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Abstract: In order to identify the most effective variants for reducing flood risk in cities and to
provide protection for water resources, an in-depth study was carried out. The research results
allowed for the identification of sustainable drainage infrastructure solutions that should be used
to increase the efficiency of traditional drainage systems. The most effective solution turned out to
be the simultaneous use of low impact development facilities and stormwater flow control devices
in drainage systems (Variant IV). Applicationof this variant (maximum discharge QOmax = 246.39
dm3/s) allowed for the reduction of the peak flow by as much as 86% in relation to those values that
were established in the traditional drainage system (maximum discharge QOmax = 1807.62 dm3/s).
The use of Variant IV allowed for a combination of the advantages of low impact development (LID)
facilities and stormwater flow control devices in drainage systems while limiting their disadvantages.
In practice, the flow of rainwater from the catchment area to the drainage system was limited, the share
of green areas increased, and the drainage system retention capacity grew. The proposed approach
for reducing the increasing flood risk in cities and providing protection for water resources provides
a structured approach to long-term urban drainage system planning and land use guidelines.

Keywords: stormwater management; retention sewage canal; sustainable drainage systems; urban
floods; management of water resources; climate change

1. Introduction

The development of urban agglomerations has been taking place on an unprecedented scale
in the last decade [1,2]. Currently, approximately 55% of the world’s population lives in urban
areas. It is estimated that this ratio will increase up to 68% by 2050 [3]. An increase of social and
logistical problems and the deterioration of the natural environment are negative consequences of
urbanization [4–6]. In order to ensure the maintenance of the living standards that are expected
by residents, who are increasing in number, it is necessary to properly maintain, operate [7,8],
and modernize a city’s infrastructure [9,10] and to implement such in accordance with the principles of
sustainable development [11,12]. In many cases, urban development is constrained by the possibilities
of municipal infrastructure, especially the one used to drain wastewater and stormwater [13,14].

Urbanization increases the sealing of existing drainage basins, which causes, among other
effects, changes in the dynamics and size of surface runoff and a decreased intensity of groundwater
supply [15,16]. Currently, the uncontrolled and reckless replacement of biologically active areas with
impervious surfaces has been observed [17,18]. In catchments that are characterized by a significant
percentage of green areas, the transformation of rainfall into surface and underground runoff occurs
much more slowly and in a sustainable way [19,20]. The prevailing volume of precipitation in these
areas is subject to infiltration, evaporation, and surface retention [21]. Only a small part of the volume
of rainfall transforms into surface runoff [22,23]. Unfortunately, as the degree of sealing of the drainage
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basin increases, the proportion between these processes changes. In catchments with a high degree of
sealing, the infiltration of rainwater into the ground disappears in favor of a surface runoff, which in
cities goes almost entirely to the drainage systems [24–26].

Local urban floods are an increasingly observed phenomena, typical in highly urbanized areas.
They result from the occurrence of heavy rainfall, the intensity of which exceeds the possibilities of their
hydraulic transport by municipal drainage systems [27,28]. Other times, dry periods occur in the same
areas when water scarcity is observed [29,30]. The occurrence of drought within urban agglomerations
has a negative impact on society, the economy, and the natural environment. The growing population
of a city also necessitates a greater amount of the total water that is needed for adequate municipal
supply [31]. Reducing the risk of natural disasters (e.g., floods and drought) requires the effective
management of water resources [32] and advanced seasonal forecasting [33]. Proper water management
in urban areas allows for the transformation of rainwater, which is treated as a problem, into an
alternative source of water [17,34]. Though these types of floods usually cover a part of the drainage
basin, their occurrence causes significant financial and social losses [35,36]. Outflows of stormwater
from drainage systems to the surface of area usually occur in close proximity to drainage conduits,
which have an insufficient hydraulic capacity. There are also cases where the flooding appears at
a considerable distance from the overloaded conduit, and this is due to the specific shape of the
catchment surface [14].

