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Abstract: Our societies rely on the quality and availability of natural resources. Driven by population
growth, economic development, and innovation, future demand for natural resources is expected
to further increase in coming decades. Raw materials will be an important part of society’s future
material mix as countries increasingly transition towards resource-efficient and greenhouse-gas
neutral economies. Raw materials are also fundamental to meet ecological and socio-economic targets
within the UN Sustainable Development Agenda. For instance, they have a fundamental role in
renewable energy technologies, new building materials and infrastructure, communication systems,
and low-carbon transportation. However, some materials are largely supplied from countries with
poor governance. The future availability of these materials and associated impacts are of increasing
concern going forward. Recent raw material criticality studies have explored economic, geo-political,
and technological factors that affect materials’ supply. However, environmental and social pressures
also play a role in their security of supply. For instance, conflicts can prevent access to mineral deposits;
accidents and environmental damage compromise public acceptance and can hinder future extraction
operations. This article will introduce this Special Issue with a focus on material requirements
and responsible sourcing of materials for a low-carbon society, and provides an overview of the
subsequent research papers.

Keywords: raw materials; environmental and social sustainability; responsible sourcing and resource
governance; due diligence; future scenarios; security of supply

1. Introduction

1.1. Raw Material Trends

Raw materials are essential to fulfill many human needs, from the basic ones like shelter, to more
specific needs like communication and mobility. The amount [1] and variety [2] of materials used in
modern economies drastically increased in the last century to around 90 Gt (billion metric tons) in 2017,
causing concerns about the associated environmental impacts [3], social implications [4,5], and security
of their supply [6]. The extraction and processing of raw materials itself results in over half of global
greenhouse-gas (GHG) emissions and more than 90% of global water stress and biodiversity loss [3,7].
Current scenario work by the United Nations and the Organization for Economic Co-operation and
Development (OECD) estimates that raw material extraction could further double to approximately
160 to 180 Gt by around mid-century [7–9].

Resources 2020, 9, 68; doi:10.3390/resources9060068 www.mdpi.com/journal/resources

http://www.mdpi.com/journal/resources
http://www.mdpi.com
https://orcid.org/0000-0002-1153-795X
https://orcid.org/0000-0001-9936-6886
http://www.mdpi.com/2079-9276/9/6/68?type=check_update&version=1
http://dx.doi.org/10.3390/resources9060068
http://www.mdpi.com/journal/resources


Resources 2020, 9, 68 2 of 14

Raw materials are important to reach many environmental and socio-economic goals as proposed
by the United Nations 2030 Agenda for Sustainable Development [10,11]. They are also required for
the transformation towards achieving the climate targets under the Paris Agreement [12–14]. However,
the provisioning of materials can also entail impacts which might hinder achieving such goals [11].

The material criticality studies developed in recent years have explored economic, geo-political,
and technological factors that could affect the raw materials’ security of supply [6,15]. It is argued
that governance is a proxy for also social and environmental considerations in related screening-level
assessments [16]. Other work has focused on developing more explicit environmental risk-related
indicators that could be used in criticality assessments [17]. Environmental and social pressures can
also play a role in the materials’ security of supply and present obstacles to a future transition to
a low-carbon society. Indeed, sudden supply chain disruptions, such as, e.g., during the current
Coronavirus pandemic or due to natural disasters or geo-political tensions, can suddenly alter material
availability. Conflicts can also prevent access to mineral deposits; accidents and environmental damage
compromise public acceptance and can hinder future extraction operations.

As highlighted by Ali and colleagues [18], social and environmental factors, as well as a lack
of legislative, economic, and governance stability in the host countries, might increasingly threaten
the capacity of the extractive industry to cope with a growing global demand for raw materials.
Hence, social conflicts, human rights issues (like, for instance, child labor), governance problems, and
environmental impacts are among the factors that should be monitored for preventing price peaks or
supply disruptions in the future. From the industry perspective, companies increasingly evaluate and
report environmental and social performance [19]. Responsible sourcing of minerals and supply chain
due diligence are sometimes integrated in companies’ risk management strategies [20].

