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Abstract: The goal of this study was to accurately evaluate the lateral sealing ability of a fault in
siliciclastic stratum based on previous analysis of the lateral sealing of faults by a large number of
scholars in the published literature and physical simulation experiments. Content of the clay mineral
phase and the diagenetic degree of fault rock were investigated as the main factors to evaluate the
lateral sealing of faults. Based on this theory, the configuration relationship between the clay content
and burial depth of fault rock (SGR&H) threshold evaluation method for the lateral sealing of faults
was established. Then, we applied these results to evaluate the lateral sealing ability of faults in
the Beixi, Beier, Wuerxun, and Surennuoer areas in the Hailar Basin, China. The variation in SGR
boundary values with burial depth between the lateral opening and moderate sealing area, as well as
between the moderate and strong sealing area of the faults, are obtained. Compared with the previous
methods, the SGR&H threshold method transforms the static SGR value of a formation or even a
region into a dynamic SGR value that changes with the burial depth, which can fully characterize the
differences in the conditions required for sealing faults with different internal structures at different
depths. In determining the lateral sealing ability of faults by comparing the evaluation results, we
discovered the following. (1) In the same area, the sealing thresholds of faults within different
layers are different because the deep strata are subjected to greater pressures and longer loading
times, so these faults are more likely to seal laterally. (2) In the same layer, the sealing thresholds
of faults in different areas are also different. The higher the thickness ratio between the sandstone
and the formation (RSF), the smaller the entry pressure of the fault rock when it has reached a
critical seal state, so the SGR&H thresholds are relatively small. Compared to the previous methods,
the SGR&H threshold method in this article reduces the exploration risk of faults with relatively
low diagenetic degree in shallow strata, and also increases the exploration potential of faults with
relatively high diagenetic degree in deep strata. The evaluation results are more consistent with the
actual underground situation.

Keywords: fault lateral sealing ability; clay content of fault rock; diagenetic degree of fault rock;
SGR&H threshold; quantitative analysis; Hailar Basin

1. Introduction

Most of the sedimentary basins in China are characterized by thin interbedded sand
and clay [1]. The validity of different traps differs even within the same basin because of the
tectonic movement and time–space distribution characteristics of sedimentary facies [2,3],
especially in the Hailar Basin, which is a small complex rift basin that has undergone several
stages of tectonic evolution [4]. Under similar hydrocarbon accumulation conditions (such
as source, migration path, etc.), the oil and gas distribution relationship is affected by trap
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effectiveness, and the difference in trap effectiveness is largely affected by the difference in
lateral sealing ability of faults [3,5].

A fault zone consists of two architectural elements: fault core and fault damage
zone [6–9]. The fault core is located in the center of the fault zone and its width can
range from millimeters to several meters. It can be composed of a single or multiple
fault surfaces and types of cataclastic material, such as breccias and cataclasites, which
represent intense deformation [10–14]. The damage zone is distributed symmetrically [15] or
asymmetrically [16] on both sides of the fault core. It can be composed of brittle, mechanically
related fracture sets, small faults, veins, and joints which represent slight deformation, and
the fault rocks retain the basic characteristics of the surrounding rocks [17–20].

According to the relationship of porosity and permeability between fault rock and
reservoir rock, the types of lateral fault sealing can be divided into two categories:
juxtaposition seals and fault rock seals [21,22]. Juxtaposition seals only occur when
(1) the fault scale is relatively small and the fault zone structure is not fully developed [23–25]
or (2) the porosity and permeability of fault rock are higher than those of reservoir
rock, as the reservoir and the surrounding rocks between the two walls of the faults are
juxtaposed and obstruct hydrocarbon migration by the seepage force [26,27]. Otherwise,
the sealing type acts as the fault rock seals [28]. The detrital materials in the fault zone
that cut from the surrounding rocks gradually discharge pore water and slowly compact
into rock due to the influence of diagenesis [29,30], while the porosity and permeability
gradually deteriorate. Therefore, the fault rock seals may occur if fault rocks with
low permeability and high capillary threshold pressure are generated within the fault
zones [31].