It is also worth emphasizing that there are often situations in which conduits are not completely
used in terms of hydraulics and have significant unused capacity above the rainwater table that can be
included in the retention volume of the drainage system [37]. This fact is of colossal significance in the
aspect of slowing down rainwater runoff to receivers and limiting their negative impact, but it is also
very important for economic reasons [38,39].

Urban floods have become a major problem for most urban agglomerations around the world.
At present, it is believed that the best way to deal with excess rainwater in such areas is to use objects
and devices that allow for the reconstruction of the natural water cycle that occurred in areas before
their urbanization [40–42]. These facilities include rain gardens, permeable pavement, rainwater
catchment, vegetated (green) roofs, and soil amendments for better absorption. Green infrastructure
that mimics natural hydrological processes is able to provide economic, environmental, and social
benefits [43,44]. According to research [45–50], for stormwater management practices in urban areas,
the main purpose of most types of low impact development (LID) devices is a reduction of the peak
discharge of stormwater. For instance, the installation of wales and rain-gardens can improve the
greening of cities and increase the overall area of urban greenery. This can in turn improve the diversity
of urban ecosystems by providing new habitats for a wider range of organisms (e.g., birds, amphibians,
and insects) [51–55]. In addition, the use of LID facilities can improve water quality [56–59] and reduce
air pollution [60–65]. The careful planning of such infrastructures can also bring many benefits to the
general public as a result of creating more recreational space (e.g., urban parks) and improving the
utility value of a district or urban areas [17,66].

There are certain situations in which low impact development practices are not recommended
or impossible to apply in practice. While the infiltration of rainwater into the ground is usually
desirable, diverting water to some locations can create problems, e.g., destabilizing slopes and cliffs [67].
The use of green infrastructure facilities in the process of creating the concept of sustainable drainage
systems requires a compliance with appropriate local and soil-water conditions. The use of infiltration
facilities is justified only in areas with an appropriate filtration coefficient kf and low groundwater
levels [42]. The use of low impact development devices enables the solving of the problem of excess
rainwater in the local range [68]. In order to ensure sustainable rainwater management in an urban
agglomeration, these techniques should be applied throughout the whole catchment area [36]. An LID
infrastructure system requires significant space to be reserved for its construction. For example, the use
of bio-swales on roads should be allocated an additional space between pedestrians, cycle lanes and
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roads, and housing estates should be provided with sufficiently large areas for the construction of
tanks or draining devices [67].

In urban catchments that are subject to strong expansion it is very difficult or sometimes impossible
to obtain free land for building water and stormwater management facilities. In such cases, underground
drainage disposal systems are used, which, when taking the solution of innovative retention canals
proposed by the authors of the publication into account, are characterized by a better environmental
impact and much better economic parameters that are associated with the more effective use of the
retention capacity of the drainage systems.

The article analyzes various variants of drainage and management of rainwater from the city’s
catchment area with particular emphasis on the proprietary solution of innovative retention canals and
low impact development facilities. As part of the research, four stormwater management options had
their peak discharges determined and their advantages and disadvantages identified. The presented
results indicate that the simultaneous use of piling partitions and LID devices allows for the achievement
of the highest economic, environmental and social benefits in comparison to the currently used variants
of stormwater management, i.e., the traditional drainage system, low impact development practices,
and retention sewage canals.

2. Materials and Methods

2.1. Case Study

The research was carried out for a real catchment area constituting a fragment of the city of
Tarnobrzeg, which is located in south-eastern Poland (Figure 1).

Resources 2020, X, x FOR PEER REVIEW 3 of 18 

In urban catchments that are subject to strong expansion it is very difficult or sometimes 

impossible to obtain free land for building water and stormwater management facilities. In such cases, 

underground drainage disposal systems are used, which, when taking the solution of innovative 

retention canals proposed by the authors of the publication into account, are characterized by a better 

environmental impact and much better economic parameters that are associated with the more 

effective use of the retention capacity of the drainage systems.  

