
Resources 2015, 4, 70-92; doi:10.3390/resources4010070
OPEN ACCESS

resources
ISSN 2079-9276

www.mdpi.com/journal/resources

Article

A Markov-Switching Vector Autoregressive Stochastic Wind
Generator for Multiple Spatial and Temporal Scales
Amanda S. Hering 1,*, Karen Kazor 1 and William Kleiber 2

1 Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401,
USA; E-Mail: kkazor@mines.edu

2 Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309, USA;
E-Mail: william.kleiber@colorado.edu

* Author to whom correspondence should be addressed; E-Mail: ahering@mines.edu;
Tel.: +1-303-273-3880; Fax: +1-303-273-3875.

Academic Editor: Simon J. Watson

Received: 17 December 2014 / Accepted: 27 January 2015 / Published: 12 February 2015

Abstract: Despite recent efforts to record wind at finer spatial and temporal scales,
stochastic realizations of wind are still important for many purposes and particularly for
wind energy grid integration and reliability studies. Most instances of wind generation in
the literature focus on simulating only wind speed, or power, or only the wind vector at a
particular location and sampling frequency. In this work, we introduce a Markov-switching
vector autoregressive (MSVAR) model, and we demonstrate its flexibility in simulating wind
vectors for 10-min, hourly and daily time series and for individual, locally-averaged and
regionally-averaged time series. In addition, we demonstrate how the model can be used
to simulate wind vectors at multiple locations simultaneously for an hourly time step. The
parameter estimation and simulation algorithm are presented along with a validation of the
important statistical properties of each simulation scenario. We find the MSVAR to be very
flexible in characterizing a wide range of properties in the wind vector, and we conclude with
a discussion of extensions of this model and modeling choices that may be investigated for
further improvements.
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1. Introduction

Long, realistic simulated time series of wind have many potential uses. They are a crucial
component in erosion modeling [1], hurricane modeling [2], ocean surface wind modeling for climate
research [3], climate impact studies [4], ocean transport and sea state modeling [5], wind insurance
risk [6], power production and wind turbine performance [7] and building energy simulations [8].
However, a very important application is for wind energy integration studies in which utilities
must balance uncertain loads and supplies and must plan for the dispatch and transmission of
electricity [9,10]. Balancing authorities must test how increasing the amount of wind in their portfolio
will impact their system, how to best allocate spinning reserves and how extreme events may be
handled [11–13].

Historically, very long series of wind measured at short temporal frequencies of an hour or less have
not been readily available, so models for generating such series have been developed specifically for
this purpose. As the spatial and temporal distribution of measurement stations for winds increase, these
real data can feed into synthetic system experiments, but synthetic data are still needed for constructing
experiments based on hypotheses related to changing features of the data generation process. In this
paper, we introduce a model for synthetic generation of both wind speed and direction (via the horizontal
and vertical components of wind, u and v) and assess how well its generated wind captures the statistical
properties of observed wind at various spatial and temporal scales both at individual locations and across
multiple locations. However, first, we note differences between wind forecasting models and wind
generators, put wind generators in the broader context of stochastic weather generators and, finally,
review Markov-chain models as they have been applied for generating wind.

Many forecasting models have been developed to forecast wind for system integration (see [14]
and [15] for overviews). In some instances, forecasting models and synthetic weather generator models
for wind are interchangeable. For example, a time series model that can be used for either forecasting
or wind speed generation is built in [16]. However, most forecasting models for wind tend to focus on
only either wind speed or wind power (e.g., [17–20]), and some very good advanced forecasting models
(e.g., [17,18]) would not translate into stochastic weather generators due to their conditioning on the
wind at off-site locations.

It is perhaps most appropriate to view wind simulation in the context of stochastic weather generators.
Stochastic weather generators are statistical models whose realizations statistically match observed
weather patterns. Most focus in the weather generation literature is on precipitation and minimum and
maximum temperature [21]. Within the stochastic weather generation literature, wind is playing an
increasingly important role. The classic model in [22] was extended to include daily mean wind speed
using a square root transformation to normality in [23]. A model that approximates a gamma distribution
for the skewness of wind while simultaneously simulating many other weather quantities is used in [24].
Hourly mean wind speeds with sea level pressure are simulated in a resampling framework in [25].
A multivariate closed-skew normal to capture the skewness of wind within a full weather generator is
proposed in [26]. All of these approaches focus on modeling the asymmetry and kurtosis in wind, which
are crucial features, along with other weather variables. Wind direction is rarely simulated, even though
it is known to have an impact on wind power production [19].
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In models wherein wind is the primary focus, Markov chain models have a long history. First- and
second-order Markov chains have been used to model wind speed or the wind vector [27–29]. Birth and
death Markov chain models have been tested [30]. The effect of the number of wind speed categories on
the resulting generated series has been investigated [31]. A cyclic time-variant Markov model has been
introduced to capture diurnal variability [32]. Finally, some argue that Markov chain models to generate
synthetic wind speed series should not be used for time steps under one hour [33].

In most instances, the model fitting is relatively basic, with wind speed categorized into ranges
before fitting Markov models, even in more recent work, such as [34]. Most models focus primarily
on simulating wind speed or wind power for one temporal sampling frequency, with a few exceptions
that model the wind vector [29,32,35]. Some more advanced approaches that use Markov-switching
autoregressive [36] or vector autoregressive models have been proposed [20] with the underlying
assumption that many locations tend to observe one of a few prevailing wind regimes, and characteristics
within these regimes may differ dramatically [37,38].

