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Abstract: The assessment of the sustainability of agricultural systems is multidimensional in nature
and requires holistic measures using indicators with different measurements and units reflecting
social, economic, and environmental aspects. To simplify the assessment process, various indicators
have different units, and measurements are grouped under broad indicator heads, and normalization
and/or transformation processes are carried out in order to aggregate them. In this study, a total of
50 indicators from agricultural sustainability categories of productivity, stability, efficiency, durability,
compatibility, and equity are employed to investigate which normalization technique is the most
suitable for further mathematical analysis for developing a final composite indicator. To understand
the consistency and quality of normalization measurement techniques and compare the benefits and
drawbacks of the various selected normalization processes, the indicators of agricultural sustainability
are considered. Each of the different techniques for normalization has advantages and drawbacks.
This study shows that the proportionate normalization and hybrid aggregation rules of the arithmetic
mean and the geometric mean are appropriate for the selected data set, and that this technique has
a wider applicability for developing composite indicators for agricultural sustainability assessment.

Keywords: composite indicators; normalization; aggregation; agricultural sustainability; coastal
agriculture of Bangladesh

1. Introduction

Assessing agricultural sustainability holistically requires multidimensionality [1], and therefore
a set of appropriate social, economic, and ecological indicators are needed [2,3]. Multiple criteria
methods [4,5] and different kinds of indicators have been designed to evaluate agricultural
sustainability [3,6,7]. A multidimensional set of indicators of agricultural sustainability can be
interpreted using different statistical scales such asordinal and nominal, which may be difficult
to handle. To avoid this problem, a multidimensional set of indicators can be aggregated into
a composite indicator [8]. Andreoli and Tellarini [9], Pirazzoli and Castellini [10], Rigby et al. [11],
and van Calker et al. [12] have utilized this approach for agricultural sustainability assessment.
A number of steps must be followed to develop a composite indicator. According to the Organization
for Economic Co-operation and Development [13], there are 10 steps for constructing ideal composite

Resources 2017, 6, 66; doi:10.3390/resources6040066 www.mdpi.com/journal/resources

http://www.mdpi.com/journal/resources
http://www.mdpi.com
https://orcid.org/0000-0003-3391-221X
http://dx.doi.org/10.3390/resources6040066
http://www.mdpi.com/journal/resources


Resources 2017, 6, 66 2 of 27

indicators: theoretical framework, data selection, imputation of missing data, multivariate analysis,
normalization, weighting and aggregation, uncertainty and sensitivity analysis, back to the data,
links to other indicators, and visualization of the results. These 10 steps are well documented ([13],
pp. 20–22, see Table A1 in Appendix A); the normalization step is particularly important for constructing
composite indicators.

In the case of agricultural sustainability assessment, the indicators are rarely in the same
measurement units irrespective of scholars and organizations [2,3], so normalization for developing
composite indicators requires special care. Applying the methodological process of constructing
composite indicators in the coastal agricultural systems of Bangladesh as a case study, this paper
aims to show the differences between normalization and aggregation techniques and their impacts
on the resulting rankings of the composite indicators of the sustainability of agricultural systems.
Mathematical experiments are carried out to test whether the ranking of the composite indicators is
greatly influenced by the choice of a normalization technique. These tests are important in a situation
in which there are no reference values or goalpost values for developing composite indicators to assess
the sustainability of agricultural systems. This paper highlights the advantages and disadvantages and
compares the results obtained when applying these tests to a dataset containing selected agricultural
sustainability indicators for coastal Bangladesh. A point to be noted here is that composite indicators for
agricultural sustainability assessment are still the subject of policy/strategic discussion or documents
in Bangladesh. There have been a few studies [14–16] that measured aspects of the sustainability of
agricultural systems in Bangladesh in a very isolated way, but the measures themselves have rarely
been compared. Although a few studies in Bangladesh have used indicators for assessing agricultural
sustainability, this is the first one in Bangladesh that checks the effects of normalization and aggregation
techniques on developing composite indicators.

Brief Overview of Composite Indicators

The concept of composite indicators was introduced in the 1990s to capture the complexity and
multidimensionality of a range of development issues [17]. Since then, international organizations
like the United Nations, World Bank, and European Commission have developed composite
indicators [18] such as the Human Development Index (HDI), Environmental Performance Index
(EPI), Gender Empowerment Measure (GEM), and Quality of Life Index. In the literature, the term
“composite indicator” often refers to an index made up of aggregated data, ratings, league tables,
and multidimensional measures [19–21]. Bandura and Martin del Campo (as cited in [18]) found
160 composite indicators used around the world.

Although composite indicators are being used extensively, there is a spirited debate over
the conceptual and methodological parameters for this measurement technique [22]. For example,
Sharpe [23] argued that producing a composite indicator/index is not a good idea because a single
indicator is not appropriate to explain and compare any observed phenomenon and does not capture
the relative importance of the components of the composite indicators [20]. In spite of this limitation,
composite indicators are considered to be desirable among policy makers and stakeholders due to
their capacity to summarize complex issues [24], allow for cross comparisons, enable evaluation of
results, set the bar for performance, and indicate the steps of accomplishment of a project [25]. They are
also useful for generating media interest about a phenomenon [23]. Comprehensive discussions
of the advantages and disadvantages of composite indicators are documented in Booysen [26],
Foa and Tanner [18], and Nardo et al. [20].

Conceptually, composite indicators are based on sub-indicators that may have no common
meaningful unit of measurement [20]. Technically, composite indicators are mathematical combinations
of a set of multidimensional indicators [20,24] and normal measures that combine the issues of
a complex phenomenon [26]. Therefore, the construction of composite indicators requires transparency
as to its process to facilitate replication and debate among stakeholders [24]. The construction of
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composite indicators requires more craftsmanship by the modeler than universally accepted scientific
rules for encoding indicators [20]. Basically, a typical composite indicator “I” is built as follows [13]:

I =
n

∑
i=1

wixi

where
xi = normalized variable
wi = weight attached to xi

∑n
i=1 wi = 1 and 0 ≤ wi ≤ 1, i = 1, 2, . . . , n.

From this formula, it is clear that a composite indicator requires a weighted linear aggregation rule
that is applied to a set of variables. The formula indicates that normalization and weighted summation
of the normalized variables are the two main steps for developing composite indicators.

Data can be aggregated without being scaled if all the variables are measured with the same unit
(e.g., percent or ratios), but in many situations the variables to be aggregated have different units and
different measurement techniques [27] such as nominal, ordinal, interval, and ratio scales. In this
situation, normalization is the process by which the indicators in various scales and units are compared
on a common basis, as depicted in Figure 1. Normalization is, therefore, the process of reducing the
measurements to a standard scale [28], which helps to avoid the dominance of extreme values in a data
set and partially corrects data quality problems [29]. Normalization of indicators is required to make
the indicators mathematically operational in aggregation [8].
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Every step of data transformation and/or normalization increases the probability of uncertainty 
and measurement error [30]. Accordingly, the choice of the proper normalization technique is 
indisputably important. In developing composite indicators, the selection of a preferred 
normalization technique deserves special care, taking into account the objectives of the composite 
indicators as well as the data properties and the potential requirement of further analysis [20,31]. 
Different normalization techniques produce different results [13] and may have major effects on 
composite scores [22,32].  

2. Materials and Methods 

For this paper, five normalization techniques are examined to investigate their effect and to 
identify the preferred technique for constructing composite indicators of coastal agricultural 
sustainability assessment in Bangladesh. Figure 2 shows the construction and evaluation process of 
the individual composite indicators that are examined in this paper. As shown in this figure, 
sustainability was categorized in terms of productivity, stability, efficiency, durability, compatibility, 
and efficiency. In brief, productivity is related to the yield of agricultural systems, stability refers to 
the ability to maintain a good level of productivity over an extended period of time, and efficiency is 
the measure of the extent to which the inputs for agricultural production enhance the crop yield. 
Durability can be defined as the ability of the agricultural system to resist or recover from stress and 
thereby maintain a good level of productivity over a cropping cycle. Compatibility refers to the ability 
of an agricultural system to fit in with the bio-geophysical, human, and socio-cultural surroundings 
in which the system is placed, and equity reflects a good quality of life for farmers and their family 
members [7]. For details about these categories, see vanLoon et al. [7]. For conceptual judging and 
selection of indicators, the dataset of Talukder [33] was used. Talukder [33] developed 110 indicators 
for assessing the sustainability of the coastal agricultural systems of Bangladesh. From 110 indicators 
of six sustainability categories, 50 indicators (Tables A2–A7 in Appendix B) were judged according 
to their importance and then grouped to make 15 composite indicators, as depicted in Figure 2. Then, 

Figure 1. Generalized graphical representation of normalization for constructing a composite indicator.