The article analyzes various variants of drainage and management of rainwater from the city's 

catchment area with particular emphasis on the proprietary solution of innovative retention canals 

and low impact development facilities. As part of the research, four stormwater management options 

had their peak discharges determined and their advantages and disadvantages identified. The 

presented results indicate that the simultaneous use of piling partitions and LID devices allows for 

the achievement of the highest economic, environmental and social benefits in comparison to the 

currently used variants of stormwater management, i.e., the traditional drainage system, low impact 

development practices, and retention sewage canals.  

2. Materials and Methods

2.1. Case Study 

The research was carried out for a real catchment area constituting a fragment of the city of 

Tarnobrzeg, which is located in south-eastern Poland (Figure 1). 

. 
Figure 1. Scheme of the drainage basin (K—drainage system outlet node; dk—conduit diameter). Figure 1. Scheme of the drainage basin (K—drainage system outlet node; dk—conduit diameter).



Resources 2020, 9, 19 4 of 17

The parameters characterizing the catchment are presented in Table 1.

Table 1. Land-use characteristics of the urban catchment.

Land Use
Area

(ha) (%)

Rooftop 4.78 10.30
Road, pavement and other impervious 9.60 20.70

Green area 32.00 69.00

Total areas 46.38 100.00

The parameters characterizing the traditional drainage system are presented in Table 2.

Table 2. Hydraulic parameters of traditional drainage system.

Parameter
Value

Minimum Maximum

Length of links 19.36 m 97.40 m

Total length of links 3769.70 m
Slope of links

Diameter of links
1.1 %�
0.3 m

3.1 %�
1.0 m

Drainage system capacity 1515.76 m3

The precipitation model of Bogdanowicz and Stachy (recommended in Poland) was used to
calculate the unit precipitation intensity [69]. This model determines the correlations between the
intensity of precipitation and its duration, using Equation (1):

hmax = 1.42 · td
0.33 + α(td) · (−lnp)0.584 (1)

where hmax is the maximum total amount of precipitation with a duration td and a probability of
occurrence p (mm), α is a parameter (scale) that is adopted depending on the region of Poland and the
duration of precipitation td, p is the probability of rainfall: p ∈ (0; 1], and R is a region of Poland.

All simulations were carried out while assuming a probability of rainfall as p = 0.5. Precipitation
intensity was estimated according to the Bogdanowicz and Stache formula concerning block
precipitation with a uniform intensity throughout their duration. Figure 2 shows the IDF
(Intensity-Duration-Frequency) curve that was determined on the basis of Equation (1).

Resources 2020, X, x FOR PEER REVIEW 4 of 18 

 

 

The parameters characterizing the catchment are presented in Table 1. 

Table 1. Land-use characteristics of the urban catchment. 

Land Use 
Area 

(ha) (%) 

Rooftop 4.78 10.30 

Road, pavement and other impervious 9.60 20.70 

Green area 32.00 69.00 

Total areas 46.38 100.00 

The parameters characterizing the traditional drainage system are presented in Table 2. 

Table 2. Hydraulic parameters of traditional drainage system. 

Parameter 
Value 

Minimum Maximum 

Length of links 19.36 m 97.40 m 

Total length of links 3769.70 m 

Slope of links  

Diameter of links 

1.1 ‰ 

0.3 m 

3.1 ‰ 

1.0 m 

Drainage system capacity 1515.76 m3 

The precipitation model of Bogdanowicz and Stachy (recommended in Poland) was used to 

calculate the unit precipitation intensity [70]. This model determines the correlations between the 

intensity of precipitation and its duration, using Equation (1): 

hmax = 1.42 ∙ td0.33 + α(td) ∙ (−lnp)0.584 (1) 

where hmax is the maximum total amount of precipitation with a duration td and a probability of 

occurrence p (mm), α is a parameter (scale) that is adopted depending on the region of Poland and 

the duration of precipitation td, p is the probability of rainfall: p ∈ (0; 1], and R is a region of Poland. 

