, *)	52.7
N <u>CO</u> CH₃	-	169.6
NCO <u>CH</u> ₃	2.40 (3H, s)	23.2

* Overlapping of 1H NMR signals was observed

Table S15: NMR spectral data of 11-methoxy diaboline (**14**), (δ (ppm) and J (Hz), CDCl3), recorded in a 600 MHz instrument (600MHz for ¹H and 150 MHz for ¹³C).

	¹ H NMR	¹³ C NMR
	δ (ppm) / J (Hz)	δ (ppm)
2	4.91 (1H, d, <i>J</i> =11.0)	63.9
3	4.48 (1H, brs)	60.5
4	-	-
F	3.99 (1H, m)	51 5
5	3.18 (1H, m)	51.5
6	2.07 (1H, m)	37.1
0	1.95 (1H, m)	57.1
7	-	52.9
8	-	124.1
9	7.19 (1H, d, <i>J</i> =8.2)	123.3
10	6.69 (1H, d, <i>J</i> =8.2)	109.1
11	-	160.5
12	6.74 (1H, s)	105.9
13	-	143.2
1/	1.62 (1H, m)	<u> </u>
	2.35 (1H, m)	23.5
15	3.60 (1H, brs)	27.6
16	1.69 (1H, d, <i>J</i> =11.0)	46.0
17	5.32 (1H, s)	96.4
10	4.77 (1H, m)	51 5
10	4.05 (1H, dd, <i>J</i> =14.3/4.5)	51.5
19	6.11 (1H, brs)	134.3
20	-	143.1
21	4.13 (1H, d, <i>J</i> =14.0)	52.6
	3.24 (1H, m)	
OCH ₃	3.83 (3H, s)	55.6
N <u>CO</u> CH ₃	-	169.4
NCO <u>CH</u> ₃	2.39 (3H, s)	23.3