With the gradual improvement in fault-related theories such as formation mech-
anism, internal structure characteristics, sealing mechanism and type of faults, the
methods for evaluating the lateral sealing ability of faults have also improved. However,
these methods are mostly indirect evaluations of a fault’s lateral sealing ability based
on the continuity of clay/phyllosilicate smears or of the average clay content within the
fault zones, e.g., (1) the clay smear potential (CSP), which is suitable for specific shear
environments [32,33]; (2) the shale smear factor (SSF), which is suitable for extrusion
environments [34]; and (3) the shale gouge ratio (SGR), which considers multiple geolog-
ical elements such as the thickness and clay content of strata surrounding the fault throw
interval, as well as the displacement of fault [35,36]. In addition, the results calculated by
the SGR formula are in accordance with the actual clay content of the fault zone obtained
through field calibrations [37]. Geologists prefer to use the SGR formula to evaluate the
lateral sealing ability of faults [38,39]. (4) The SGR threshold method judges the lateral
sealing ability of a fault with comprehensive consideration of the oil test conclusion, the
SGR value of the corresponding section [40–43]. (5) The difference between the entry
pressure of the fault rock and the reservoir rock is based on the sealing mechanism of
the fault [30,44].

The above methods can determine the lateral sealing ability of fault from a certain
point of view, but the CSP, SSF, and SGR formulas only consider the role of the clay
content in the fault zone and ignore the diagenesis of the fault rock, which is one
of the important factors controlling the lateral sealing ability of the fault. Despite
the SGR formula [40] taking account of the effect of compaction diagenetic in fault
sealing evaluation, (1) the data involved in the establishment of formula are all come
from marine and transitional facies that all over the world (but do not include China),
whether it is applicable to continental basins (such as the Hailar Basin), is still uncertain,
(2) the burial depth is considered in the form of range (<3.0 km, 3.0–3.5 km, >3.5 km), in
the same range the evaluation formula is consistent, but for different areas the sealing
properties of faults may vary in the same depth range, which will inevitably lead to
misjudgment, (3) in the traditional formula, regardless of the size of the SGR, a certain
height of hydrocarbon column can be sealed even if the SGR is 0, so it is inevitable
to result in a misjudgment when evaluating open fault. Although the method of
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difference between the entry pressure of the fault rock and the reservoir rock is more
comprehensive, it is necessary to measure the value of the entry pressure of the rock
samples from the target area in the laboratory, which is rather limiting and is not
conducive to the rapid evaluation of the lateral sealing ability of a fault.

Because of these factors, this paper establishes a set of SGR&H threshold methods
to quantitatively analyze the lateral sealing ability of the fault that consider both of the
influential factors proposed by previous studies and is extremely suitable for areas with
complex structural units such as depressions, slopes, and uplifts (such as the Hailar
Basin). The SGR&H threshold method can distinguish the difference between the lateral
sealing ability of faults in deep and shallow strata and deduce the sealing threshold
of faults in less developed strata so that the threshold values of multiple sets of strata
are continuous. Compared with previous research methods, the SGR&H threshold
method established in this article has certain advantages. It not only quantitatively
considers the influence of two parameters, fault clay content and diagenetic degree, on
the lateral sealing of faults but also obtains the configuration relationship between these
two parameters by establishing template. Generally, in shallow strata, the diagenetic
degree of rock is low, and it is necessary to configure faults with high clay content to
form a seal, while in deep strata, the diagenetic degree of rock is high, and it is only
necessary to configure faults with low clay content to form a seal. In other words, there
is a depth demarcation point. When the actual depth is less than the critical depth, the
threshold of lateral fault sealing obtained by the SGR&H method is greater than that of
the SGR method, resulting in the actual opening fault being evaluated as a sealing fault.
This difference can be used to explain the contradiction of using the SGR method to drill
into aqueous layers in the fault sealing area of shallow strata. However, when the fault
depth is greater than the critical depth, the threshold of lateral fault sealing obtained
by the SGR&H method is smaller than that of the SGR method, resulting in the actual
sealing fault being evaluated as an opening fault. This difference can be used to explain
the contradiction of using the SGR method to drill into hydrocarbon layers in the fault
opening area of deep strata.