All simulations were carried out while assuming a probability of rainfall as p = 0.5. Precipitation 

intensity was estimated according to the Bogdanowicz and Stache formula concerning block 

precipitation with a uniform intensity throughout their duration. Figure 2 shows the IDF (Intensity-

Duration-Frequency) curve that was determined on the basis of Equation (1). 

. 

Figure 2. IDF curve determined based on the Bogdanowicz and Stache model at p = 0.5 

Figure 2. IDF curve determined based on the Bogdanowicz and Stache model at p = 0.5



Resources 2020, 9, 19 5 of 17

2.2. Storm Water Management Model (SWMM)

A simulation of hydrological and hydraulic phenomena occurring in the “precipitation-drainage
and basin-drainage system-receiver” system was carried out by using the Storm Water Management
Model (SWMM) version 5.1 program. Hydrodynamic models of the drainage system made in the
SWMM program allowed for the determination of the values of the hydraulic parameters describing the
operation of the drainage system in variable conditions of its function (static and dynamic), including
flow rate and liquid stream velocity, hydrostatic pressure, and rainwater filling height in the drainage
system canal. A diagram illustrating the transformation of precipitation into surface runoff in the
SWMM program is presented in Figure 3.
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Figure 3. Conceptual view of surface runoff in the Storm Water Management Model (SWMM) 5.1
(hw—depth of water over the subcatchment; hgw—depth of depression storage) [70].

Each subcatchment was treated as a non-linear reservoir. Therefore, the reliable outflow from the
subcatchment was determined on the basis of the relationship presented by Equation (2) [70]:

Qp = ps
(hw − hgw)

3
5

nz
i

1
2
z (2)

where Qp is the surface runoff intensity of rainwater, ps is the runoff width of the drained drainage
basin, hw is the depth of the water over the subcatchment, hgw is the depth of depression storage, nz is
the Manning coefficient for the drainage basin, and iz is the slope of drainage basin.

The instantaneous intensity of rainwater outflow from the catchment corresponds to the volume
of water stored on its surface, with less losses resulting from water infiltration into the ground,
evaporation, and surface retention height. The value of the instantaneous rainwater flow rate in a
drainage system conduits in the SWMM 5.1 program is determined based on the system of differential
Equation (3), which results from the principles of mass conservation (continuity Equation (3)) and
momentum (momentum Equation (4)), as developed by de Saint-Venant in Equation (3) [70]:

Continuity :
∂A
∂t

+
∂Q
∂x

= 0 (3)

Momentum :
∂Q
∂t

+
∂(Q2/A)

∂x
+ gA

∂H
∂x

+ gAS f + gAhL = 0 (4)

where x is the distance along the conduit, t is time, A is the cross-sectional area, Q is the flow rate, H is
the hydraulic head of water in the conduit (elevation head plus any possible pressure head), Sf is the
friction slope (head loss per unit length), hL is the local energy loss per unit length of the conduit, and g
is the acceleration of gravity.

The SWMM program user has the opportunities to choose one of three derived models resulting
from the adoption of certain simplifications in the de Saint-Venant equation. All simulations were
performed by assuming a dynamic wave model.

The LID control module allows for the simulation of the operation of various types of low impact
development infrastructure. The user can model eight different types of LID control devices, i.e.,



Resources 2020, 9, 19 6 of 17

bio-retention cells, rain gardens, green roofs, infiltration trenches, continuous permeable pavement,
rain barrels, rooftop disconnection, and vegetative swales [70].