Recently, more research has begun to focus on capturing the spatial dependence of wind. In
a classic paper, the long-range dependence of the space-time structure of wind over Ireland was
examined [39]. A second-order Markov chain model to simulate wind power at two sites simultaneously
was developed [40]. An autoregressive framework with temporally varying coefficients for wind vector
fields to capture temporal nonstationarity was used [41]. Continuing the modeling of wind vector fields,
a Gaussian linear state-space model, capturing the intricate non-separable behavior of the process, was
implemented by [42].

In this work, we simulate both speed and direction with a Markov-switching vector autoregressive
(MSVAR) model fit to the corresponding u and v components. This model was first introduced
with respect to wind generation in [38], and here, the simulation algorithm is generalized to capture
seasonality in addition to diurnal cycles, and a nonparametric transformation of the components to
normality captures the skewness and kurtosis. Since end user applications require variable temporal
and spatial resolutions of simulations, we evaluate the MSVAR model’s flexibility in reproducing wind
statistics at various spatial and temporal scales and at multiple locations simultaneously. Developing
stochastic models that can replicate multiple scale statistics can be quite difficult, but the MSVAR model
does well in replicating the variability observed at these scales when fit separately to each scale.

The remainder of this paper is organized as follows: in Section 2, we describe our wind generation
model, parameter estimation and simulation algorithm. Then, we describe the data that we base our
simulation scenarios on, along with the scenarios themselves. We evaluate the performance of the
MSVAR model simulations in Section 4, focusing on their ability to capture the temporal and spatial
autocorrelations, non-Gaussian distributions and the correlation between the u and v components.
Finally, we conclude with a discussion of future work in Section 5.

2. Stochastic Wind Generator Model

In this section, we introduce the stochastic model to generate a synthetic wind vector. We match
moments within subsets of the data to identify reasonable parameter estimates for the model and explain
our detrending, transformation and clustering approaches.
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2.1. Markov-Switching Vector Autoregressive Model

In [38], a model for generating the wind vector at a single location is introduced, but they only
simulate hourly wind vectors averaged across a large region for a given month. Here, we extend that
model to simulate wind vectors across an entire year for either 10-min, hourly or daily time steps and
also at multiple locations. We let yt be the (2 · p) × 1 vector of the wind u and v components of p
locations at time t = 1, 2, . . . , n, so yt = (ut,1, vt,1, ut,2, vt,2, . . . , ut,p, vt,p)

T . The steps we take are:

1. The original ut,j and vt,j components for t = 1, . . . , n and j = 1, . . . , p do not follow a Gaussian
distribution, so they are first each transformed to normality with a Gaussian copula as follows:

(a) The empirical cumulative distribution function (ecdf) of each component of yt is
obtained with:

F̂uj
(a) =

1

n

n∑
t=1

1[ut,j<a] (1)

and similarly for vt,j , where 1 is the indicator function that is unity, if the set condition holds,
and is zero otherwise.

(b) The transformed values of ut,j , denoted u′t,j , are u′t,j = Φ−1(F̂uj
(ut,j)), and similarly for vt,j ,

where Φ−1(·) is the inverse of the standard normal cumulative distribution function.

2. Then, we remove the seasonality and diurnal variability from the transformed ut,j and vt,j

components of yt individually using a generalized additive model (GAM) [43] with:

u′t,j = β0 + s(mt) + s(dt) + s(ht) + εt,j (2)

where mt is the month of the year, dt is the day of the year and ht is the hour of the day for
observation t, and similarly for v′t,j . The function s(·) is a penalized regression spline, which
is the default in the R mgcv package [44]. Define detrended residuals as urt,j = u′t,j − û′t,j and
vrt,j = v′t,j − v̂′t,j , and the corresponding detrended vector is yr

t = (urt,1, v
r
t,1, u

r
t,2, v

r
t,2, . . . , u

r
t,p, v

r
t,p)

T .
The diurnal wind cycle can have a substantial impact on sizing and modeling integrated renewable
systems, so it is important to model it properly [32,45,46], but note that the term s(ht) is removed
from Equation (2) when fitting a trend for the daily averages.

3. Depending on the number of locations wherein it is desired to simulate the wind vector, we take
one of two approaches to choosing the number of “regimes” in the Markov-switching model.

p = 1 : Plot the wind rose of the observed wind speed and direction. Let the number of modes in
the joint distribution of speed and direction be the number of regimes.

p > 1 : Average the observed wind speed and wind directions across all p sites at each time t. Plot
the wind rose of the averaged speed and directions, and let the number of regimes equal the
number of modes in the joint distribution. Note that the circular mean of directions is taken
whenever an average of directions is required [47].

4. Given the number of regimes, K, we must classify the observations belonging to each one. We do
this with an unconstrained Gaussian mixture model (GMM) clustering approach [48] applied to
the observed transformed u and v components, u′t,j and v′t,j . Here, the components of the mixture
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model are assumed to be multivariate normal distributions with means µk, covariance matrices Σk

and mixing proportions τk for k = 1, . . . , K. The GMM is able to model ellipsoidal clusters of
any size and orientation. We use the mclust package in R to perform the clustering [49], but
we note here that clustering the 10-min data, which has 52,560 observations, fails, due to the size
of the dataset. Thus, we cluster the hourly data and apply each hour’s cluster assignment to all
10-min observations within the corresponding hour. Secondly, when p > 1, we construct two sets
of regimes based on the following sets of values:

(a) the mean of the transformed u and v components across all p locations, defined as
ū′t = 1

p

∑p
j=1 u

′
t,j and v̄′t = 1

p

∑p
j=1 v

′
t,j for t = 1, . . . , n; and

(b) the transformed u and v components of all p locations, y′t = (u′t,1, v
′
t,1, u

′
t,2, v

′
t,2, . . . , u

′
t,p, v

′
t,p)

T .