Adverse environmental impacts and risks of primary materials provisioning can be reduced
through a number of approaches. One of them is the use of recycled materials for meeting demands
due to the potentially lower environmental impacts of secondary materials provisioning when
compared to primary raw material production. However, current recycling rates for many materials
are rather low globally [21] and also in regions where waste management practices are well developed,
like, e.g., in Europe [22]. Increasing product complexities, in terms of the number of materials
often used only in small amounts in single products [2], proves challenging from a technical
and economic standpoint for materials recovery from end-of-life products [22]. Furthermore, a
continued growth of anthropogenic material stocks coupled with increasing overall demands limits
the potential of secondary materials to displace large fractions of primary material input in the near to
medium-term future [22,23]. Other approaches towards a more sustainable materials system include,
e.g., lifetime extensions, dematerialization and efficiency strategies, substitution, and component reuse
and repair [24]. Furthermore, policy measures to promote life-style changes (sufficiency) also represent
an important component of a sustainable materials system, but life-style changes are less frequently
discussed in the literature and by policy making (see, e.g., the GreenLife scenario in [13] and other
literature [25,26]).

In addition to the above mentioned trends (growth in absolute material demands, associated
environmental and social implications, and increasing product complexities (i.e., the number of
materials used in single products)), also supply chains themselves are becoming increasingly complex
as many countries and economic sectors are involved in the provisioning of final products. This makes
it more challenging to track and manage material flows and associated impacts. An example is shown
in Figure 1 for the material flows of aluminum including the associated trade networks.
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Figure 1. Schematic figure showing selected material flows (Sankey diagram) and the associated 
physical trade network of aluminum by life-cycle stage (physical trade flows are colored by source 
country, arrows are proportional to flow size, and node size is based on the sum of imports and 
exports) (Source: combination of the EU Material System Analysis [27] and trade network 
visualizations from the EU Raw Materials Scoreboard [28] based on data provided in [29,30]. Details 
of the Sankey visualization of aluminum are provided in [27], visualized using eSankey 
(www.ifu.com/en/e-sankey/). Physical trade networks by life-cycle stage were created using data 
from UN Comtrade [29] together with metal contents provided by Liu and Mueller [30] (see the 
methodological notes in the EU Raw Materials Scoreboard [28]) and visualized using Gephi [31].) Gg: 
Gigagrams. 

Aluminum finds widespread use in applications such as vehicles, industrial equipment, 
construction, and metal products. Recycling (shown with purple arrows in Figure 1) is fairly high 
[27]. Physical trade intensifies, moving from the mining stage to metals production and subsequent 
manufacturing stages as quantified by the trade network densities [28]. This shows the materials’ 
pervasive use in modern economies. The EU role in the global physical trade networks of aluminum 
is most prominent at later supply chain stages (i.e., during the manufacturing of semi-finished and 
final products), and in the trade of aluminum waste and scrap. Supply chain monitoring is required 
to track the origin of materials and manage material stocks and flows more wisely [32]. At the EU-
level, the material system analysis (MSA) tracks the material flows and stocks for a wide range of 
materials [27,33] and has been incorporated, e.g., into the EU Raw Materials Information System 
(https://rmis.jrc.ec.europa.eu/?page=msa). The EU MSAs also provide the basis for a number of indicators 
of the EU criticality assessment [16] and EU circular economy monitoring framework [34]. 

1.2. Aim of This Special Issue 

Against this background, the aim of this Special Issue is to provide a collection of recent research 
contributions on the topic of (future) raw materials needs and responsible sourcing. This includes the 
consideration of environmental and social aspects in the management of raw material supply chains 
and an outlook to anticipated raw material demands in the coming decades. A particular emphasis 
is given to the requirements for materials in environmental and low-carbon technologies. 