Every step of data transformation and/or normalization increases the probability of uncertainty
and measurement error [30]. Accordingly, the choice of the proper normalization technique is
indisputably important. In developing composite indicators, the selection of a preferred normalization
technique deserves special care, taking into account the objectives of the composite indicators as well
as the data properties and the potential requirement of further analysis [20,31]. Different normalization
techniques produce different results [13] and may have major effects on composite scores [22,32].

2. Materials and Methods

For this paper, five normalization techniques are examined to investigate their effect and to identify
the preferred technique for constructing composite indicators of coastal agricultural sustainability
assessment in Bangladesh. Figure 2 shows the construction and evaluation process of the individual
composite indicators that are examined in this paper. As shown in this figure, sustainability was
categorized in terms of productivity, stability, efficiency, durability, compatibility, and efficiency.
In brief, productivity is related to the yield of agricultural systems, stability refers to the ability to
maintain a good level of productivity over an extended period of time, and efficiency is the measure of
the extent to which the inputs for agricultural production enhance the crop yield. Durability can be
defined as the ability of the agricultural system to resist or recover from stress and thereby maintain
a good level of productivity over a cropping cycle. Compatibility refers to the ability of an agricultural
system to fit in with the bio-geophysical, human, and socio-cultural surroundings in which the system
is placed, and equity reflects a good quality of life for farmers and their family members [7]. For details
about these categories, see vanLoon et al. [7]. For conceptual judging and selection of indicators,
the dataset of Talukder [33] was used. Talukder [33] developed 110 indicators for assessing the
sustainability of the coastal agricultural systems of Bangladesh. From 110 indicators of six sustainability
categories, 50 indicators (Tables A2–A7 in Appendix B) were judged according to their importance and
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then grouped to make 15 composite indicators, as depicted in Figure 2. Then, various normalization,
weighting, and aggregation techniques were applied to identify suitable normalization and aggregation
techniques for developing the final set of composite indicators.
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Galda-rice-vegetable-based integrated agricultural systems (I) from Dumuria; and traditional 
practices-based agricultural systems (T) from Bhola Sadar (Figure 3). The details of the data collection 
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Figure 2. Scheme for the construction and evaluation process for single composite indicators. Legend:
Pro = Productivity; LS = Landscape stability; SH/S = Soil health/stability; WQ = Water quality;
ME = Monetary efficiency; EE = Energy efficiency; RTPS = Resistance to pest stress; RTES = Resistance
to economic stress; RTCC = Resistance to climate change; HC = Human compatibility; BC = Biophysical
compatibility; Edu = Education; Eco = Economic; Heal = Health; Gen = Gender; Pptn = Proportionate;
Ran = Ranking; DTT = Distance to target; CS = Categorical scale; Min-Max = Min-max technique;
ZS = Z-score. Source: Compiled by the authors.

2.1. Overview of Datasets

The datasets in Tables A2–A7 in Appendix B contain different measurement units under
six categories of sustainability. The data were collected from both primary and secondary
sources in the southwest coastal zone of Bangladesh. The primary data were collected from five
different agricultural systems: Bagda (shrimp)-based agricultural systems (S) from Shyamnagar;
Bagda-rice-based agricultural systems (SR) from Kalijang; rice-based agricultural systems (R) from
Kalaroa; Galda-rice-vegetable-based integrated agricultural systems (I) from Dumuria; and traditional
practices-based agricultural systems (T) from Bhola Sadar (Figure 3). The details of the data collection
process, justification of data collection, and development of indicators can be found in Talukder [33].
The description of the indicators, their units, data type, their relationships with sustainability pillars,
data collection areas, data sources, and levels of measurement are presented in brief in Tables A2–A7
in Appendix B. A point to be noted here is that to develop the indicators, the collected data were
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processed through cleaning, integration, reduction, and transformation. No outliers were detected in
the collected data during these processes.
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Figure 3. Location of the study areas and gradients of soil salinity (1973–2009) in the coastal zone of
Bangladesh. The soil salinity contours represent the northern boundary of areas where soils may have
salinity values of 2 dS m−1 or more ([16], p. 149).

2.2. Normalization

A variety of transformation and/or normalization techniques are available (e.g., [29,34–36]),
but only the five most widely employed techniques [35,37] are shown in Table 1. These five techniques
are ranking, distance to target, Z-score, min-max, and proportionate normalization. The first four are
the most commonly used normalization techniques [13,21]. The proportionate normalization technique
was considered because of its suitability for the development of composite indicators.

Table 1. Selected normalization techniques for this study.

Name Formula Explanation

Ranking [35] Nias = Rank(Xias)
Where Nias = normalized value of indicator i for
agricultural systems , Xias = variable X for indicator i for
agricultural systems as

Distance to target [35] Nias =
Xias

Target Xias

Where Nias= normalized value of indicator i for
agricultural systems as, Xias = variable X for indicator i
for agricultural systems as
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Table 1. Cont.

Name Formula Explanation

Z-score (Standardization) [35] Nias = (Xias − µ)/σ

Where Nias = normalized value of indicator i for
agricultural systems as, Xias= variable X for indicator i
for agricultural systems as, µ (Mu) = mean of indicator
values, σ (Sigma) = standard deviation (square root of
the variance) of indicators

Min-max [35] Nias =
Xias−minas(Xi)

maxas(Xias)− minas(Xi)
′

Where Nias = normalized value of indicator i for
agricultural systems as, Xi= indicator, Xias= variable X
for indicator i for agricultural systems as; maxas and
minas are the largest and smallest observed values

Proportionate [36] Nias =
Ii

∑i Ii
0 < Nias < 1 Where Ii = indicator value, ∑i Ii = sum of the indicators

2.2.1. Ranking Normalization

Ranking normalization replaces measurements with their rank. In the rank normalization process,
each data point is replaced by its rank, that is, by values ranging from 1 (lowest) to N (highest) [38].
In this system, there is no score, only a rank; the absolute-level information is lost. This technique,
while simple, cannot lead to any conclusion about the differences among performances of the indicator
being assessed because there is no measure of the distance between values of the indicators [39].
Ranking normalization is employed in the “Information and Communications Technology Index” [29]
and “Medicare Study on Healthcare Performance across the United States” [40].

2.2.2. Distance to Target Normalization

In the distance to target normalization technique, the indicator’s value is divided by the target
value to normalize the indicator [21] so that the normalized values represent a fraction of the highest
value. The highest value of the indicator set or any reference point can be the target value. The results of
this technique are easy to handle and understand, but imbalance between scores and rankings remains,
and the normalization results are more influenced by outliers than in other techniques. This method
is useful for further analysis (e.g., geometric aggregation) since it does not generate any zero values.
However, if outliers are chosen as target points, the result can be misleading. The distance to target
normalization technique is used in “Eco-indicator 99” and the “Summary Innovation Index” [41].

2.2.3. Z-Score Normalization

Z-score normalization is calculated by subtracting the mean from an indicator value and then
dividing by its standard deviation. If the standard deviation is calculated for a set of variables with
a mean of 0 and then all values are divided by the standard deviation, the resulting set of values
will have a standard deviation of 1 [27]. After performing normalization, the data have a common
scale with a 0 mean and a standard deviation of 1. Since all Z-score distributions have the same
mean and standard deviation, individual scores from different distributions can be directly compared.
The advantage of this technique is that it provides no distortion from the mean, adjusting for different
scales and variance. The output is dimensionless, and the relative differences are maintained due to
the application of a linear transformation [42]. Z-score is preferred when extreme values exist in the
dataset [20,32]. Although the technique does not fully adjust for outliers, the minimum and maximum
values are not as influential as in other techniques such as distance to target. When extreme values are
present in the original data, Z-score normalization takes these extreme values into account in a manner
that does not distort their impacts on a composite indicator. In this way, an outlier, such as exceptional
performance, is recognized and not ignored [13,27]. The Z-score technique is widely employed,
including in the knowledge-based economy index [43] and the World Health Organization’s child
growth standards index [44].
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2.2.4. Min-Max Normalization

The min-max technique rescales data into different intervals based on minimum and maximum
values. The advantage of this method is that boundaries can be set and all indicators have an identical
range (0, 1). However, the normalized values do not maintain proportionality, and normalized values
reflect the percentage of the range of maxas(Xias)−minas(Xias). This technique is based on extreme
values (minimum and maximum), but because these two values can be outliers, the range of max and
min strongly influences the final output. Another disadvantage is that the difference in variance is
not fully eliminated [13]. Nevertheless, this technique is very popular and has been applied in the
construction of many composite indicators, the best-known of which is the Human Development
Index (HDI, [45]).