2.3. Sustainable Urban Drainage Systems (RETENTION SEWAGE CANAL)

The improvement of the hydraulic efficiency of traditional drainage systems has been achieved by
introducing piling partitions to manholes (Figure 4).
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Figure 4. Diagram of the implementation and location of the piling partitions in a manhole (a) cross
section and (b) longitudinal section. 1—manhole/sewer chamber; 2—emergency overflow; 3—piling
partition; 4—outflow orifice; 5—conduit; Hzał—maximum allowable stormwater fill before the piling
partition; hRK,t—instantaneous stormwater fill height in the drainage system conduit equipped with a
retention system during the time t; dk—diameter of the conduit; and DO,RK—diameter/height of the
outflow orifice) [14,71].

The piling partition had an outflow orifice (4) in the lower part, and the upper edge of the partition
was a typical front overflow (2). The circular outflow orifice (4) was mapped in the SWMM program
by using the Orifice Link function. The emergency overflow (2) was designed by using the Weir
Link function.

The principle of operation of the retention sewage network is shown in Figure 5.
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Figure 5. Scheme of the retention sewage canal with piling partitions that create stormwater canal
retention spaces (blue-average distribution of the liquid stream mirror in the conduits of a traditional
drainage systems and the blue-liquid stream distribution and retention capacity of the drainage system
after equipping it with piling partition; VS,SK—the volume of stormwater retained in the drainage
system; ∆VRK—the additional volume of stormwater retained in the conduits between the drainage
system operating in a traditional way and an identical drainage system equipped with a system of
retention sewage canal; and LKR—distance between adjacent piling partitions) [72].
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Piling partitions form a serial hydraulic system of retention chambers on a drainage system and
make it possible to effectively use the capacity of the drainage system [73]. The application of the
aforementioned solution provides measurable effects and has a number of application advantages,
in particular, it allows for the significant reduction of peak-flow values at subsequent stages of hydraulic
transport of stormwater, which has already been confirmed many times as part of many investments
in Poland [71].

3. Results

Four variants of drainage systems were adopted in the research.
Variant I—urban drainage with rainwater drainage by a traditional underground gravity drainage

system (Figure 6).
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Variant II—rainwater management based on the interaction of a traditional drainage system with
low impact development facilities (Figure 7). It was assumed in the research that rainwater from the
roofs of buildings would be drained to rain gardens, which were located on individual properties.
The rain garden parameters are shown in Table 3.
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Variant III—urban drainage with rainwater drainage by a sustainable drainage system (a traditional
drainage system equipped with piling partitions) (Figure 8), in accordance with a patent solution [50].
The average distance between the piling partitions of the retention sewage canals was approximately
equal 75 m. The ratio parameter Hzał/dk was equal to 0.99.
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Variant IV—rainwater management in the catchment area based on the use of a traditional
drainage system equipped with both low impact development devices and piling partitions (Figure 9).

Table 3. Properties of layers of rain gardens.

Layers Value

Surface layer

Berm height 80 mm
Vegetation volume fraction 0.1 (volume fraction)

Surface roughness (Manning n) 0.052 m −1/3s
Surface slope 1.0%

Soil layer

Thickness 900 mm
Porosity 0.33 (volume fraction)

Field capacity 0.24 (volume fraction)
Wilting point 0.15 (volume fraction)
Conductivity 10 mm/h

Conductivity slope 1
Suction head 5 mm/h
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The simulation tests of four variants of the drainage system showed significant differences in the
size and dynamics of rainwater outflows. First of all, there were significant differences in the variability
of QO stormwater runoff from this system, as shown in Figure 10.
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For example, by analyzing the data that were obtained during rainfall with a duration of td =

10 min (Figure 10a), it could be seen that the peak flow rate QOmax decreased from the value of 1763.17
dm3/s in Variant I to just 200.26 dm3/s with the system in operation Variant IV. At the same time,
the stormwater retention time in the drainage system in Variant IV, about 110 minutes, was almost three
times longer compared to the value of this parameter that was determined for Variant I, which had a
value of almost 40 minutes.

Conducting tests in a sufficiently wide range of precipitation times td (precipitation with a duration
of 10 to 160 min) allowed for the establishment the relationship between the peak outflow rates QOmax
from the drainage system in relation to the duration of precipitation td. The results of the tests are
presented in graphic form in Figure 11.