5. Use the subsets of observations identified in Step 4 to obtain least-squares estimates of the
parameters in Equation (3), the Markov-switching autoregressive model (MSVAR) of order one:

yr
t = Arty

r
t−1 + ε(rt); ε(rt) ∼ N(0,Σrt) (3)

where the lag-one autoregressive matrix Art and innovation covariance matrix Σrt depend on the
regime, rt ∈ {1, 2, . . . , K}. We let {rt} be a Markov chain on finite space, {1, 2, . . . , K}, that
indicates the regime at time t. The regime-switching process is defined by a transition probability
matrix P = {pjk}, j, k = 1, 2, . . . , K, where pjk = P (rt+1 = k|rt = j), and

∑
k pjk = 1 for all j.

6. The transition probability matrix, P, is estimated using the identified clusters and the observed
proportion of instances in which the cluster assignments switch,

p̂jk =

∑n
t=1 1[rt+1=k|rt=j]∑n

t=1 1[rt=j]

. (4)

The coefficient matrices, Art , are estimated using least-squares with the lm command in R based
on the observations with regime rt. We note that the eigenvalues of Art must be positive in
order for the VAR model to be stable; we did not encounter any difficulties in estimating these
coefficients with the lm command, but any issues in estimation can be dealt with by using a
constrained least squares estimation of Art . The variability matrix, Σrt , is estimated with the
standard covariance estimator of the residuals of the model within each regime.

7. Given the parameter estimates of Art , Σrt and P from Step 6, simulate a new set of values, denoted
ỹr
t , from Equation (3).

8. Add back the estimated trend from Equation (2) to obtain:

ỹ′t = ỹr
t + (û′t,1, v̂

′
t,1, û

′
t,2, v̂

′
t,2, . . . , û

′
t,p, v̂

′
t,p)

T . (5)

9. Transform the ỹ′t back into the original units by:

ũt,j = F̂−1uj
(Φ(ũ′t,j)) (6)
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and similarly for ṽt,j to obtain ỹt. Now, we have a simulated set of u and v components at
p locations.

10. As a final step, we convert the u and v components of ỹt into speed and direction, as these are
usually more interpretable quantities upon which to perform validation.

3. Simulation Scenarios

In this section, we describe the data that the wind generation is based on and then outline the scenarios
for which we will generate wind.

3.1. Data Description

The Bonneville Power Administration (BPA) maintains and archives data from twenty meteorological
towers along the border between Oregon and Washington, and it can be accessed at [50]. The tower sites
are plotted in Figure 1 with their acronyms. Full names are given in Table 1. The sites are quite spatially
diverse, with those along the coastline exhibiting very distinct behavior from those farther inland. In
addition, most of the sites are located along the Columbia River Gorge that channels wind within its
canyon, and the domain is also split by the Cascade mountains that run from the north to the south
through central Washington and Oregon. Hood River lies to the west, and Sevenmile Hill is to the east
of the crest of the mountains. In the western region, the climate is wet and maritime, and to the east, it is
dry. Substantial east-west pressure gradients develop across the mountains, and this geography has been
exploited in several wind forecasting models [17,18,51,52].
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Figure 1. Plot of the locations of the twenty meteorological towers.
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Table 1. Summary of location names and the number of missing observations for each
temporal aggregation level. Note that the 10-min, hourly and daily data have 52,560, 8,760
and 365 observations in a year, respectively.

Acronym Name 10-min Hourly Daily

AUG Augspurger 1,422 236 9
BID Biddle Butte 0 0 0
BUT Butler Grade 2,690 444 14
CNK Chinook 2,687 444 14
FOR Forest Grove 0 0 0
GDH Goodnoe Hills 2,687 444 14
HOO Hood River 0 0 0
HOR Horse Heaven 0 0 0
KEN Kennewick 0 0 0
MAR Mary’s Peak 4,081 673 23
MEG Megler 0 0 0
HEB Mt. Hebo 2,148 351 12
NAS Naselle Ridge 201 30 0
ROO Roosevelt 281 46 1
SML Seven Mile Hill 2,687 444 14
SHA Shaniko 199 32 0
SUN Sunnyside 0 0 0
TIL Tillamook 0 0 0
TRO Troutdale 0 0 0
WAS Wasco 0 0 0

Here, we use the 2013 data, which is reported at all towers in 5-min averages. Wind speeds are
reported here in meters per second, and wind direction is measured with 0◦ as north and progressing
clockwise around the circle. No quality control is necessary for any of the towers in 2013, but for some
locations, there is a substantial amount of missing data, as noted in Table 1. We do not use the raw
5-min averages, but aggregate these into 10-min, hourly and daily averages. Ten of the locations have no
missing data for any of the timescales, and for the rest, the number of missing observations is reduced as
the aggregation increases. Nevertheless, to avoid imputation, we focus mainly on those locations with
no missing data.

3.2. Spatial and Temporal Scales

The wind at individual sites can be far more variable than when wind is averaged over a larger region.
The same is true for temporal scale: as larger time windows are used to construct averages, the wind
becomes less noisy. For this reason, we want to test the ability of the MSVAR model algorithm to
replicate the variability of wind at different spatial and temporal scales.