2.2.5. Proportionate Normalization

In proportionate normalization, the single attribute value is divided by the sum total of the
values of attributes [37,46]. The normalized values maintain proportionality such that they reflect the
percentage of the sum of the total value of the indicators. Here, values of the indicator are relatively
normalized. Normalizing the indicators by dividing them by their sums has a number of attractive
properties, including that the normalized values are identical to the original, except for a scaling factor,
and the process is easily understandable. The value differences among indicators become narrow.
Dividing by the sum ensures that even the smallest value greater than zero comes out with a positive
normalized value [19,37]. The proportionate normalization technique is frequently used in normalizing
census data in ArcView GIS (Geographical Information System, [46]). Benini [19] also suggested using
this technique for developing composite measures for disaster impact assessment.

2.3. Weighting

The final score and ranking of the composite indicators depends on the weighting of the normalized
values of the indicators. Weighting reflects the importance of each indicator relative to the overall
composite indicators [21]. Weights should ideally be selected according to an underlying and agreed-upon,
or at least clearly stated theoretical, framework so that the process is transparent [47,48]. Weighting can
be a very important step in creating composite indicators before aggregation can take place, because it
modifies the sub-indicator values. However, Sajeva et al. [28] have shown that the use of different
weighting schemes can often have no significant effect on the ranking of the composite indicators.
No agreed-upon methodology exists to weight individual indicators. Different types of weighting
techniques and their explanations are provided by Nardo et al. [20].

In this paper, equal weighting of sub-indicators is used for all rank, distance to target, Z-score,
max-min and proportionate normalization, and arithmetic mean and geometric mean aggregation.
Simplicity is the main advantage of equal weighting, but the composite indicator that is developed
by the combination of more indicators will have a stronger influence on the list of composite indicators.
Using this weighting system may be justified when no other available means of weighting are known [30].
Equal weighting is used in the HDI [49]. Budget allocation techniques for weighting are used for MCA
aggregation (as shown in Table A13). A budget allocation technique for weighting is chosen because
the sustainability of agriculture is very contextual, so stakeholders’ opinions are very important for
weighting of the indicators. Geometric and multi-criteria, as well as linear, aggregation can be employed
with these weightings [13]. The OECD’s Handbook on Constructing Composite Indices [13] describes
expert weighting as a budget allocation technique. In expert weighting, an expert allocates 100 points
among indicators according to their importance [21]. Selection of the appropriate expert and number
of experts is the biggest problem for this system because point allocation may be influenced by the
expert’s experience [30]. This subjective judgment of the weights of sub-indicators is used to allocate
relative worth for each sub-indicator [22]. Subjective weighting is often affected by strong inter-individual
disagreement [29] and is particularly sensitive in the case of complex, interrelated, and multidimensional
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phenomena [20]. Nevertheless, Sen and Foster ([48], p. 206) pointed out that “while the possibility of
arriving at a unique set of weights is rather unlikely, that uniqueness is not really necessary to make
acceptable judgments in many situations, and may indeed not even be required for a complete ordering”.

2.4. Aggregation

The rules for aggregation are well documented in the Handbook on Constructing Composite
Indices [13], but steps are still debated in the development of composite indicators [50]. The fundamental
issue in aggregation is the compensability of indicators, which is defined as compensating for any
indicator’s dimension with a suitable surplus in another indicator’s dimension. The rules for aggregating
composite indicators can be compensatory or non-compensatory [51]. A compensatory technique deals
with the imbalances in the indicators and uses linear functions, whereas non-compensatory techniques
use unbalance-adjusted functions [52]. Different aggregation rules are possible to develop composite
indicators. Commonly applied aggregation options include additive aggregation (arithmetic mean),
geometric aggregation (multiplication), and multi-criteria analysis [13].

The arithmetic mean is a linear function [53]. The normalized and weighted or unweighted
indicators are summed to compute the arithmetic mean (the formula for evaluating arithmetic mean
is x = ∑n

i=1 x
N ) [26,32]. In this method, compensability can be a disadvantage if a low value in one

indicator or dimension masks a high value in another, that is, a deficit in one indicator or dimension
can be compensated for by a surplus in another [30,32].

Geometric aggregation, which is the product of normalized weighted indicators, is used to avoid
concerns related to interaction and compensability [32]. Non-comparable data measured in a ratio
scale can only be meaningfully aggregated by using geometric functions, provided that indicators are

strictly positive [20,30]. A geometric mean (the formula for evaluating geometric mean is (∏n
i=1 x1)

1
n )

takes into consideration differences in achievement across dimensions [20]. Poor performance in any
dimension or indicator is directly reflected in the composite indicator’s value. According to Hudrlikova
and Kramulova [30], this technique is partly compensable since it rewards composite indicators with
higher indicator scores.

“When different goals are equally legitimate and important, and in addition trade-offs exist
between the dimensions of a composite indicator (namely negative correlations between dimensions)
then a non-compensatory logic may be necessary” ([21], p. 256). Multi-Criteria Analysis (MCA) is used
for aggregating non-compensatory data [52]. In general, MCA provides an overall ranking based on
the weight and values of given indicators. One of the shortcomings of MCA is that when the number
of indicators to develop composite indicators is high, it is difficult to compute MCA [30]. MCA is based
on an outranking matrix. The standard procedure for performing an MCA consists of three steps:
identifying the weighting of the criteria, preparing an “outranking matrix” by pairwise comparison
of the weighted performance of each criterion (for n options, there are n (n − 1)/2 comparisons) [54],
and calculating the composite indicator score of the criteria by adding the values of the row of the
outranking matrix [55].

2.5. Robustness

The outcome of the composite indicators depends on the selection of variables, normalization,
weighting (if it is used), and aggregation techniques [20], so it is necessary to examine the robustness
of the developed composite indicators. Various statistical tests can help ensure that the composite is
reliable. Freudenberg [29] and Hudrlikova and Kramulova [30] mentioned correlation as a technique
to assess the impacts of different normalization techniques on composite indicators. The correlation
coefficient can show whether the results of the composite indicator are heavily influenced by the choice
of normalization rules [30] and aggregation methods. In this paper, correlation is used to assess the
robustness of composite indicators.
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3. Results

The results for the composite indicators using various normalization techniques, weighting,
and different aggregation techniques are presented in Tables A8–A13 in Appendix B. The results of the
robustness tests of the composite indicators are presented in Tables A14–A27 in Appendix B.

The values of data and different normalization techniques and arithmetic aggregation involve
different assumptions that have specific consequences that produce different results for the composite
indicators (Tables A8–A13). In this regard, Nardo et al. [20] mentioned that the ranking of composite
indicators is heavily influenced by the nature of the data. Saisana and Saltelli [21] also pointed out that
it is beyond doubt that composite indicators are a value-laden construct. In arithmetic aggregation,
it is also observed that poor performance in some indicators is covered by sufficiently high values of
other indicators in composite indicators.

In the dataset for this study, the score for some of the indicators is “0”. For example, as shown in
Table A6, in the compatibility category “S” scored “0” in drinking water quality. Indicators that have
“0” scores have the normalization result “0” in proportionate, distance, and Z-score normalization,
but not a “0” ranking normalization, since the score “0” is ranked as the lowest number. The max-min
normalization also generates “0” scores as normalized values. Whenever the normalization score is
“0” or negative, those indicators are not suitable for geometric mean aggregation because geometric
aggregation requires all positive numbers and is therefore only appropriate when indicator values are
always positive [20].