Figure 1. Schematic figure showing selected material flows (Sankey diagram) and the associated
physical trade network of aluminum by life-cycle stage (physical trade flows are colored by source
country, arrows are proportional to flow size, and node size is based on the sum of imports and
exports) (Source: combination of the EU Material System Analysis [27] and trade network visualizations
from the EU Raw Materials Scoreboard [28] based on data provided in [29,30]. Details of the Sankey
visualization of aluminum are provided in [27], visualized using eSankey (www.ifu.com/en/e-sankey/).
Physical trade networks by life-cycle stage were created using data from UN Comtrade [29] together
with metal contents provided by Liu and Mueller [30] (see the methodological notes in the EU Raw
Materials Scoreboard [28]) and visualized using Gephi [31].) Gg: Gigagrams.

Aluminum finds widespread use in applications such as vehicles, industrial equipment,
construction, and metal products. Recycling (shown with purple arrows in Figure 1) is fairly high [27].
Physical trade intensifies, moving from the mining stage to metals production and subsequent
manufacturing stages as quantified by the trade network densities [28]. This shows the materials’
pervasive use in modern economies. The EU role in the global physical trade networks of aluminum
is most prominent at later supply chain stages (i.e., during the manufacturing of semi-finished and
final products), and in the trade of aluminum waste and scrap. Supply chain monitoring is required
to track the origin of materials and manage material stocks and flows more wisely [32]. At the
EU-level, the material system analysis (MSA) tracks the material flows and stocks for a wide range
of materials [27,33] and has been incorporated, e.g., into the EU Raw Materials Information System
(https://rmis.jrc.ec.europa.eu/?page=msa). The EU MSAs also provide the basis for a number of
indicators of the EU criticality assessment [16] and EU circular economy monitoring framework [34].

1.2. Aim of This Special Issue

Against this background, the aim of this Special Issue is to provide a collection of recent research
contributions on the topic of (future) raw materials needs and responsible sourcing. This includes the
consideration of environmental and social aspects in the management of raw material supply chains
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and an outlook to anticipated raw material demands in the coming decades. A particular emphasis is
given to the requirements for materials in environmental and low-carbon technologies.

In this editorial paper we, firstly, provide a brief overview of the anticipated role of raw materials
for achieving the United Nations Sustainable Development Goals (SDGs) [35] and implementing
the Paris climate targets for reducing greenhouse-gas (GHG) emissions and the associated rise in
global average temperature to well below 2 ◦C [14]. Secondly, we briefly summarize some of the
relevant actors and policies both at the global and EU-level that aim at grappling with the challenges
of future raw material supply and demand. Finally, an overview of the papers in this Special Issue is
then provided.

2. The Role of Raw Materials for Future Societies

2.1. Raw Materials and the Sustainable Development Goals (SDGs)

Modern societies rely on a wide range of materials that compose the physical basis of economic
systems. The variety of materials used has been limited to a few materials for most of the history of
civilization. Yet, over the past century, the amount and variety of materials used has been increasing
and has experienced a drastic surge in the last decades [28].

In a recent study [11], we mapped the role of raw materials to each of the SDGs proposed in the
UN 2030 Agenda [10]. The SDGs represent the vision for future sustainable societies and a guide for
policy making at all levels. The analysis takes into account the whole life-cycle of materials, including
their production (i.e., the role of economic sectors producing raw materials towards each goal), their
consumption (i.e., their function in the use phase), and their end-of-life. The review gathers evidence
of impacts occurring in the phase of material extraction and manufacturing, and those affecting the
environment and societies.

Regarding the manufacturing phase, pollution and safety at work can be pointed out as the
main concerns. Biodiversity impacts, conflicts with indigenous populations, and exacerbation of
competition for land and water are instead more typically occurring in the extractive industry (here
referring to forestry and mining and quarrying). The role of responsible business conduct and corporate
responsibility appears to be crucial in order to determine or prevent these impacts. For instance,
sustainable forest management can drive positive contributions to various goals including, for
instance, creation of jobs, maintenance of ecosystem services, climate change mitigation, etc. Similarly,
governance and institutions have a very relevant role in translating natural resource endowment into
national wealth [36,37]. The mining industry can contribute to economic development through the
payment of royalties, employment creation, and the provision of infrastructure and services to local
populations, especially in developing countries, if good governance of natural resources is in place.