Therefore, this research is of significance for guiding the fast and accurate evalu-
ation of the lateral sealing ability of faults in mature exploration areas, reducing the
risk of drilling in fault-related traps, and improving our understanding of oil and
gas accumulation in fault areas, which will be valuable for efforts in identifying new
target areas.

2. Geological Setting

The Hailar Basin is located in the Inner Mongolia Orogenic Belt between the Siberian
Plate and the North China Plate [45]. The northern part of the basin is bordered by the
Potalaira Basin, the southern part is bordered by the Tamtsag Basin in Mongolia, and it is
clamped by Banyan Mountain and the Cuogang Uplift in the east and west, respectively.
The Hailar Basin is a Mesozoic–Cenozoic continental rifted basin superimposed on the
Mongolia–Hinggan orogenic belt [4,46]. It is composed of two parts: the Wuerxun Sag
in the north and the Beier Sag in the south. The former includes the Surennuoer and
Wuerxun areas, while the latter includes the Beixi and Beier areas (Figure 1).
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Cretaceous and Cenozoic strata of the Tongbomiao (K1t), Nantun (K1n), Damoguaihe 
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each formation are as follows. (1) The K1t Formation is angular unconformity above the 
basement, it is the sedimentary filling product of the residual basin in the early Creta-
ceous, whose thickness is about 250–700 m (820–2297 ft). The lower part of this formation 
is a set of normal-cycle sediments composed of andesite, tuff and tuffaceous sand–mud-
stone, while the upper part is a set of inverse-cycle sediments of glutenite. (2) The K1n 
Formation has a great difference in lithology in different parts of the basin. The formation 
in the central part is mainly composed of dark-gray mudstone and argillaceous siltstone, 
which are high-quality source rocks, while the grain size in the marginal area of both sides 
of the basin gradually becomes coarser, which is mainly composed of conglomerate, peb-
bly coarse sandstone and other coarse clasts, which are high-quality reservoirs. (3) The 
K1d Formation is mainly composed of gray-black mudstone, black mudstone and silty 
mudstone. It is a set of normal-cycle sediments with a thickness of 350–600 m (1148–1969 
ft), and the giant thick mudstone developed at the top can serve as a regional seal for the 
whole basin. (4) The K1y Formation is composed of 600–1000 m (1969–3281 ft)-thick green, 
gray siltstone, sandstone and mudstone with a small amount of coal seam. (5) The K2q 

Figure 1. Regional geological map of the Hailar Basin. (Revised by [47]).

The basement of the Hailar Basin is composed of Hercynian–Indosinian metamorphic
rock and the Budate Group [48,49]. Its interior is composed from bottom to top of the
Cretaceous and Cenozoic strata of the Tongbomiao (K1t), Nantun (K1n), Damoguaihe
(K1d), Yimin (K1y), and Qingyuangang (K2q) formations (Figure 2). The characteristics of
each formation are as follows. (1) The K1t Formation is angular unconformity above the
basement, it is the sedimentary filling product of the residual basin in the early Cretaceous,
whose thickness is about 250–700 m (820–2297 ft). The lower part of this formation is a
set of normal-cycle sediments composed of andesite, tuff and tuffaceous sand–mudstone,
while the upper part is a set of inverse-cycle sediments of glutenite. (2) The K1n Formation
has a great difference in lithology in different parts of the basin. The formation in the
central part is mainly composed of dark-gray mudstone and argillaceous siltstone, which
are high-quality source rocks, while the grain size in the marginal area of both sides of the
basin gradually becomes coarser, which is mainly composed of conglomerate, pebbly coarse
sandstone and other coarse clasts, which are high-quality reservoirs. (3) The K1d Formation
is mainly composed of gray-black mudstone, black mudstone and silty mudstone. It is
a set of normal-cycle sediments with a thickness of 350–600 m (1148–1969 ft), and the
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giant thick mudstone developed at the top can serve as a regional seal for the whole basin.
(4) The K1y Formation is composed of 600–1000 m (1969–3281 ft)-thick green, gray siltstone,
sandstone and mudstone with a small amount of coal seam. (5) The K2q Formation is mainly
composed of <500 m-thick pink, red silty mudstone, and muddy siltstone interbedded with
sandy conglomerate.
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Figure 2. Comprehensive stratigraphic map of the Hailar Basin. (Revised by [50]).