When aggregation was carried out considering indicators’ values and budget allocation weight
and MCA techniques, the results also generated different values for some of the composite indicators
(Table A13) compared to other types of aggregation. Due to the nature of the data, MCA also
generates “0” values for productivity, energy efficiency, and human compatibility composite indicators
of “S”, as well as “0” values for resistance to economic stress, resistance to climate change,
and gender composite indicators of “T” (Table A13). Therefore, budget allocation weighting and
MCA combinations cannot be recommended for composite indicators.

These different values of the composite indicators that result from applying different combinations
of normalization techniques, weighting, and aggregation reflect that the properties of the indicators
are very crucial for the final output values of the composite indicators. This study shows that the
normalization technique, arithmetic mean, and geometric mean should take into account the data
properties, as well as the objectives of the composite indicator. From the results, it appears that not all
normalization techniques are suitable for the dataset, and not all normalization techniques support
arithmetic mean and geometric mean. Even when MCA techniques are applied, some “0” values are
generated for the composite indicators.

Nardo et al. [20] suggested that in the case of non-compensatory composite indicators, MCA is the
best way to develop indicator values. However, due to the nature of the present dataset, MCA is not
suitable for this experiment because the “0” scores of some of the indicators do not reflect the weight
of the indicator, so the results may be difficult to interpret and compare. In MCA, composite indicators
are based on weight, so the magnitudes of values of the different indicators are disregarded in the
composite. “This means any issue that does marginally better on many indicators score higher than
the issue that does a lot better on a few indicators because outstanding performances of the indicators
cannot compensate for the deficiencies in some indicators” ([56], p. 364).

4. Discussion

In this study, it is observed that proportionate normalization produced values that conserve
the proportionality of the indicator values (Table A12), whereas other normalization techniques
show different outcomes. For example, the normalization results of rank, distance to target, Z-score,
max-min, and proportionate normalization for weighted yield of rice indicators of “S” in Tables A8–A12
are 1, 0.35, −1, 0 and 0.11, respectively. Here, only the 0.11 that is generated using proportionate
normalization represents the proportionate value of the original score of 2.26 for the weighted yield
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of rice indicator of “S” (see Table A2). Therefore, proportionate normalization is selected to develop
composite indicators in this study, because the original values of the data do not change through this
process. If the values of the data change due to the transformation technique/normalization, they are
mathematically not meaningful. Therefore, it is always preferable to follow a technique by which
original data are transformed in such a way that their informational content is not fundamentally
altered [22]. In proportionate normalization, the rank of the composite indicator depends on actual
values since proportionate normalization does not alter the actual importance of the values of the
indicators. This is the strength of this technique [22]. Furthermore, proportionate normalization seems
preferable in this experiment to the most popular min-max normalization because there are no goalpost
values for any of the 50 indicators.

There is clearly no universal best aggregation method because aggregation depends on the
requirement of the developer of the composite indicators. In the data there are some “0” values.
Therefore, to aggregate the indicators, a hybrid aggregation is suggested: indicator values with the
“0” normalization result will be aggregated by arithmetic mean, and the rest will be aggregated
by geometric mean. Hybrid aggregation techniques use more than one aggregation function at
different levels [54]. For example, the “Multidimensional Poverty Assessment Tool (UNIFAD, 2010
as cited in [54]) used arithmetic average within a subcomponent and geometric average within
a component, while the Food and Nutrition Security Index (FAO, 2014 as cited in [57]) used arithmetic
averages within dimensions and geometric average across dimensions” ([57], p. 16). When comparing
all applied normalization and aggregation techniques, it appeared that, for the present research,
the proportionate normalization and hybrid aggregation techniques (geometric mean and arithmetic
mean) produced the most preferred results. Therefore, 15 single composite indicators are developed
from the 50 indicators in Talukder et al. [16] using proportionate normalization and hybrid aggregation.
These 15 single composite indicators (see Table 2) are proposed to create a set of the most representative
variables of agricultural sustainability in the study area. Among these 15 composite indicators,
“monetary efficiency” carries the proportionate normalization values of the original values without
any aggregation but is normalized by proportionate normalization.

Table 2. Composite indicators developed using proportionate normalization and hybrid aggregation
techniques.

Sustainability
Categories Indicators

Agricultural Systems Aggregation
Technique/CommentsS SR R I T

Productivity Productivity 0.07 0.16 0.30 0.30 0.14 GM

Stability
Landscape stability 0.14 0.18 0.20 0.21 0.22 GM
Soil health/stability 0.15 0.21 0.21 0.15 0.22 GM

Water quality 0.11 0.18 0.18 0.22 0.29 GM

Efficiency Monetary efficiency 0.10 0.14 0.18 0.43 0.15 Only normalized
Energy efficiency 0.07 0.16 0.30 0.30 0.14 GM

Durability
Resistance to pest stress 0.24 0.27 0.19 0.18 0.12 AM

Resistance to economic stress 0.25 0.20 0.19 0.20 0.17 AM
Resistance to climate change 0.22 0.27 0.11 0.30 0.10 AM

Compatibility Human compatibility 0.06 0.22 0.24 0.25 0.24 AM
Biophysical compatibility 0.10 0.13 0.29 0.22 0.27 AM

Equity

Education 0.20 0.22 0.20 0.26 0.12 AM
Economic 0.17 0.23 0.21 0.22 0.17 AM

Health 0.17 0.21 0.18 0.26 0.18 AM
Gender 0.17 0.19 0.26 0.32 0.06 AM

Legend: GM = Geometric Mean, AM = Arithmetic Mean. Note: Monetary efficiency was not normalized or
aggregated as original data are used for composite indicator values. S = Bagda (shrimp)-based agricultural systems
(S) from Shyamnagar, SR = Bagda-rice-based agricultural systems (SR) from Kalijang, R = Rice-based agricultural
systems (R) from Kalaroa, I = Galda-rice-vegetable-based integrated agricultural systems (I) from T = Dumuria and
traditional practices-based agricultural systems (T) from Bhola Sadar.



Resources 2017, 6, 66 11 of 27

5. Conclusions

This study tested various normalization and aggregation techniques for developing composite
indicators, providing a comparison among different combinations to find out the best normalization
and aggregation combination. Normalization techniques, weighting, and aggregation all influence
the final outcomes of composite indicators, so it is important to compare different combinations of
normalization, weighting, and aggregation techniques. Rank, distance to target, Z-score, max-min,
and proportionate methods were used for normalization, while equal weight and budget allocation for
weighting and arithmetic mean, geometric mean, and multi-criteria analysis were used for aggregation.
The results show that the normalization and characteristics of data have a huge influence on composite
indicators. For example, the human compatibility composite indicator in the compatibility category has
a score of “0” using rank normalization and geometric aggregation, distance to target normalization
and geometric mean, Z-score normalization and arithmetic mean, Z-score normalization and geometric
mean, max-min normalization and arithmetic mean, proportionate normalization and geometric mean,
proportionate normalization and arithmetic mean, or MCA. A score of 1 results from using rank
normalization and arithmetic mean, a score of 0.25 from using distance to target normalization and
arithmetic mean, and a score of −1.98 using Z-score normalization and arithmetic mean.

Both methodological and empirical conclusions can be drawn from this study. From a methodological
point of view, it can be said that proportionate normalization and the hybrid aggregation technique are
suitable for developing composite indicators from these empirical data, which are developed through
a questionnaire and secondary data and have a score of “0” for several indicators. These techniques allow
the aggregation of a multidimensional set of indicators into a unique composite indicator that can facilitate
the understanding of a complex concept such as agricultural sustainability. In the case of proportionate
normalization, weighting the indicators has no effect. However, these techniques depend on the properties
of the indicators, and some subjectivity is associated with the selection of normalization and aggregation
rules. Depending on the methodology selected for constructing indicators, the results of the composite
indicators can vary and sometimes be misleading. Based on the properties of the dataset, it appears that
proportionate normalization is appropriate, and a hybrid of aggregation rules is suitable for developing
composite indicators. However, it is the responsibility of the designer of the composite indicator to choose
the most appropriate normalization and aggregation techniques. These techniques must have a sound and
transparent methodological framework. In this respect Nardo et al. [20] also stated that the selection of the
normalization process deserves special care.
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Appendix A

Table A1. Checklist for building a composite indicator.