1 

 

 Figure 11. Hydrographs of rainwater runoff from the gravitational stormwater drainage systems at
the outlet node K depending on the examined variants of its function and the duration of rain (a) td =

10 min, (b) td = 30 min, and (c) td = 50 min).

It turned out that the most unfavorable hydrograph of the rainwater outflow from the analyzed
catchment occurred in the case of Variant I, i.e., the traditional drainage system. Regardless of the
considered duration of rainfall td, the adoption of Variant I resulted in the highest values of peak
outflow from the examined catchment. At the same time, it could be seen that the time of stormwater
detention in the drainage system and the outflow to the receiver was the shortest for all rainfall times td.

Variant IV had the greatest ability to extend the time of outflow from the catchment area and to
reduce the volume of flows, consisting of the simultaneous use of an innovative retention drainage
system and low impact development devices. The best results were noted both in terms of the volume
of the rainwater flowing into the drainage system from the drained drainage basin and the reduction
in the size of the outflows from the drainage basin to the receiver.

A comparison of the set peak outflow rates from the tested drainage systems proved that the
adopted stormwater management variant had a very significant impact on the hydraulic load of the
rainwater receiver. The highest values of the peak flow rate of the stormwater QOmax were observed
in Variant I, regardless of the considered duration of rainfall td. Intermediate test results were obtained
in the case of analysis of Variants II and III. It turns out that in Variant III during short rainfall, i.e.,
with td < 40 minutes, the use of piling partitions allowed for the obtainment of much more favorable
hydraulic conditions at the outflow from the drainage basin under test conditions compared to the
use of low impact development facilities (Variant II). In the event of rainfall with a duration of td >

40 minutes, the use of LID objects was found to be more preferable.
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The research showed that Variant IV guaranteed the highest safety of the hydraulic function
of the drainage system under test conditions. By analyzing the results of simulation tests on a real
urban catchment, it was found that the use of Variant IV reduced the peak rainfall outflow intensity
from 1807.62 to just 246.39 dm3/s. Importantly, the use of Variant IV in practice, based on sustainable
drainage system supported by LID devices, allowed for the obtainment of a practically constant value
of the peak outflow from the drained drainage basin, regardless of the duration of precipitation td
(Figure 11). At the same time, the QO stormwater outflow rates (Figure 10) maintained values that
were close to the peak value, practically throughout the entire period of the hydraulic function of the
drainage system. This is an important observation, primarily for practical reasons, because it allows
for a significant reduction in investment and operating costs of existing drainage facilities and their
equipment that are located downstream drainage systems, i.e., after the outlet node K.

The confirmed relationship is particularly important in the case of the temporary storage of
stormwater runoff in underground vaults, pounds, or depressed area to allow for metered discharges
that reduce peak flow rates, as well as the storage of stormwater runoff in site. Obtaining a favorable
hydrograph of inflow to these objects (smaller and stable value of the inflow intensity) makes it possible
to reduce their required volume.

The use of the retention capacity of the drainage system (retention sewage canal) and limiting the
inflow of rainwater (low impact development) to this system has allowed for the reduction of the peak
outflow from this system. It turns out that the largest reduction in the peak flow of stormwater, by as
much as 86% compared to Variant I, was ensured by the use of Variant IV. An indirect reduction of the
peak flow of 60% was found when Variant II taking into account. On the other hand, the use of LID
devices in Variant III reduced the peak flow by 31%.

4. Discussion

Xia et al. [74] described the concept of using green infrastructure as a breakthrough in the planning
of urban areas. This approach to flood risk management in cities is desirable because it provides
recreational space, habitats for various organisms, and mitigates other adverse urbanization effects
such as the heat island effect. The results of the tests confirmed the correctness of this thesis. However,
in order to increase the effectiveness of practices to reduce the risk of urban floods, it is necessary to
take into account the interaction of the green LID infrastructure with facilities to increase the retention
efficiency of drainage systems (retention sewage canal).