The study also highlighted the contribution of materials in achieving several goals related to
society well-being and prosperity. This includes their direct contribution to some goals like the creation
of employment and economic growth (Goal 8: Decent work and economic growth) and the provision of
materials for infrastructure (Goal 9: Industry, innovation and infrastructure). In addition, the function
of materials in specific applications indirectly contributes to other economic, social, and environmental
goals. This is the case of non-replaceable materials used in medical devices (that contributes to Goal
3 on Good health and well-being), in low-carbon energy technologies (contributing to Goal 7 on
Affordable and clean energy and Goal 13 on Climate action), or in environmental technologies like
water treatments (contributing to Goal 6 on Clean water and sanitation), just to cite some examples.

The societal role of materials is partially captured by the concept of Critical Raw Materials [6].
The current assessment methodologies for criticality, however, are often based on factors related to
supply risks and, e.g., the materials’ economic importance. Other factors beyond economic importance
are not explicitly assessed in relation to the functions of materials in/for societies. As argued by the
contribution of Schellens et al. [38] in this Special Issue, a holistic definition of “critical materials”
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could allow for the consideration of, e.g., the socio-cultural and ecosystem support functions of natural
resources that could bring a different prioritization of materials.

Finally, proper materials management is pivotal for Goal 12 on “Responsible consumption
and production”. This goal includes the targets on sustainable management and efficient use of
natural resources (Target 12.2, measured through the material footprint and the domestic material
consumption) and on reduction of waste generation through prevention, reduction, recycling, and
reuse (Target 12.5, measured through national recycling rates and the amount of materials recycled).
Resource efficiency [39], a circular economy [40], and decoupling of material use from economic
growth [41] are pointed out as instrumental strategies to avoid overextraction and degradation of
environmental resources.

2.2. The Role of Raw Materials in a Low-Carbon and Resource Efficient Society

Low-carbon energy and transport technologies rely heavily on the use of critical materials. By 2050,
e.g., more than 1 billion electric vehicles, and the increased use of electricity for heat and renewable
hydrogen are expected as the main drivers for increased electricity demands from renewables [42].
For this, annual solar photovoltaics additions might need to increase from currently about 109 GW/yr
to 360 GW/yr in 2050 and annual wind additions from about 54 GW/yr today to 240 GW/yr in
2050 [42]. As, e.g., renewable energy systems are substantially more metal-intensive than existing
power generation [12], a transition to a low-carbon society requires an upscaling of current mining of
several metals and metalloids [43,44].

Authors have emphasized that this could hinder the transition to a low-carbon economy [45].
For example, using dynamic material flow analysis, Elshkaki and Graedel [46] found that for renewable
electricity generation technologies the global supply of base metals (aluminum, copper, chromium,
nickel, lead, and iron) could be met in the GEO3 Market First and Policy First scenarios, while
constraints in the supply of silver, tellurium, indium, and germanium could limit the introduction
of certain photovoltaic (PV) technologies. For seven major metals (i.e., iron, manganese, aluminum,
copper, nickel, zinc, and lead), demands are expected to double or triple relative to 2010 levels by
midcentury [47]. Using wind, solar, and energy storage batteries as proxies, the World Bank has
examined metal demands into the future [48].

Similarly, one recent assessment concluded that projected demand for 14 metals, such as cobalt,
lithium, rare earths, nickel, and copper, which are crucial for renewable energy, storage, and electric
vehicles could rise dramatically in the next few decades [49]. Another study analyzed demand for
12 metals in solar power, wind power, and electric motors, and batteries in global climate change
mitigation scenarios up to 2060 [50]. With regard to low-carbon energy and transport technologies at
the EU-level, moderate supply issues are expected for indium, silver, and silicon in PV technologies,
and for cobalt and lithium in electric vehicles until 2030 [51]. In addition, bottlenecks for carbon fiber
composites were found [51].