In terms of spatial scales, we simulate wind vectors for individual tower locations, “local” locations,
which are the averages of two or three nearby stations, and a “region-wide” average across all 20
locations. To ensure that our results are robust to our choices of location, we simulate at the following
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three individual locations: Sunnyside, Tillamook and Wasco. In addition, for the local averages, we
select three sets of nearby locations that are representative of the different behaviors in the region and
name them “coast”, “east” and “west”. They are each comprised of the following towers:

• Coastal: Tillamook and Mt. Hebo;
• East of Cascades: Kennewick, Butler and Horse Heaven;
• West of Cascades: Biddle Butte and Troutdale.

Finally, for the region-wide average, we use all 20 towers, and in those cases that a tower has missing
values, they are dropped from the average.

Each of these spatial scales may be important for different reasons. A wind farm operator may be
interested in the behavior of only one wind farm at one location or a small subset of locations. The
balancing authority, on the other hand, is interested in the average amount of energy produced by all
wind farms within its borders, so a region-wide average would be more important. The wind at an
individual location or averaged across a local group could also be important in diagnosing problems in
transmission from those sites or if they are producing an unexpected amount of electricity.

For the temporal scales, 10-min, hourly and daily averages are taken for each of the spatial scales.
Table 2 summarizes the number of bivariate time series (i.e., yt is 2 × 1) that we model for each
combination of spatial and temporal scale, resulting in a total of 21 scenarios. The 10-min averages
are used for load balancing; hourly averages are used for dispatch and transmission modeling; and daily
averages are used for day-ahead trading. The three temporal scales that we model here are also important
for regulation, load following and unit commitment, respectively [9].

Table 2. Number of bivariate time series for each spatial and temporal scale for which the
model is used to simulate data.

Temporal Spatial Scales
Scales Individual Local Regional

10-min 3 3 1
Hourly 3 3 1
Daily 3 3 1

3.3. Spatial Locations

While the number of parameters that are required to estimate in the MSVAR model grows quickly as
the number of locations, p, increases, for a moderate number of locations, the model should still be able
to simulate the wind vector at multiple locations simultaneously. We test two additional such scenarios
at the hourly time step with four and ten locations. With four locations, p = 4, and yt is 8 × 1; and we
model Forest Grove, Troutdale, Biddle Butte and Hood River. None of these locations have any missing
values, and they are all located along the Columbia River Gorge to the west of the Cascades.

For the ten locations, we take all ten towers that have no missing data. Therefore, p = 10, and yt is
20× 1. These towers are distributed across the entire domain with coastal sites (Megler and Tillamook);
sites west of the Cascades and near the Gorge (Forest Grove, Troutdale, Biddle Butte and Hood River);
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east of the Cascades and far from the Gorge (Sunnyside); and east of the Cascades near the Gorge
(Wasco, Horse Heaven and Kennewick).

4. Validation

The validation of a stochastic weather generator in general depends on the features that are most
important to the end user, and many different characteristics of the simulated data could be investigated.
For example, the ability of a model to duplicate the length of stormy and calm periods is investigated
in [36]. For each of the simulation scenarios outlined in Section 3, we are interested in replicating the
following features of the observed data:

1. the distribution of speed, direction, u and v;
2. the temporal autocorrelation of the u and v components;
3. the diurnal variability of the u and v components;
4. the joint distribution of speed and direction; and
5. the correlation between the u and v components.

In addition, for the scenarios in which the wind vector is simulated at more than one location
simultaneously, we are interested in capturing a sixth feature: the spatial correlations among the u and
v components. To assess the ability of the MSVAR model to capture these features, we simulated 100
realizations under each of the 23 scenarios (the 21 scenarios outlined in Table 2, plus the two sets of
spatial locations) and construct the following:

1. histograms of speed, direction, u and v of the observed data with the average count per bin taken
across all 100 simulations overlaid;

2. autocorrelation (ACF) and partial autocorrelation (PACF) plots of the observed u and v

components with the average ACF and PACF for each lag taken over the 100 simulations overlaid
(e.g., the average of 100 lag-1 autocorrelations is taken to obtain the plotted value), and diurnal
variability can also be assessed with the ACF plots;

3. wind roses of the observed speed and direction and wind roses of the average number of simulated
observations across all 100 simulations occurring in each speed and direction bin;

4. the observed correlation between the u and v components and the average correlation between the
u and v components across all 100 simulations; and

5. a heat map of the spatial correlations among the observed u and v components and a heat map of
the average of the spatial correlations across all 100 simulations.

Of course, we cannot show all of the figures and results here, but we describe a full set for one
scenario and then examples wherein the MSVAR achieves its best and worst performance. The full
graphical validation for every scenario is available in the Appendix.
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4.1. Spatial and Temporal Scales

First, we take one individual location, Wasco, and Figures 2 to 4 demonstrate the types of plots that we
produce to evaluate the quality of the simulation. In Figure 2, the histograms of the observed direction,
speed, u and v are produced. For each bin, the average count of observations across the 100 simulations
is taken, and this average count is overlaid with the red curve. With the exception of the high count
of observed zero wind speeds, the distributions of all of the variables in the simulation are extremely
close on average to the observed. The asymmetry in the wind speeds is captured for the 10-min and
hourly averages, but the asymmetry in the observed distribution diminishes for the daily averages, and
this feature is also well-modeled in the simulation. Even the bi-modality in the distribution of the u
component is captured.
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Figure 2. Histograms of observed direction, speed, u and v (first, second, third and fourth
rows) for 10-min, hourly and daily time resolutions (left, center and right columns) for
Wasco. The average simulated count for each variable is given by each overlaid red curve.