Steps Description Why It Is Needed

1st: Theoretical framework

Provides the basis for the selection and combination of
variables into a meaningful composite indicator under a
fitness-for-purpose principle (involvement of experts and
stakeholders is envisioned in this step).

� To get a clear understanding and definition of the multidimensional
phenomenon to be measured.

� To structure the various sub-groups of the phenomenon (if needed).
� To compile a list of selection criteria for the underlying variables, e.g., input,

output, and process.

2nd: Data selection

Should be based on the analytical soundness, measurability,
country coverage, and relevance of the indicators to the
phenomenon being measured and their relationship to each
other. The use of proxy variables should be considered when
data are scarce (involvement of experts and stakeholders is
envisioned in this step).

� To check the quality of the available indicators.
� To discuss the strengths and weaknesses of each selected indicator.
� To create a summary table of data characteristics, e.g., availability (across

country, time), source, type (hard, soft or input, output, and process).

3rd: Imputation of missing data Is needed in order to provide a complete dataset (e.g., by
means of single or multiple imputation).

� To estimate missing values.
� To provide a measure of the reliability of each imputed value so as to assess the

impact of the imputation on the composite indicator results.
� To discuss the presence of outliers in the dataset.

4th: Multivariate analysis
Should be used to study the overall structure of the dataset,
assess its suitability, and guide subsequent methodological
choices (e.g., weighting, aggregation).

� To check the underlying structure of the data along the two main dimensions,
namely individual indicators and countries (by means of suitable multivariate
methods, e.g., principal components analysis, cluster analysis).

� To identify groups of indicators or groups of countries that are statistically
“similar” and provide an interpretation of the results.

� To compare the statistically determined structure of the dataset to the theoretical
framework and discuss possible differences.
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Table A1. Cont.

Steps Description Why It Is Needed

5th: Normalization Should be carried out to render the variables comparable.

� To select suitable normalization procedure(s) that respects both the theoretical
framework and the data properties.

� To discuss the presence of outliers in the dataset as they may become
unintended benchmarks.

� To make scale adjustments, if necessary.
� To transform highly skewed indicators, if necessary.

6th: Weighting and aggregation Should be done along the lines of the underlying
theoretical framework.

� To select appropriate weighting and aggregation procedure(s) that respects both
the theoretical framework and the data properties.

� To discuss whether correlation issues among indicators should be accounted for.
� To discuss whether compensability among indicators should be allowed.

7th: Uncertainty and sensitivity
analysis

Should be undertaken to assess the robustness of the
composite indicator in terms of the mechanism for including
or excluding an indicator, the normalization scheme, the
imputation of missing data, the choice of weights, the
aggregation method, and so forth.

� To consider a multi-modelling approach to build the composite indicator and
alternative conceptual scenarios for the selection of the underlying indicators
if available.

� To identify all possible sources of uncertainty in the development of the
composite indicator and accompany the composite scores and ranks with
uncertainty bounds.

� To conduct sensitivity analysis of the inference (assumptions) and determine
what sources of uncertainty are more influential in the scores and/or ranks.

8th: Back to the data
Is needed to reveal the main drivers of overall good or bad
performance. Transparency is primordial to good analysis
and policymaking.

� To profile country performance at the indicator level so as to reveal what is
driving the composite indicator results.

� To check for correlation and causality (if possible).
� To identify whether the composite indicator results are overly dominated by a

few indicators and to explain the relative importance of the sub-components of
the composite indicator.

Source: [13], pp. 20–22.
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Appendix B

Table A2. Selected indicators and values to construct single composite indicators for productivity.

Sustainability
Category

Composite
Indicator

Description Unit
Data
Type

Sustainability
Pillar

Data
Source Weighting

Study Areas Level of
MeasurementS SR R I T

Productivity Productivity

Weighted yield of the
main staple crop t/ha QTL Economic QS 0.4 2.26 4.41 5.23 6.51 2.86 Ratio scale

Net income from the
agro-ecosystem $/ha QTL Economic QS 0.4 311.15 1020.37 1585.81 1806.04 544.01 Ratio scale

Protein yield from the
agro-ecosystem kg/ha QTL Ecological QS 0.2 68.42 147.23 552 373.01 318.87 Ratio scale

Legend: QNT = Quantitative; QS = Questionnaire survey.

Table A3. Selected indicators and values to construct single composite indicators for stability.

Sustainability
Category

Composite
Indicator

Description Unit
Data
Type

Sustainability
Pillar

Data
Source Weighting

Study Areas Level of
MeasurementS SR R I T

Stability

Landscape
stability

Land exposure to natural events: cyclone binary yes/no response QUAL Ecological SD 0.3 1 2 2 2 1 Nominal scale

Land exposure to natural events: saline water binary yes/no response QUAL Ecological SD 0.3 1 1 3 2 3 Nominal scale

Land exposure to natural events: drought in kharif to rabi season binary yes/no response QUAL Ecological SD 0.05 1.5 1.5 2 2 3.5 Nominal scale

Land exposure to natural events: river bank erosion binary yes/no response QUAL Ecological SD 0.05 2 2 2 2 1 Nominal scale

Stability of embankment binary yes/no response QUAL Ecological FO 0.2 1 2 1 2 2 Nominal scale

Withdrawal of upstream water binary yes/no response QUAL Ecological SD 0.1 1 1 1 1 2 Nominal scale

Soil
health/stability

Organic materials % QTL Ecological SD 0.3 4 4 2 3 2 Ordinal scale

Salinity dS/m QTL Ecological SD 0.35 1 5 6 3 6 Ordinal scale

Macronutrient: N meq/100 g QTL Ecological SD 0.1 2 2 2 1 2 Ordinal scale

Macronutrient: P meq/100 g QTL Ecological SD 0.1 3 2 3 3 3 Ordinal scale

Macronutrient: K meq/100 g QTL Ecological SD 0.1 6 4 3 2 4 Ordinal scale

Soil pH Ratio (no unit) QTL Ecological SD 0.05 1 3 4 2 4 Ordinal scale

Water quality

Water salinity in surface water (quality of surface water for irrigation) dS/m QTL Ecological SD 0.4 1 2 2 2 3 Ordinal scale

Water salinity in groundwater (quality of groundwater for irrigation) dS/m QTL Ecological SD 0.4 1 2 2 4 3 Ordinal scale

Arsenic concentration (quality of groundwater for irrigation) ppm QTL Ecological SD 0.2 2 2 2 2 4 Ordinal scale

Legend: QNT = Quantitative; QUAL = Qualitative; SD = Secondary data; FO = Field observation.
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Table A4. Selected indicators and values to construct single composite indicators for efficiency.

Sustainability
Category

Composite
Indicator

Description Unit
Data
Type

Sustainability
Pillar

Data
Source Weighting Study Areas Level of

MeasurementS SR R I T

Efficiency

Monetary
efficiency

Money input and output in
the agro-ecosystem $ output/$ input QTL Economic QS 1 1.53 2.24 2.78 6.67 2.29 Ratio scale

Energy
efficiency

Overall energy efficiency Ratio of energy output
and input QTL Ecological QS 0.6 1.37 2.01 5.53 5.54 5.9 Ratio scale

Non-renewable
energy efficiency

Ratio of energy output
and input QTL Ecological QS 0.4 0.78 0.92 2.17 2.52 2.44 Ratio scale

Legend: QNT = Quantitative; QS = Questionnaire survey.

Table A5. Selected indicators and values to construct single composite indicators for durability.

Sustainability
Category

Composite
Indicators

Description Unit
Data
Type

Sustainability
Pillar

Data
Source Weighting

Study Areas Level of
MeasurementS SR R I T

Durability

Resistance to
pest stress

Chemical response to pest stress binary yes/no response QUAL Ecological QS 0.25 1.78 4.17 4.24 5.45 6.54 Nominal scale

Water availability at transplanting stage of rice binary yes/no response QUAL Ecological QS 0.25 0.75 0.75 0.2 0.2 0.2 Nominal scale

Water availability at flowering stage of rice binary yes/no response QUAL Ecological QS 0.25 0.75 0.75 0.2 0.2 0.2 Nominal scale

Farm management (soil test, pest management,
land management, soil fertility management) binary yes/no response QUAL Ecological QS 0.25 0.67 0.83 1.69 1.36 0.0 Nominal scale

Resistance to
economic stress

Good product price binary yes/no response QUAL economic QS 0.35 8.44 5 4.58 4.55 3.8 Nominal scale

Availability of seeds binary yes/no response QUAL Ecological QS 0.3 9.33 9.5 10 10 8.85 Nominal scale

Availability of market (market diversification) binary yes/no response QUAL Social/economic QS 0.35 10 9.17 8.47 10 7.69 Nominal scale

Resistance to
climate change

Agricultural training binary yes/no response QUAL Social/ecological QS 0.4 1.33 1.83 0.33 2.27 1.15 Nominal scale

Climate change awareness binary yes/no response QUAL Social QS 0.3 1.11 0.67 0.51 1.82 0 Nominal scale

Advice from agricultural extension workers or NGO binary yes/no response QUAL Ecological QS 0.3 0.66 1.17 0.51 0.45 0.38 Nominal scale

Legend: QUAL = Qualitative; QS = Questionnaire survey.
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Table A6. Selected indicators to construct single composite indicators for compatibility.