A recent study by de Koning and colleagues highlights that annual metal demand for electricity
and road transportation systems may increase significantly for indium, neodymium, dysprosium, and
lithium [43]. In Germany, the demand for metals due to new technologies (e.g., batteries, renewable
energy, superalloys, diodes, medicine, etc.) is expected to lead to significant demand surges for
germanium, cobalt, scandium, tantalum, neodymium, praseodymium, and a range of other metals
until 2035 [52]. For lithium, dysprosium, terbium, and rhenium, the demand of the German economy
might be more than twice the primary production in 2013 [52].

However, most studies to date focus on the transformation of the energy system or a subset of
“emerging technologies” and do not consider potential material demands across all economic sectors
and the necessary build-up of infrastructure required to reach GHG neutrality until 2050. Exceptions
include a recent report by the German Environment Agency which provides a systematic assessment
of material requirements for a GHG-neutral and material-efficient Germany in 2050 using scenarios
analysis [13]. A recent report of the European Commission forecasts raw material needs for various
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technologies (e.g., batteries, wind turbines, PV) and sectors (e-mobility, renewable energies, defense,
and space) in 2030 and 2050, and briefly discusses competitions between those [53].

Recent research also shows that sustainable materials management (i.e., implementing measures
related to material efficiency, reuse and recycling, product lifetime extensions, light-weight designs,
substitution, and others) has the potential to positively contribute towards the mitigation of GHG
emissions and needs to be considered in climate change mitigation approaches [54–58]. This has, until
recently, been overlooked in policy discussions on climate change mitigation [59]. Another recent
paper demonstrates that re-use of batteries arising from electric vehicles in stationary applications
has the capacity to increase resource efficiency of raw materials but can postpone significantly the
availability of secondary raw materials [60]. Future policy developments should consider the synergies
between sustainable materials management with other policy areas (e.g., climate change, biodiversity,
energy, agriculture, etc.) and design them in an increasingly integrated fashion.

3. Global and EU Policies for Sustainable Materials Management

Global level. The United Nations Framework Convention on Climate Change (UNFCCC) Paris
Agreement was adopted in 2015 with the goal to keep the increase in global average temperature well
below 2 ◦C [14]. However, policies currently in place seem insufficient for achieving this goal [61].
Recognizing that the successful delivery of the UN SDGs and implementation of the Paris climate
targets requires technologies that depend on a wide range of minerals in vast quantities [18], an
increasing number of institutions and activities are forming at the global level looking into possibilities
for more sustainable resource management.

These activities include, e.g., the United Nations Environment Programme (UNEP) International
Resource Panel (IRP), which was formed in 2007 with the mission to consolidate and evaluate scientific
data in order to provide global guidance for the sustainable management of natural resources [41].
The Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development aims at
supporting mining for sustainable development to limit negative impacts and ensure that financial
benefits are shared [62].

Several high-profile multilateral initiatives emphasize the importance of resource productivity.
The G7 (an alliance of seven major industrialized countries) has established an “alliance on resource
efficiency” at Schloss Elmau in 2015, which formed the basis for the adoption of the Toyama Framework
on Material Cycles in 2016, and the Bologna Roadmap in 2017 [63]. Similarly, the G20 decided
to establish a “G20 Resource Efficiency Dialogue” at their summit in Hamburg (Germany) in July
2017 [64]. The dialogue aims at making the efficient and sustainable use of natural resources a core
element of the G20 talks. In the fourth Session of the United Nations Environment Assembly (UNEA4),
the international community adopted a number of resolutions with relevance to resource efficiency
(e.g., resolution UNEP/EA.4/RES.1 on innovation pathways to achieve sustainable consumption and
production, or resolutions UNEP/EA.4/RES.7 and UNEP/EA.4/RES.9 on environmentally sound waste
management and addressing single use plastic products pollution [65]). The Organization for Economic
Co-operation and Development (OECD) promotes the sustainable use of materials and reduction of
their negative environmental impacts by encouraging resource productivity and waste management,
e.g., through the development of material flow and waste databases, related indicators, and the
publication of working papers and reports (http://www.oecd.org/environment/waste/). Moreover,
the OECD issued the “Due Diligence Guidance for Responsible Business Conduct” [66], which are
non-binding recommendations for enterprises willing to understand and implement due diligence on
a wide range of risk areas: human rights; employment and industrial relations; environment; bribery,
bribe solicitation, and extortion; consumer interests; and disclosure. Sector-specific guidance has
also been released for a number of sectors, including mining. The OECD “Guidance for Responsible
Supply Chains of Minerals from Conflict-Affected and High-Risk Areas” [67] is often considered the
international standard for due diligence in the mineral supply chains and underpins the EU Regulation
on Conflict Minerals (Regulation (EU) 2017/821 of the European Parliament and of the Council of
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17 May 2017, laying down supply chain due diligence obligations for Union importers of tin, tantalum,
and tungsten, their ores, and gold originating from conflict-affected and high-risk areas).