In Figure 3, we plot the autocorrelation function (ACF) and partial autocorrelation function (PACF)
plots for the u and v components. For each lag, the average ACF and PACF across the 100 simulated
datasets are computed, and this is overlaid in red on top of the observed values. The PACF’s drop to
zero almost immediately for all temporal scales for both u and v, and the simulation matches this. In the
ACFs, on the other hand, the simulated average ACFs for the 10-min scale drop too quickly and persist
at a level that is too high for the u component. At the hourly averaged time scale, the u component’s
temporal dependence is easily captured for approximately the first 60 h and then is too high. We note that
if such simulated data are used in a grid integration study and the strength of the temporal dependence
is too strong, then the simulated data are too smooth. This, in turn, could cause too few reserves to
be held online. However, the impact that such mismatches in the statistical properties of the simulated
data may have on grid integration studies is beyond the scope of the current work. The ACFs for the
daily averages are relatively well represented in the simulation. The diurnal cycle can be observed in the
ACF plots by the cyclical peaks, especially for the v component, and the simulation is able to match this
behavior on average.

Figure 4 shows the observed wind rose in the left column, and the average number of observations
within each combination of speed and direction bin across all 100 simulations is plotted in the right
column. From this, we see that the directions match quite precisely those of the observed data, and the
slightly higher winds that are observed coming from the west are duplicated in the simulation.

The parameter estimates of the MSVAR(1) for Wasco are also informative. We assume that there
are regimes wherein the spatial and/or temporal patterns are distinct, and the detrending step ignores the
regimes and removes a trend across all observations regardless of regime. Thus, the estimates of Art and
Σrt should be significantly different from each other across regimes. In Table 3, we report the parameter
estimates for Wasco at the 10-min, hourly and daily temporal scales, and significant differences exist
between A1 and A2 for each time scale (results not shown). In addition, for each time scale, these
coefficients are significantly different from zero. The differences between Â1 and Â2 increase as the
temporal aggregation increases, and this pattern is similar for the other simulation scenarios and for the
estimates of Σ1 and Σ2, as well. For example, at the daily scale, the strength of the relationship between
the residual transformed u and v components is much stronger in the second regime, as evidenced by the
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higher off-diagonal elements of Â2 and Σ̂2, and their temporal dependence is also much stronger in the
second regime given the higher diagonal elements of Â2.
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Figure 3. Observed autocorrelation functions (ACFs) (top two rows) and and partial
autocorrelation functions (PACFs) (bottom two rows) of u and v with 10-min, hourly and
daily in the left, center and right columns, respectively, for Wasco. The average simulated
correlation for each variable is given by each overlaid red curve.
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Figure 4. Wind roses of speed and direction for the observed (left) and the average across
the 100 simulations (right) at Wasco.

Table 3. Estimated coefficient and covariance matrices for the Wasco simulation scenarios.

Time Scale Â1 Â2 Σ̂1 Σ̂2

10-min 0.99 0.01 0.96 −0.10 0.03 0.00 0.04 −0.02
0.01 0.95 0.00 0.81 0.00 0.10 −0.02 0.15

Hourly 0.97 0.07 0.89 −0.34 0.08 0.02 0.08 −0.05
0.04 0.85 −0.02 0.49 0.02 0.32 −0.05 0.24

Daily 0.36 −0.07 0.61 0.47 0.62 −0.08 0.80 0.49
0.03 0.19 0.28 0.46 −0.08 0.49 0.49 0.70

At the hourly scale, the temporal dependence between the residual transformed u and v components
is weaker for the second regime than the first regime, as evidenced by the lower diagonal elements of Â2.
In fact, this can also be observed in Figure 5, which shows the ACF plot of the transformed, detrended u
and v components for the hourly Wasco scenario for the overall dataset and then split by the two regimes.
It is clear that the observed temporal autocorrelation is different between the two identified regimes when
compared with the overall ACF. In addition, the average of the temporal dependence for the transformed
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residuals across the 100 simulations is overlaid both overall and within each regime. Within each regime,
the MSVAR(1) model is able to properly capture the broad features of the temporal dependence, except
for the transformed v residuals in Regime 1. Using a higher order lag for the VAR part of the model
within this regime could help to solve this problem.
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Figure 5. ACF of the detrended, transformed residuals of u and v for the hourly Wasco
scenario for the overall series (top row) and each of the two regimes (second and third rows).