Sustainability
Category

Composite
Indicators

Description Unit
Data
Type

Sustainability
Pillar

Data
Source Weighting

Study Areas Level of
MeasurementS SR R I T

Compatibility

Human
Compatibility

Drinking water quality (protected) binary yes/no response QUAL Ecological QS 0.5 0 8 9 10 9 Nominal scale

Illness from drinking water binary yes/no response QUAL Ecological QS 0.5 5 10 10 10 10 Nominal scale

Biophysical
Compatibility

Overall biodiversity condition:
percentage of non-crop area % QTL Ecological QS 0.25 7.54 6.48 23.01 15.73 18.68 Ordinal scale

Overall biodiversity condition: crop richness number of crops QTL Ecological QS 0.25 2 6 16 10 17 Ordinal scale

Overall biodiversity condition: crop rotation number QTL Ecological QS 0.25 2 3 5 4 4 Ordinal scale

Ecosystem connectivity binary yes/no response QUAL Ecological FO 0.25 1 1 2 2 2 Nominal scale

Legend: QNT = Quantitative; QUAL = Qualitative; QS = Questionnaire survey; FO = Field observation.

Table A7. Selected indicators and values to construct single composite indicators for equity.

Sustainability
Category

Composite
Indicators

Description Unit
Data
Type

Sustainability
Pillar

Data
Source Weighting

Study Areas Level of
MeasurementS SR R I T

Equity

Education

Education of farmers % QTL Social QS 0.25 8.56 9.25 4.75 10 5 Ordinal scale

Education status of farmers’ male children % QTL Social QS 0.25 10 9.49 11.2 13.1 7.45 Ordinal scale

Education status of farmers’ female children % QTL Social QS 0.25 9.07 10.54 11.17 12.5 6.36 Ordinal scale

Access to electronic media % QTL Social QS 0.25 7.78 9.17 9.39 10 3.08 Ordinal scale

Economic

Farm profitability $ QTL Economic QS 0.2 648.23 3340.55 1371.32 1992.39 1025.06 Ratio scale

Average wage of farm labourer ($) $/person/day QTL Economic QS 0.2 1.33 1.33 1.60 1.80 1.60 Ratio scale

Livelihood diversity other than agriculture Count, 0 to 5 QTL Economic QS 0.2 6.22 4.33 5.93 4.55 6.92 Ordinal scale

Years of economic hardship Number of years QTL Economic QS 0.2 0.73 0.73 0.91 0.82 0.64 Ordinal scale

Road network (establishing farm roads
and access roads) access/no access QTL Economic/social QS 0.2 2 3 3 3 1 Nominal scale

Health
Settings where treatment is taken or public health % QTL Social QS 0.5 3.51 4.76 4.07 8.14 4.29 Ordinal scale

Sanitation or public health % QTL Social QS 0.5 7.69 8.73 7.59 7.41 7.08 Ordinal scale

Gender
Women’s involvement in decision making about

agricultural activities % QTL Social QS 0.5 3 4 5 6.5 2.5 Ordinal scale

Gender-based wage differentials $/person/day QTL Economic QS 0.5 0.33 0.33 0.5 0.59 0 Ratio scale

Legend: QNT = Quantitative; QS = Questionnaire survey.
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Table A8. Results of composite indicators after applying rank normalization and aggregation techniques.

Results of Rank Normalization and Geometric Mean

Category Composite indicators S SR R I T

Productivity Productivity 1.00 2.62 4.31 4.64 2.29

Stability
Landscape stability 1.12 1.41 1.70 1.78 1.82
Soil health/stability 1.91 2.33 2.24 1.59 2.40

Water quality 1.00 1.59 1.59 2.00 2.62

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency 1.00 2.00 3.00 4.47 4.47

Durability
Resistance to pest stress 1.68 2.21 1.97 2.00 1.71

Resistance to economic stress 3.42 3.30 2.88 3.17 1.00
Resistance to climate change 3.17 3.91 1.82 3.68 0.14

Compatibility Human compatibility 1.00 2.00 2.45 2.83 2.45
Biophysical compatibility 1.19 1.41 3.56 2.71 3.31

Equity

Education 2.45 2.91 3.36 5.00 1.19
Economic 1.74 2.27 2.93 2.93 1.82

Health 2.00 4.47 2.45 3.16 1.73
Gender 1.41 2.45 3.46 4.47 1.00

Results of Rank Normalization and Arithmetic Mean

Category Composite indicators S SR R I T

Productivity Productivity 1.00 2.67 4.33 4.67 2.33

Stability
Landscape stability 1.17 1.50 1.83 1.83 2.00
Soil health/stability 2.17 2.50 2.50 1.67 2.67

Water quality 1.00 1.67 1.67 2.33 2.67

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency 1.00 2.00 3.00 4.50 4.50

Durability
Resistance to pest stress 1.75 2.25 2.50 2.50 2.00

Resistance to economic stress 3.67 3.33 3.00 3.33 1.00
Resistance to climate change 3.33 4.00 2.00 4.00 1.67

Compatibility Human compatibility 1.00 2.00 2.50 3.00 2.50
Biophysical compatibility 1.25 1.50 3.75 2.75 3.50

Equity

Education 2.50 3.00 3.50 5.00 1.25
Economic 2.00 2.60 3.00 3.00 2.20

Health 2.50 4.50 2.50 3.50 2.00
Gender 1.50 2.50 3.50 4.50 1.00

Legend: S = Bagda (shrimp)-based agricultural systems (S) from Shyamnagar, SR = Bagda-rice-based agricultural
systems (SR) from Kalijang, R = Rice-based agricultural systems (R) from Kalaroa, I = Galda-rice-vegetable-based
integrated agricultural systems (I) from Dumuria and T = traditional practices-based agricultural systems (T) from
Bhola Sadar. * Only proportionate normalization, no aggregation.

Table A9. Results of composite indicators after applying distance to target normalization and
aggregation techniques.

Results of Distance to Target Normalization and Geometric Mean

Category Composite indicators S SR R I T

Productivity Productivity 0.19 0.47 0.89 0.88 0.42

Stability
Landscape stability 0.51 0.64 0.72 0.76 0.79
Soil health/stability 0.59 0.81 0.79 0.56 0.83

Water quality 0.35 0.55 0.55 0.69 0.91
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Table A9. Cont.

Results of Distance to Target Normalization and Geometric Mean

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency 0.27 0.35 0.90 0.97 0.98

Durability
Resistance to pest stress 0.57 0.75 0.46 0.47 0.41

Resistance to economic stress 0.98 0.80 0.77 0.81 0.67
Resistance to climate change 0.59 0.67 0.26 0.73 0.14

Compatibility Human compatibility #NUM! 0.89 0.95 1.00 0.95
Biophysical compatibility 0.30 0.42 0.98 0.75 0.90

Equity

Education 0.78 0.85 0.76 1.00 0.46
Economic 0.59 0.82 0.79 0.81 0.58

Health 0.62 0.76 0.66 0.92 0.65
Gender 0.24 0.27 0.38 0.47 #NUM!