The World Bank has enacted the Climate Smart Mining Facility, which supports the sustainable
extraction and processing of minerals and metals by scaling up technical assistance and investments in
resource-rich developing countries [68]. The World Resources Forum and Future Earth are bringing
together academics, policy makers, and industrial representatives to grapple with the science of
sustainable resource use. A responsible and sustainable sourcing of raw materials is also called for
by the Council Conclusions on Convention on Biological Diversity (CBD) of October 2018, in order
to reconcile the extractive sector with the protection of ecosystems and biodiversity in producing
countries (Council conclusion 12948/18).

With the active support of the EU, the United Nation Environmental Assembly adopted in March
2019 in Nairobi a resolution on mineral resource governance [69]. The resolution acknowledges the role
of sustainable management of metal and mineral resources for the development of clean technologies
and therefore to the climate change action and the decoupling of economic growth from environmental
degradation. Moreover, it encourages governments, businesses, non-governmental organizations,
academia, etc. to promote “due diligence best practices along the supply chain, addressing broader
environmental, human rights, labor, and conflict-related risks in mining, including the continuous
increase of transparency and the fight against corruption”.

EU-level. The 2008 EU Raw Materials Initiative aims at ensuring: (i) a fair and sustainable
supply of raw materials from global markets; (ii) sustainable supply of raw materials within the EU;
(iii) resource efficiency and supply of ’secondary raw materials’ through recycling [70]. This approach
recognizes the role of raw materials for the functioning of the industrial system and its competitiveness.
At the same time, it stresses that sustainable production and a circular economy are needed in order to
achieve security of supply.

The “Europe 2020 strategy” and its related flagship initiatives outline the vision of promoting
resource-efficiency in Europe and shifting to a greenhouse-gas (GHG) neutral economy [71]. The EU
Circular Economy Strategy (e.g., encompassing an action plan, monitoring framework, and plastics
strategy) followed as the basis for overall materials management at the EU level [72]. The energy
roadmap outlines possible routes towards decarbonizing the energy system by 2050 [73]. Recently,
a long-term vision for a climate-neutral Europe was published [74] and a strategic action plan on
batteries was adopted [75]. This “EU strategic long-term vision for a prosperous, modern, competitive
and climate neutral economy” (COM(2018) 773 final) stresses the role of raw materials for climate
action. While it acknowledges that primary raw materials will continue to provide a large part of the
demand, resource efficiency and a more circular economy are expected to improve competitiveness,
create business opportunities and jobs, reduce energy requirements, and in turn, reducing pollution
and GHG emissions.

Currently, the EU Green Deal (COM(2019) 640 final) provides a roadmap with actions towards a
competitive economy in which GHG neutrality is reached by 2050, economic growth is increasingly
decoupled from resource use, and no person/no place is left behind [76]. Within the Green Deal, the EU
sets actions to promote a sustainable and inclusive growth. Among them is a new circular economy
action plan [77], a new industrial strategy for Europe [78], and a proposal for a climate law [79].