Finally, we will note a few interesting aspects of the simulations at the other two locations. At
Tillamook, the diurnal pattern in the winds is much stronger than at Wasco, but the MSVAR models
this pattern quite nicely; see Figure 6. Except for some small negative autocorrelations, the MSVAR
average temporal correlation is very close to the observed. In this case, some of the observed partial
autocorrelations are significantly different from zero, and the simulated data matches this well on
average. Tillamook and Sunnyside both have a more complex array of wind directions than does Wasco,
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as shown in Figure 7. The primary modes of wind direction are captured in the simulation, but the wind
directions are more variable in the simulation than in the observed data.
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Figure 6. Observed ACFs (top row) and PACFs (bottom row) of hourly u and v for Tillamook.
The average simulated correlation for each variable is given by each overlaid red curve.
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Figure 7. Wind roses of hourly direction and speed for the observed (left) and average across
the 100 simulations (right) at Tillamook (top) and Sunnyside (bottom).
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For the averages of two to three local sites, many of the same conclusions are reached as with the
individual sites, even though the distributions of speed and direction are different for these cases. For
the sites west of the Cascades, some very non-normal and strongly left-skewed behavior is present in the
wind speed and u component, but this is well-modeled in the simulation. The temporal dependence in the
west is quite strong at the 10-min and hourly scale, and the MSVAR does not quite achieve this strength
in the temporal dependence. On the other hand, for the regional average, the MSVAR overestimates
the temporal dependence on average at the 10-min and hourly scales. However, the joint distribution
of wind speed and wind direction is quite close to the observed, and the correlations between the u and
v components at all temporal scales are captured quite closely by the MSVAR model. This regional
average is an important spatial scale at which to model across all temporal scales for a utility’s load
balancing, dispatch and trading, and the MSVAR excels at modeling all three of these scenarios.

Table 4 reports the correlations between the observed u and v components and the average across
the 100 simulations for each of the 21 scenarios depicted in Table 2. The overall correlation between
u and v is not well represented by the MSVAR at some individual locations, such as Wasco, but it
generally improves with temporal and spatial aggregation. This is not too surprising, since with a
Markov-switching model, the correlations between u and v are expected to differ among the regimes,
so measuring an overall correlation masks the more linear association within the identified regimes. In
addition, the correlation is computed based on observations that have not been transformed or detrended,
so correlation may not even be the best way to quantify the relationship between u and v. Yet, ultimately,
the correlations are of less importance than the joint distribution of wind speed and direction, which can
be assessed in the wind roses.

Table 4. Observed overall correlations between the u and v components for the simulation
scenarios summarized in Table 2 and the corresponding average simulated correlations.

Temporal Spatial Observed Overall Corr. Simulated Overall Corr.

Tillamook −0.37 −0.42
Sunnyside −0.03 −0.17

Wasco 0.02 −0.23
10-min Coast −0.11 −0.10

East 0.55 0.42
West 0.19 0.21

Region 0.24 0.21

Tillamook −0.39 −0.47
Sunnyside −0.01 −0.28

Wasco 0.02 −0.30
Hourly Coast −0.10 −0.09

East 0.56 0.42
West 0.19 0.18

Region 0.23 0.10

Tillamook −0.25 −0.14
Sunnyside 0.19 0.15

Wasco 0.14 −0.13
Daily Coast −0.06 −0.06

East 0.58 0.39
West 0.21 0.05

Region 0.28 0.40
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4.2. Spatial Locations

Figure 8 shows the spatial correlation of the observed u and v components for the sets of four and
ten locations along with the average across 100 simulations when the regimes are defined based on the u
and v components at all of the locations. Note that the scale for the difference in observed and simulated
correlation is only different for the v component for the ten sites in the bottom right plot of Figure 8.
Results with regimes defined based on the average of the transformed u and v components across the
locations are similar, but slightly worse. For the four locations, the MSVAR model captures the spatial
correlations of both the u and v components very well. For the ten locations, the spatial correlations
among the u components are replicated well, but there is a distinct group of locations among the v
components to the west of the Cascades that deviate more strongly from the observed. It is likely that the
correlations among locations on either side of the crest of the Cascade mountains are so distant, that they
are more difficult to capture simultaneously in the MSVAR model. Figure 9 shows a similar plot, but for
wind speed. Again, the more the locations, the more difficult it becomes to capture all of the correlations,
but the simulated correlations are all within 0.30 of the observed, on average; and the spatial pattern in
the observed wind speed correlations is captured in the simulation, regardless of the number of sites.
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Figure 8. Observed correlation of u and v across space for the set of four sites (top two
rows) and the set of 10 sites (bottom two rows) in the left column. In the middle column
are the average simulated correlations for both u and v for the second regime definition in
Step 4(b). The last column shows the difference between the observed and average simulated
correlations. The sites are organized from west to east along the horizontal axis.
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Figure 9. Observed correlation of speed across space for the set of four sites (top row) and
the set of 10 sites ( bottom row) in the left column. In the middle column are the average
simulated correlations for the speed for the second regime definition in Step 4(b). The last
column shows the difference between the observed and average simulated correlations. The
sites are organized from west to east along the horizontal axis.

Focusing on the distribution of the speed and direction of each location individually, the features are
replicated remarkably well, even though the locations have very different behavior. Figure 10 shows the
wind roses of the observed and average simulated wind for the four sites that are common to both spatial
simulations. The winds at Forest Grove are generally from the north or the south; Troutdale and Biddle
Butte winds are almost equally split between the east and west; and Hood River winds are primarily
from the west. Biddle Butte has higher wind speeds from the east than the west. All of these features
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are replicated in the simulated data, but they are a bit more precise in the simulation of the four sites
simultaneously. As might be expected, once ten sites are simulated simultaneously, some specificity
in simulating individual sites is lost. In addition, some of the sites in the set of 10 locations that have
complex wind directions are more difficult to duplicate than others; for example, the wind directions of
Megler, Sunnyside and Horse Heaven have greater spread in the simulated data than in the observed.
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Figure 10. The left column is the observed distribution of wind speed and direction; the
center column is the average across all 100 simulations of four sites simulated simultaneously
based on the second regime definition in Step 4(b); and the right column is the average across
all 100 simulations of these four sites for the 10 sites simulated simultaneously based on the
second regime definition.
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5. Discussion

The MSVAR model and the algorithm described here demonstrate very good potential for generating
realizations of the wind vector for various temporal and spatial scales. Most promising is its ability to
simultaneously simulate at multiple locations and to maintain the proper spatial relationships. Within
regimes, the temporal dependencies in the observed data differ, and while not shown here, the spatial
dependencies among locations also differ by regime [38]. The Markov-switching part of the model
does relatively well in capturing these differences, but some improvement could be realized by allowing
the number of lags within regimes to differ. In addition, when the wind directions are complex, the
model does not perform as well as when the wind directions are nearly dichotomous, and improving the
measure of association between the u and v components at individual locations is important, since both
speed and direction jointly impact wind power. Additional validation may be performed, as well, such as
comparing the distribution of wind speed and direction across seasons or between daytime and nighttime
hours and evaluating the frequency and severity of high wind events.