A review of the literature in the discussed topic and analyses of the results of the simulation
tests allowed for the determination of the basic advantages and disadvantages of the four flood risk
management options in urban areas and indicated the fields of their practical application; these are
listed in Table 4.

The conducted research confirmed that the use of traditional sewage systems (Variant I) is an
inefficient way of dealing with excess rainwater in urban areas. The acceptance of this outdated
approach leads to the frequent occurrence of urban floods, causing significant social and financial losses.
In the case of a concept based on green infrastructure (Variant II), the correctness of its application in
urban agglomeration was confirmed. It should be noted, however, that, in addition to the indisputable
advantages, the system based on LID devices also has disadvantages that sometimes limit the area
of their practical applications. In turn, the use of the concept based on the use of only the retention
capabilities of drainage systems gives very good results in terms of its hydraulic efficiency. It is highly
purposeful to include such a solution in design concepts. It allows one to simultaneously control
and reduce the peak values of stormwater flows. Unfortunately, in Variant III, the entire volume of
rainwater that drains from the drained drainage basin to the rainwater drainage system is discharged
to the receiver, which is a significant drawback.
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Table 4. Advantages and disadvantages of analyzed variants of rainwater management in urban areas.

Variant Advantages Disadvantages

I

-Minimal demand for built-up space, especially on the land surface.
-High resistance to adverse soil and water conditions.

-No requirements regarding the quality of transported stormwater.
-Can be used in areas with different buildings

-Possibility of using trenchless methods during the investment.

-Lack of utilization of retention capabilities of active channels in these systems.
-Adverse hydrograph of rainwater runoff from the system (cumulative peak rainfall

discharges to the receiver).
-The entire volume of rainwater transported by the system is discharged outside the

drainage basin.
-Deterioration of the receiver’s water quality by introducing impurities contained

in rainwater.

II

-Ability to temporarily rainwater retention.
Possibility of interoperability of LID devices with other drainage infrastructure.

-Limiting the volume of stormwater discharged outside the drainage basin.
-Improvement of soil and water conditions in the catchment area.
-Imitation of natural hydrological processes before urbanization.

-Rainwater pretreatment.
-Possibility of rainwater supply by existing traditional sewage systems.

-Possibility of cooperation of various LID objects within the drained drainage basin.
-Improving the diversity of urban ecosystems, including providing new habitats for a

wider range of organisms.
-Recreation space and improvement of the utility value of a district or urban areas.

-Frequent necessity of pre-treatment of rainwater before it is fed to soil infiltration
devices.

-The need for periodic maintenance of LID devices.
-Dependence on soil and water conditions

-Dependence on area availability.
-A significant share of the required area of LID facilities in relation to the drained

drainage basin.
-Often possible high investments.

III

-All benefits of Variant I.
-Using the retention possibilities of existing drainage systems.

-A favorable hydrograph of rainwater outflow from the system (low and constant
rainfall outflow intensity).

- The possibility of applying various LID objects to the drainage system.

-The entire volume of rainwater transported by the system is discharged outside the
drainage basin.

-Reduction of the load per unit load of the receiver’s water pollution.
-Deterioration of the receiver’s water quality by introducing impurities contained

in rainwater.
-Dependence of the retention capacity of the drainage system on the average bottom

of its ducts, equipped with retention canals.

IV

- Benefits of Variants II and III.
- The maximum possible reduction of the peak outflow from the drained

drainage basin.
- The possibility of limiting the use of LID facilities in places where their operation is

expensive and/or difficult to implement.
- Limitation of the required geometry of drainage system, especially in areas with

permeable soils.

-Frequent necessity of pre-treatment of rainwater supplied to devices before
infiltration into the ground.

-Periodic maintenance of LID devices is required.
-Dependence on soil and water conditions for LID facilities.