Examples of instruments for the promotion of responsible sourcing at the EU level include the
Conflict Minerals Regulation (EU 2017/821), which tackles the specific issues of 3TGs (Tungsten,
Tantalum, Tin and Gold) and will be effective from 2021; the Strategic Battery Action Plan (COM(2018)
293 final, Annex 2), which promotes ethical sourcing of raw materials for the batteries industry
and the related European Battery Alliance (EBA), launched in 2017 to create a competitive battery
manufacturing value chain in Europe; and the research program Horizon, including the research
project RE-SOURCING (Global Stakeholder Platform for Responsible Sourcing). Moreover, in 2019, the
European Commission launched “Due Diligence Ready!”, an online portal that provides businesses
with guidance on how to check the sources of the metals and minerals entering their supply chains.
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Various additional EU and national policies in member states related to material use and resource
efficiency exist, and an overview is provided elsewhere [80–83].

4. Towards Low-Carbon and Material-Efficient Societies

Recent policy developments in the EU, such as covered in the EU Green Deal [76–79] as well as
climate and energy policies of individual member states, have set out the ambitious goal of achieving
climate neutrality by 2050. This will only be possible through a rapid transformation of all economic
sectors towards low carbon technologies, by increasing material efficiency across a wide range of
materials, technologies, and sectors, and by changes in life-styles. While research in the design of 100%
renewable energy systems has gained increasing attention since 2004 [84–87], an integrated view of the
associated materials and other resources demand (water, land area, biodiversity, etc.) [88], associated
social and economic implications [19], as well as the potential of material efficiency to contribute to
climate mitigation [89], have only recently been considered. Some scenarios and modeling approaches
exist to highlight the impact of future development paths towards multiple SDGs, highlighting potential
trade-offs that might not be visible when focusing only on a subset of impact categories [90,91].

Determining options for reducing GHG emissions and resource use within an economy requires,
firstly, a screening across all economic sectors (i.e., energy, mining, manufacturing, transportation,
agriculture, buildings and infrastructure, waste management, etc.) to determine possibilities for
implementing material efficient and renewable (low-carbon) systems. Substitution roadmaps are
central to complement efficiency and recycling approaches [92]. Given the long lifetimes of large-scale
systems, such as power plants or steel production, an implementation of alternative solutions has to
take place within the next years if climate goals under the Paris Agreement until 2050 are taken seriously.
This includes, e.g., the switch to renewable energy and towards the use of power to gas/liquid (for gas,
fuels, and chemical feedstocks provisioning from renewable power) in the energy sector and across
industrial applications, e-mobility and better public transport, and life-style changes (e.g., reduced
meat consumption, increased on-ground public transport for shorter distances instead of aviation,
traffic avoidance, sufficiency, etc.). Research shows that an economy-wide transformation across all
sectors is technically feasible (at least for single countries and regions) but that it requires rapid and
ambitious implementation on the policy side [13,84].

Providing scenarios and roadmaps that describe the technical, life-style, and policy changes
required to achieve GHG neutrality by 2050, while at the same time closely monitoring potential
pressures through other natural resource demands, is an important step in laying out technically
feasible visions for individual countries and regions. Stakeholder engagement is essential to have
broad societal support for such a vision.

Furthermore, sound data and indicators are crucial to understand possible trade-offs between
different material and technology choices with regard to environmental and social implications.
By capturing the flows and stocks of individual materials [32] or broad material categories [93], material
flow analysis (MFA) provides a good starting point for better managing (raw) materials, avoiding losses
to the environment, and for assessing social considerations. Efforts by governments are underway at
various spatial (globally, regionally, and for individual countries or sectors/industries) and temporal
scales to capture material flows in the economy (e.g., [27,32,33,94–97]). Frameworks for the description
and monitoring of the physical economy are emerging [98].