Future modifications to improve the model include investigating the impact of the following on the
simulated wind: the number of regimes selected; increasing the number of lags in the MSVAR; joint
transformation of the u and v components to normality; and different detrending techniques. The
marginal improvement gained, if any, of adding additional regimes and lags should be investigated,
as well as having a single regime and a single lag. As the number of regimes and lags increase, the
number of observations available to estimate the parameters within each regime decreases, so the benefit
of adding regimes and lags must be clear. The joint transformation of u and v to normality cannot be
treated with the same nonparametric approach that we have used here for the individual components,
since quantiles in the multivariate setting are not well defined. We may need to resort to parametric
models, such as the multivariate skew-t distribution [53], which has some history and utility in modeling
winds [18]. In addition, it is possible that the diurnal patterns or the seasonal variability differs across a
year, and such features can be incorporated into the trend.

In this work, we have fit a separate MSVAR model to each timescale and spatial aggregation level. It
may also be useful to consider simulating wind at multiple individual locations and then averaging the
individual time series to see if the averaged simulated behavior is similar to the average behavior of the
observed series, so different models need not be fit for scenarios, such as “east”, “west” and “coastal”.
Similar experiments in time can be performed wherein simulated 10-min data are averaged to the hourly
and daily timescales and compared to the observed data at the corresponding timescale. The benefit
would be that only one model would need to be fit as opposed to a separate model for each timescale.

Author Contributions

Amanda S. Hering provided the literature synthesis on wind utility integration and forecasting,
obtained the data, programmed the methodology and validation and prepared the manuscript.
Karen Kazor provided the literature synthesis on Markov chains in wind generation and the baseline
MSVAR code. William Kleiber provided the literature synthesis on stochastic weather generators
and the Gaussian copula code. All three authors contributed to the methodology development and
manuscript review.



Resources 2015, 4 90

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Skidmore, E.L.; Tatarko, J. Stochastic wind simulation for erosion modeling. Trans. ASAE 1990,
33, 1893–1899.

2. Reich, B.J.; Fuentes, M. A multivariate semiparametric Bayesian spatial modeling framework for
hurricane surface wind fields. Ann. Appl. Stat. 2007, 1, 249–264.

3. Wikle, C.K.; Millif, R.F.; Nychka, D.; Berliner, L.M. Spatiotemporal hierarchical Bayesian
modeling: Tropical ocean surface winds. J. Am. Stat. Assoc. 2001, 96, 382–397.

4. Fatichi, S.; Ivanov, V.; Caporali, E. Simulation of future climate scenarios with a weather generator.
Adv. Water Resour. 2011, 34, 448–467.

5. Monbet, V.; Ailliot, P.; Prevosto, M. Survey of stochastic models for wind and sea state time series.
Probab. Eng. Mech. 2007, 22, 113–126.

6. Masala, G. Wind time series simulation with underlying semi-Markov model: An application to
weather derivatives. J. Stat. Manag. Syst. 2014, 17, 285–300.

7. Raischel, F.; Scholz, T.; Lopes, V.V.; Lind, P.G. Uncovering wind turbine properties through
two-dimensional stochastic modeling of wind dynamics. Phys. Rev. E 2013, 88, 1–12.

8. Yang, H.; Li, Y.; Lu, L.; Qi, R. First order multivariate Markov chain model for generating annual
weather data for Hong Kong. Energy Build. 2011, 43, 2371–2377.

9. DeCesaro, J.; Porter, K. Wind Energy and Power System Operations: A Review of Wind
Integration Studies to Date. Subcontract Report NREL/SR-550-47256; National Renewable
Energy Laboratory: Golden, CO, USA, December 2009.

10. Marquis, M.; Wilczak, J.; Ahlstrom, M.; Sharp, J.; Stern, A.; Smith, J.C.; Calvert, S. Forecasting the wind

to reach significant penetration levels of wind energy. Bull. Am. Meteorol. Soc. 2011, 92, 1159–1171.

11. Kiviluoma, J.; O’Malley, M.;Tuohy, A.; Meibom, P.; Milligan, M.; Lange, B.; Holttinen, H.;
Gibescu, M. Impact of wind power on the unit commitment, operating reserves, and market design.
In Proceedings of the 2011 IEEE Power and Energy Society General Meeting; San Diego, CA,
USA, 24–29 July 2011; pp. 1–8.

12. Lannoye, E.; Flynn, D.; O’Malley, M.J. The role of power system flexibility in generation planning.
In Proceedings of the 2011 IEEE Power and Energy Society General Meeting; San Diego, CA,
USA, 24–29 July 2011; pp. 1–6.