Results of Distance to Target Normalization and Arithmetic Mean

Category Composite indicators S SR R I T

Productivity Productivity 0.21 0.50 0.89 0.89 0.44

Stability
Landscape stability 0.54 0.71 0.76 0.79 0.83
Soil health/stability 0.74 0.82 0.83 0.60 0.86

Water quality 0.36 0.56 0.56 0.72 0.92

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency 0.27 0.35 0.90 0.97 0.98

Durability
Resistance to pest stress 0.67 0.78 0.55 0.54 0.38

Resistance to economic stress 0.98 0.82 0.80 0.85 0.70
Resistance to climate change 0.59 0.72 0.29 0.79 0.28

Compatibility Human compatibility 0.25 0.90 0.95 1.00 0.95
Biophysical compatibility 0.34 0.43 0.99 0.77 0.90

Equity

Education 0.78 0.85 0.79 1.00 0.47
Economic 0.66 0.83 0.83 0.83 0.65

Health 0.66 0.79 0.68 0.92 0.67
Gender 0.33 0.35 0.51 0.61 0.04

Legend: S = Bagda (shrimp)-based agricultural systems (S) from Shyamnagar, SR = Bagda-rice-based agricultural
systems (SR) from Kalijang, R = Rice-based agricultural systems (R) from Kalaroa, I = Galda-rice-vegetable-based
integrated agricultural systems (I) from Dumuria and T = traditional practices-based agricultural systems (T) from
Bhola Sadar. * Only proportionate normalization, no aggregation. #NUM! means calculation is not possible.

Table A10. Results of composite indicators after applying Z-score normalization and aggregation techniques.

Results of Z-Score Normalization and Geometric Mean

Category Composite indicators S SR R I T

Productivity Productivity #NUM! #NUM! 0.96 0.97 #NUM!

Stability
Landscape stability #NUM! #NUM! #NUM! #NUM! #NUM!
Soil health/stability #NUM! #NUM! #NUM! #NUM! #NUM!

Water quality #NUM! #NUM! #NUM! #NUM! 1.23

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency #NUM! #NUM! 0.63 0.86 0.91

Durability
Resistance to pest stress #NUM! #NUM! #NUM! #NUM! #NUM!

Resistance to economic stress #NUM! #NUM! #NUM! #NUM! #NUM!
Resistance to climate change #NUM! #NUM! #NUM! #NUM! 0.14

Compatibility Human compatibility #NUM! 0.33 0.50 0.62 0.50
Biophysical compatibility #NUM! #NUM! 1.12 #NUM! 0.71

Equity

Education #NUM! #NUM! #NUM! 1.16 #NUM!
Economic #NUM! #NUM! #NUM! #NUM! #NUM!

Health #NUM! #NUM! #NUM! #NUM! #NUM!
Gender #NUM! #NUM! 0.64 1.38 #NUM!
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Table A10. Cont.

Results of Z-Score Normalization and Arithmetic Mean

Category Composite indicators S SR R I T

Productivity Productivity −1.29 −0.27 1.03 1.08 −0.54

Stability
Landscape stability 0.09 0.54 −0.10 −0.06 −0.47
Soil health/stability 0.84 −0.04 −0.01 0.56 −1.34

Water quality 0.16 0.78 −0.85 0.78 −0.86

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency −1.34 −1.08 0.64 0.87 0.91

Durability
Resistance to pest stress 0.09 0.54 −0.10 −0.06 −0.47

Resistance to economic stress 0.84 −0.04 −0.01 0.56 −1.34
Resistance to climate change 0.16 0.78 −0.85 0.78 −0.86

Compatibility Human compatibility −1.98 0.36 0.50 0.63 0.50
Biophysical compatibility −1.32 −0.94 1.14 0.35 0.77

Equity

Education −0.027 0.297 0.112 1.181 −1.563
Economic −0.493 −0.052 0.542 0.424 −0.421

Health −0.448 0.868 −0.368 0.708 −0.760
Gender −0.468 −0.119 0.651 1.396 −1.460

Legend: S = Bagda (shrimp)-based agricultural systems (S) from Shyamnagar, SR = Bagda-rice-based agricultural
systems (SR) from Kalijang, R = Rice-based agricultural systems (R) from Kalaroa, I = Galda-rice-vegetable-based
integrated agricultural systems (I) from Dumuria and T = traditional practices-based agricultural systems (T) from
Bhola Sadar. * Only proportionate normalization, no aggregation. #NUM! means calculation is not possible.

Table A11. Results of composite indicators after applying max-min normalization and aggregation techniques.

Results of Max-Min Normalization and Geometric Mean

Category Composite indicators S SR R I T

Productivity Productivity #NUM! 0.34 0.84 0.86 0.22

Stability
Landscape stability #NUM! #NUM! #NUM! #NUM! #NUM!
Soil health/stability #NUM! #NUM! #NUM! #NUM! #NUM!

Water quality #NUM! #NUM! #NUM! #NUM! 0.87

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency #NUM! 0.11 0.86 0.96 0.98

Durability
Resistance to pest stress #NUM! 0.71 #NUM! #NUM! #NUM!

Resistance to economic stress 0.75 0.45 0.38 0.54 #NUM!
Resistance to climate change 0.48 0.66 #NUM! 0.45 0.14

Compatibility Human compatibility #NUM! 0.89 0.95 1.00 0.95
Biophysical compatibility #NUM! #NUM! 0.98 0.67 0.84

Equity

Education 0.56 0.65 #NUM! 1.00 #NUM!
Economic #NUM! #NUM! 0.68 0.53 #NUM!

Health #NUM! 0.52 0.19 0.45 #NUM!
Gender 0.26 0.46 0.73 1.00 #NUM!

Results of Max-Min Normalization and Arithmetic Mean

Category Composite indicators S SR R I T

Productivity Productivity 0.00 0.38 0.85 0.88 0.27

Stability
Landscape stability 0.17 0.50 0.54 0.63 0.67
Soil health/stability 0.67 0.66 0.71 0.37 0.75

Water quality 0.00 0.28 0.28 0.50 0.89

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency 0.00 0.11 0.86 0.96 0.98
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Table A11. Cont.

Results of Max-Min Normalization and Arithmetic Mean

Durability
Resistance to pest stress 0.60 0.75 0.38 0.39 0.25

Resistance to economic stress 0.81 0.49 0.50 0.72 0.00
Resistance to climate change 0.49 0.71 0.15 0.70 0.14

Compatibility Human compatibility 0.00 0.90 0.95 1.00 0.95
Biophysical compatibility 0.02 0.15 0.98 0.69 0.85

Equity

Education 0.571 0.693 0.577 1.000 0.000
Economic 0.347 0.501 0.792 0.717 0.343

Health 0.185 0.635 0.215 0.600 0.084
Gender 0.342 0.467 0.736 1.000 0.000

Legend: S = Bagda (shrimp)-based agricultural systems (S) from Shyamnagar, SR = Bagda-rice-based agricultural
systems (SR) from Kalijang, R = Rice-based agricultural systems (R) from Kalaroa, I = Galda-rice-vegetable-based
integrated agricultural systems (I) from Dumuria and T = traditional practices-based agricultural systems (T) from
Bhola Sadar. * Only proportionate normalization, no aggregation. #NUM! means calculation is not possible.

Table A12. Results of composite indicators after applying proportionate normalization and aggregation
techniques.

Results of Proportionate Normalization and Geometric Mean

Category Composite indicators S SR R I T

Productivity Productivity 0.07 0.16 0.30 0.30 0.14

Stability
Landscape stability 0.14 0.18 0.20 0.21 0.22
Soil health/stability 0.15 0.21 0.21 0.15 0.22

Water quality 0.11 0.18 0.18 0.22 0.29

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency 0.07 0.16 0.30 0.30 0.14

Durability
Resistance to pest stress 0.20 0.26 0.16 0.16 #NUM!

Resistance to economic stress 0.24 0.20 0.19 0.20 0.17
Resistance to climate change 0.22 0.25 0.10 0.27 #NUM!

Compatibility Human compatibility #NUM! 0.22 0.24 0.25 0.24
Biophysical compatibility 0.09 0.12 0.29 0.22 0.26

Equity

Education 0.20 0.22 0.20 0.26 0.12
Economic 0.16 0.22 0.21 0.22 0.15

Health 0.17 0.21 0.18 0.25 0.18
Gender 0.16 0.19 0.26 0.32 #NUM!