In the life cycle assessment (LCA) methodology, physical accounts of materials and energy inputs
and outputs in a system can be combined with unitary factors of impact (i.e., characterization factors
(characterization factors express how much a single unit of mass of the intervention contributes to an
impact category)) in order to help assess impacts over the life-cycle [99]. At the level of products or
companies, product and organizational environmental footprints provide both a concept and data
for estimating environmental impacts supporting, e.g., corporate reporting and investment [100,101].
Looking at socio-economic aspects, the social life cycle assessment (S-LCA) methodology similarly
combines site-specific and generic data on social aspects affecting different types of stakeholders in
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order to help identify impacts in the supply chain [102]. Both techniques are based on the design
of a system from a physical point of view, the definition of its burdens, and the consideration of all
the life-cycle stages, which facilitates detection of burden shifting and comparison of alternatives.
Moreover, a wide spectrum of impact categories is addressed by both environmental and social
LCA. Availability and quality of data remains, however, one of the main constraints, as both LCA
and S-LCA require extensive gathering of primary data in order to get to robust results. Indeed, in
the case of social assessment, contextual information is essential and generic data from commercial
databases can support a first screening of hotspots but are not sufficiently accurate to perform an
impact assessment [103].

5. Overview of Papers in This Special Issue

The contributions gathered in this Special Issue address the following aspects: (i) assessment of
material requirements for future energy systems; (ii) reflection on the concepts of resource depletion
and criticality; (iii) analysis of social and environmental pressures of mining; (iv) analysis of conflict
minerals management from a company perspective; and (v) analysis of a circular economy through
material flow cycles.

Concerning the first group, these papers quantify material requirements to support efficient
transport systems [104] (Teubler et al.), renewable energy technologies [105] (Moreau et al.), or
low-carbon electricity generation [106] (Boubault and Maïzi). Different time frames are considered
(respectively, 2030, 2050, and 2100). Teubler et al. [104] quantify the annual final energy and
GHG-emission reductions from low-carbon transport in Europe in 2030. Moreover, they compare
these reductions to the savings and additional requirements for materials and metals using indicators
like material footprints, carbon footprints, etc. Boubault and Maïzi [106] use life-cycle inventories
of technologies for energy generation and the TIME Integrated Assessment Model to project the
global raw material requirements in two scenarios (a second shared socio-economic pathway (SSP2)
baseline and a 2 ◦C target scenario). Moreau et al. analyze the material requirement of a transition to a
renewable energy system, taking into account five energy scenarios. The storage capacity needed to
support renewables is also modeled. The material requirement is then compared with the availability
of metal reserves and resources, reflecting on the implications on resource depletion.

Resource depletion is also at the core of the Rötzer and Schmidt paper [107]. Using historical data
on ore grades, prices, mining technologies, etc., they argue that decreasing metal ore grades should not
be considered as indicators of resource depletion, as they are often addressed through technological
advancement in mining techniques. However, the increasing environmental impacts, and resource
requirements related to the exploitation of lower concentrated deposits (which can imply competition
for water and land, and lead to social tensions and/or impacts) should be looked at as the main concern.

Schellens and Gisladottir [38] discuss another feature of raw materials that has been gaining
growing importance in the last decade, especially from a policy perspective, i.e., raw materials criticality.
Their investigation focuses on the current definitions, and suggests that the current discourse on
criticality overemphasizes some aspects, like the economic importance of materials (instead of their
social and ecological function), the role abiotic materials (instead of biotic), etc. A holistic definition
of natural resource criticality is proposed to provide decision-makers with neutral and balanced
information and recommendations on natural resource management.

Social and environmental pressures linked to mining are investigated in the paper by Di Noi and
Ciroth [108]. This paper presents a sustainability hotspot screening for the EU Horizon 2020 “Integrated
Mineral Technologies for More Sustainable Raw Material Supply” (ITERAMS) project, which targets
more efficient water recycling, tailings valorization, and the minimization of environmental footprints.

Looking at the downstream part of the metals supply chain, Young et al. [109] gather data from
smelters and manufacturing industries to explore how these industries manage conflict minerals and
perform due diligence programs. This investigation sheds light on the implementation of responsible
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sourcing from a company perspective, providing insights on supply chain transparency and risk
management for what concerns human rights violations, conflicts, poor governance, etc.

Finally, in Graedel et al. [110], the Australian anthropogenic cycles of five materials (four metals
and one alloy) were analyzed and utilized to provide novel insights into the circular economy potential
for each of the cycles and carbon neutral prospects in Australia. The study demonstrates that the
circular economy must be conceived at the global level, and must be cognizant of the losses that are
inevitable at every life stage.
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