13. Ortega-Vazquez, M.; Kirschen, D. Estimating the spinning reserve requirements in systems with
significant wind power generation penetration. IEEE Trans. Power Syst. 2009, 24, 114–123.

14. Zhu, X.; Genton, M.G. Short-term wind speed forecasting for power system operations.
Int. Stat. Rev. 2012, 80, 2–23.

15. Pinson, P. Wind energy: Forecasting challenges for its operational management. Stat. Sci. 2013,
28, 564–585.

16. Brown, B.G.; Katz, R.W.; Murphy, A.H. Time series models to simulate and forecast wind speed
and wind power. J. Clim. Appl. Meteorol. 1984, 23, 1184–1195.



Resources 2015, 4 91

17. Gneiting, T.; Larson, K.; Westrick, K.; Genton, M.G.; Aldrich, E. Calibrated probabilistic
forecasting at the stateline wind energy center. J. Am. Stat. Assoc. 2006, 101, 968–979.

18. Hering, A.S.; Genton, M.G. Powering up with space-time wind forecasting. J. Am. Stat. Assoc.
2010, 105, 92–104.

19. Jeon, J.; Taylor, J.W. Using conditional kernel density estimation for wind power density
forecasting. J. Am. Stat. Assoc. 2012, 107, 66–79.

20. Pinson, P.; Madsen, H. Adaptive modelling and forecasting of offshore wind power fluctuations
with Markov-switching autoregressive models. J. Forecast. 2012, 31, 281–313.

21. Wilks, D.S.; Wilby, R.L. The weather generation game: A review of stochastic weather models.
Progress Phys. Geogr. 1999, 23, 329–357.

22. Richardson, C.W. Stochastic simulation of daily precipitation, temperature and solar radiation.
Water Resour. Res. 1981, 17, 182–190.

23. Parlange, M.B.; Katz, R.W. An extended version of the Richardson model for simulating daily
weather variables. J. Appl. Meteorol. 2000, 39, 610–622.

24. Ivanov, V.Y.; Bras, R.L.; Curtis, D.C. A weather generator for hydrological, ecological, and
agricultural applications. Water Resour. Res. 2007, 43, doi:10.1029/2006WR005364.

25. Tan, K.; Chiew, F.H.S.; Grayson, R.B. Stochastic event-based approach to generate concurrent
hourly mean sea level pressure and wind sequences for estuarine flood risk assessment. J. Hydrol.
Eng. 2008, 13, 449–460.

26. Flecher, C.; Naveau, P.; Allard, D.; Brisson, N. A stochastic daily weather generator for skewed
data. Water Resour. Res. 2010, 46, doi:10.1029/2009WR008098.

27. Sahin, A.D.; Sen, Z. First-order Markov chain approach to wind speed modeling. J. Wind Eng.
Ind. Aerodyn. 2001, 89, 263–269.

28. Shamshad, A.; Bawadi, M.A.; Wan Hussin, W.M.A.; Majid, T.A.; Sanusi, S.A.M. First and second order

Markov chain models for synthetic generation of wind speed time series. Energy 2005, 30, 693–708.

29. Youcef Ettoumi, F.; Sauvageot, H.; Adane, A.E.H. Statistical bivariate modelling of wind using
first-order Markov chain and Weibull distribution. Renew. Energy 2003, 28, 1787–1802.

30. Negra, N.B.; Holmstrøm, O.; Bak-Jensen, B.; Sørensen, P. Model of a synthetic wind speed time
series generator. Wind Energy 2008, 11, 193–209.

31. Hocaoglu, F.O.; Gerek, O.N.; Kurban, M. The effect of Markov chain state size for synthetic wind
speed generation. In Proceedings of the 10th International Conference on Probabilistic Methods
Applied to Power Systems, Rincon, Puerto Rico, 25–29 May 2008; pp. 1–4.

32. Scholz, T.; Lopes, V.V.; Estanqueiro, A. A cyclic time-dependent Markov process to model daily
patterns in wind turbine power production. Energy 2014, 67, 557–568.

33. Brokish, K.; Kirtley, J. Pitfalls of modeling wind power using Markov chains. In Proceedings of the
IEEE/PES Power System Conference and Exposition, Seattle, WA, USA, 15–18 March 2009; pp. 1–6.

34. D’Amico, G.; Petroni, F.; Prattico, F. First and second order semi-Markov chains for wind speed
modeling. Phys. A: Stat. Mech. Appl. 2013, 392, 1194–1201.

35. Lopes, V.V.; Scholz, T.; Estanqueiro, A.; Novais, A.Q. On the use of Markov chain models for the
analysis of wind power time-series. In Proceedings of the 2012 11th International Conference on
Environment and Electrical Engineering (EEEIC), Venice, Italy, 18–25 May 2012; pp. 770–775.



Resources 2015, 4 92

36. Ailliot, P.; Monbet, V. Markov-switching autoregressive models for wind time series. Environ.
Modell. Softw. 2012, 30, 92–101.

37. Burlando, M.; Antonelli, M.; Ratto, C.F. Mesoscale wind climate analysis: Identification of
anemological regions and wind regimes. Int. J. Climatol. 2008, 28, 629–641.

38. Kazor, K.; Hering, A.S. Assessing the performance of model-based clustering methods in
multivariate time series with application to identifying regional wind regimes. J. Agric. Biol.
Environ. Stat. 2015, in press.

39. Haslett, J.; Raftery, A.E. Space-time modelling with long-memory dependence: Assessing
Ireland’s wind power resource. J. R. Stat. Soc. Ser. C 1989, 38, 1–50.
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