Results of Proportionate Normalization and Arithmetic Mean (Additive Aggregation)

Category Composite indicators S SR R I T

Productivity Productivity 0.07 0.16 0.30 0.30 0.14

Stability
Landscape stability 0.14 0.18 0.20 0.21 0.22
Soil health/stability 0.15 0.21 0.21 0.15 0.22

Water quality 0.11 0.18 0.18 0.22 0.29

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency 0.07 0.16 0.30 0.30 0.14

Durability
Resistance to pest stress 0.20 0.26 0.16 0.16 0.14

Resistance to economic stress 0.24 0.20 0.19 0.20 0.17
Resistance to climate change 0.22 0.25 0.10 0.27 0.14
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Table A12. Cont.

Results of Proportionate Normalization and Arithmetic Mean (Additive Aggregation)

Compatibility Human compatibility 0.11 0.22 0.24 0.25 0.24
Biophysical compatibility 0.08 0.12 0.30 0.21 0.27

Equity

Education 0.20 0.22 0.20 0.26 0.12
Economic 0.16 0.22 0.21 0.22 0.15

Health 0.17 0.21 0.18 0.25 0.18
Gender 0.16 0.19 0.26 0.32 0.12

Legend: S = Bagda (shrimp)-based agricultural systems (S) from Shyamnagar, SR = Bagda-rice-based agricultural
systems (SR) from Kalijang, R = Rice-based agricultural systems (R) from Kalaroa, I = Galda-rice-vegetable-based
integrated agricultural systems (I) from Dumuria and T = traditional practices-based agricultural systems (T) from
Bhola Sadar. * Only proportionate normalization, no aggregation. #NUM! means calculation is not possible.

Table A13. Results of composite indicators after applying weight and multi-criteria aggregation.

Results of Multi-Criteria Analysis (MCA) Aggregation

Category Composite indicators S SR R I T

Productivity Productivity 0 1.40 3.20 4.00 1.20

Stability
Landscape stability 1.3 2.85 3.25 3.25 2.9
Soil health/stability 2.4 2.7 2.8 1.4 3

Water quality 3.2 2.6 2.6 3.4 3.60

Efficiency Monetary efficiency * 0.10 0.14 0.18 0.43 0.15
Energy efficiency 0 2 5 7.4 6.40

Durability
Resistance to pest stress 2.25 2.75 2.5 2.5 2.00

Resistance to economic stress 3.1 2.35 2.25 2.95 0.00
Resistance to climate change 2.6 3 1.3 3.1 0.00

Compatibility Human compatibility 0 2.5 3.5 4 3.50
Biophysical compatibility 0.75 0.75 3.75 2.75 3.50

Equity

Education 1.5 2 2.25 4 0.25
Economic 1.2 2.6 3 3 1.6

Health 2.5 3.5 1.5 2.5 1
Gender 1.5 2 3 4 0

Legend: S = Bagda (shrimp)-based agricultural systems (S) from Shyamnagar, SR = Bagda-rice-based agricultural
systems (SR) from Kalijang, R = Rice-based agricultural systems (R) from Kalaroa, I = Galda-rice-vegetable-based
integrated agricultural systems (I) from Dumuria and T = traditional practices-based agricultural systems (T) from
Bhola Sadar. * Only proportionate normalization, no aggregation.

Table A14. Productivity: Spearman correlation (in %).

Productivity RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 10 50 15 45 15
DTTNAM 10 100 30 95 85 95
ZSNAM 50 30 100 85 80 100

M-MNAM 15 95 85 100 80 100
PNAM 45 85 80 80 100 80
MCA 15 95 100 100 80 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.
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Table A15. Landscape stability: Spearman correlation (in %).

Landscape Stability RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 85 −45 85 85 85
DTTNAM 85 100 −80 100 100 60
ZSNAM −45 −80 100 −80 −80 −50

M-MNAM 85 100 100 100 100 60
PNAM 85 100 −80 100 100 60
MCA 85 60 −50 60 600 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.

Table A16. Soil health/stability: Spearman correlation (in %).

SOIL HEALTH/STABILITY RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 85 −25 75 95 85
DTTNAM 85 100 −80 90 70 100
ZSNAM −25 −80 100 −80 90 70

M-MNAM 75 90 −80 100 60 90
PNAM 95 70 90 60 100 70
MCA 85 70 90 90 70 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.

Table A17. Water quality: Spearman correlation (in %).

Water Quality RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 100 10 55 85 10
DTTNAM 100 100 10 100 55 85
ZSNAM 10 10 100 10 25 55

M-MNAM 55 100 10 100 55 85
PNAM 85 55 25 55 100 70
MCA 10 85 55 85 70 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.

Table A18. Energy efficiency: Spearman correlation (in %).

Energy Efficiency RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 80 80 80 70 85
DTTNAM 80 100 100 100 30 85
ZSNAM 80 100 100 100 30 85

M-MNAM 80 100 100 100 30 85
PNAM 70 30 30 30 100 65
MCA 85 85 85 85 85 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.
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Table A19. Resistance to pest stress: Spearman correlation (in %).

Resistance to Pest Stress RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 −10 −10 −10 30 75
DTTNAM −10 100 90 90 90 65
ZSNAM −10 90 100 100 90 65

M-MNAM −10 90 100 100 90 65
PNAM 30 90 90 90 100 85
MCA 75 65 65 65 85 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.

Table A20. Resistance to economic stress: Spearman correlation (in %).

Resistance to Economic Stress RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 85 75 75 100 85
DTTNAM 85 100 90 90 85 100
ZSNAM 75 90 100 100 75 90

M-MNAM 75 90 100 100 75 90
PNAM 100 85 75 75 100 85
MCA 85 100 90 90 85 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.

Table A21. Resistance to climate change: Spearman correlation (in %).

Resistance to Climate Change RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

R.N.A.M 100 80 100 80 70 80
D.F.T.N.A.M 80 100 80 90 90 100
Z.S.N.A.M 100 80 100 80 70 80

M.-M.N.A.M 80 90 80 100 80 90
P.N.A.M 70 90 70 80 100 90

MCA 80 100 80 90 90 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.

Table A22. Human compatibility: Spearman correlation (in %).

Human Compatibility RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 100 100 95 55 100
DTTNAM 100 100 100 95 55 100
ZSNAM 100 100 100 95 55 100

M-MNAM 95 95 95 100 50 95
PNAM 55 55 55 50 100 95
MCA 100 100 100 95 95 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.



Resources 2017, 6, 66 24 of 27

Table A23. Biophysical compatibility: Spearman correlation (in %).

Biophysical Compatibility RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 95 100 100 100 95
DTTNAM 95 100 95 95 95 90
ZSNAM 100 95 100 100 100 95

M-MNAM 100 95 100 100 100 95
PNAM 100 95 100 100 100 95
MCA 95 90 95 95 95 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.

Table A24. Education: Spearman correlation (in %).

Education RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 85 90 90 80 55
DTTNAM 85 100 95 95 75 40
ZSNAM 90 95 100 100 90 45

M-MNAM 90 95 100 100 90 45
PNAM 80 75 90 90 100 45
MCA 55 40 45 45 45 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.

Table A25. Economic: Spearman correlation (in %).

Economics RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 75 80 70 80 100
DTTNAM 75 100 25 35 85 75
ZSNAM 80 25 100 90 50 80

M-MNAM 70 35 90 100 60 70
PNAM 80 85 50 60 100 80
MCA 100 75 80 70 80 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.

Table A26. Health: Spearman correlation (in %).

Health RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 70 90 90 65 95
DTTNAM 70 100 80 80 15 45
ZSNAM 90 80 100 100 25 75

M-MNAM 90 80 100 100 25 75
PNAM 65 15 25 25 100 75
MCA 95 45 75 75 75 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.
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Table A27. Gender: Spearman correlation (in %).

Gender RNAM DTTNAM ZSNAM M-MNAM PNAM MCA

RNAM 100 95 100 100 100 100
DTTNAM 95 100 95 95 95 95
ZSNAM 100 95 100 100 100 100

M-MNAM 100 95 100 100 100 100
PNAM 100 95 100 100 100 100
MCA 100 95 100 100 100 100

Legend: RNAM = Rank normalization and arithmetic mean; DTTNAM = Distance to target normalization and
arithmetic mean; ZSNAM = Z-score normalization and arithmetic mean; M-MNAM = Max-Min normalization and
arithmetic mean; PNAM = Proportionate normalization and arithmetic mean; MCA = Multi-criteria analysis.
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