-Dependence on the availability of land for the construction of LID facilities.
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Thus, the most desirable approach to the problem of excess rainwater is the implementation of
Variant IV. It combines the advantages of Variant II and Variant III while limiting their disadvantages.
In addition, the special advantage of the presented Variant IV is the easy transition from Variant II or
III to Variant IV.

Municipal authorities have sometimes expressed the view that the main reason for frequent urban
floods and drought is climate change, not the lack of a consistent balanced approach to storm water
management. For instance, in more than 90% of Chinese cities, flood risk management is based on
the use of traditional engineering infrastructure [17] in the form of a traditional covered storm water
drainage systems, which are designed to discharge urban discharges to the receiver as soon as possible.
Additionally in Poland, as in many other European Union countries, traditional drainage systems that
operate in a gravitational way are still the leading way of transporting rainwater [14] when draining
urbanized areas. This approach results rainwater discharge that is characterized by a high peak flow
value and a rapid rise of water in the receivers.

Widely exploited traditional drainage systems, which have great retention capacity, have created
a wide field of application for the design variant presented in Variant III. Of course, if local conditions
allow it, it is optimal to adopt Variant IV, based on the use of modernized sustainable drainage systems
that are supported by LID devices. Variant IV allows for the use of existing engineering infrastructure to
control urban outflows and the storage of rainwater during extreme rainfall. This practice will provide
opportunities to solve a number of problems related to rainwater and the urban environment that are
currently being solved by traditional drainage systems. It can be safely stated that the implementation
of the concept of using sustainable drainage systems that are supported by low impact development
devices is a revolutionary approach in creating a spatial plan for urban development and storm water
management in cities, along with a rational desire to reduce the risk of urban floods. The validity
of this concept is confirmed by the fact that there is an increasing involvement in many countries in
introducing low impact development facilities to projects globally.

To sum up, commonly used traditional drainage systems with significant retention possibilities
have created a wide field for an application of solutions presented in Variant IV, which consist of
the simultaneous application of modernized sustainable drainage systems that are supported by
LID devices.

5. Conclusions

This article analyzes various variants of dealing with rainwater on the example of a housing estate
that is located in Poland. Rainwater management that is based on the simultaneous use of sustainable
drainage systems with specific water storage capacities and low impact development facilities should
be considered the most advantageous. The obtained set of hydraulic simulation results made it possible
to determine and then compare the effectiveness of all four adopted variants in terms of their impact
on the drainage system and rainwater receiver.

The analyses showed that the implementation of Variant IV, which uses system retention in the
drainage system and LID facilities, allowed for a reduction the peak flow and the volume of rainwater
that is discharged from the drained drainage basin. The results of the research revealed that in the
studied catchment area, the use of Variant IV reduced the peak discharge of rainwater by 86% compared
to Variant I. Variant IV had the highest hydraulic efficiency among the tested variants, regardless of
the duration of the storm td. In addition, the advantage of the drainage system with piling partitions
(Variant III) over the drainage system with LID facilities (Variant II) was demonstrated during a short
rainfall. Thus, the use of retention capacity of drainage systems through the implementation of, e.g.,
a retention sewage canal, can be an effective alternative to LID objects.

To sum up, Variant IV allows for the combination of the advantages of rainwater storage and
LID facilities while limiting their disadvantages. The application of the proposed Variant IV will
undoubtedly allow for the achievement of a high level of flood safety and the strengthening of the
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ecological and recreational values of cities while reducing the costs that are associated with the
investment and operation of the engineering facilities used.

The research results presented in this paper have practical applications and may be used
as guidelines for potential investors early as in the investment planning stage and, furthermore,
as a tool for promoting the application of the simultaneous use of retention sewage canal and
low impact development facilities. The study outlined above indicates the need to continue the
research work concerning the reliability of stormwater management practice. This work will be
oriented at the assessment of operating qualities of the proposed stormwater management practice in
real-life conditions.
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