This basin has experienced five periods of evolution: the remnant basin period, the
initial rifting period, the intense rifting period, the rift-sag period, and the post-rifting
period [50]. Due to multiple periods of construction and reconstruction, the Wuerxun-Beier
Sag in the Hailar Basin formed a complex fault system, which is characterized by multiple
properties, multiple strike directions, multiple combinations, and multiple periods. During
the deposition period of the K1t Formation, the faults began to form, but the size of faults
and the throws were not large, which formed an obvious uplift and erosion. Subsequently,
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during the deposition period of the K1n Formation, the basin entered the intense rifting
period, while with the strong fault activity, fault size and throw significantly increased,
and most of the faults have a NNE–NE strike due to the SE–NW tensile stress [2] and the
structure of the preexisting basement fault block [46,51]. These faults are mainly shown
as listric faults in cross section, as well as echelon arrangement in the plane. During
the deposition periods of the K1d to K1y Formations, the early SE–NW tensional effect
transitioned to a nearly EW direction, so the strike of the faults that formed in this stage is
NS and NNW. These faults mainly have flower-like or y-shaped features in cross section,
and pectination or fish ridge combination in the plane. Finally, the basin was controlled
by left-axis compression and torsion that caused a strong reversal of the faults generated
in the early stages. Hydrocarbons have mainly been discovered in fault-block traps and
fault-related anticlines, strata and lithologic traps. Thus, whether the faults have lateral
sealing ability is the key to determining the validity of fault-related traps and the reasons
for hydrocarbon accumulation in the Hailar Basin.

The main focus of this study is the K1n Formation, which is composed of a rela-
tively complete depositional system including lowstand, lacustrine and highstand system
tracts [52,53], and it is the main source rock as well as the major reservoir in the study
area. For the early extensional faults formed during the deposition period of the K1n
Formation [2] in particular, whether these faults have lateral sealing ability is the key to
hydrocarbon accumulation.

3. Quantitative Analysis Method and Technique
3.1. Factors Influencing the Lateral Sealing Ability of the Faults

Based on the lateral sealing types of faults and the results of previous studies, we
investigate and confirm that the clay content, the degree of diagenesis of the fault rock, and
the history of fault activity are the three main geological parameters that control the lateral
sealing ability of faults. Other factors can be accounted for indirectly by using these three
parameters.

First, the lateral sealing ability of a fault is proportional to the clay content of the fault
rock (SGR). The higher the SGR, the greater the threshold pressure required for lateral
migration of hydrocarbons across the fault [35,54,55]. According to the clay content in the
fault zone, four cases can occur [56]. (1) For pure sandstone with a clay content less than
15%, disaggregation zones form due to the low effective stress (mechanical compaction)
without a significant decrease in the porosity and permeability, and the lateral sealing
ability of the fault rock is relatively weak. (2) Pure sandstone forms cataclasite due to a
high effective stress (cataclasis) or cementation; thus, the lateral sealing ability of the fault
is relatively strong [57]. (3) Impure sandstones containing 15–40% clay form phyllosilicate-
framework fault rocks due to shear stress, quartz cementation, and pressure solution [58],
which results in a relatively strong fault sealing ability. (4) Impure sandstone with a clay
content greater than 40% develops clay smearing due to the effective stress, which results
in a strong sealing ability of the fault [59,60].

With increasing degree of diagenesis, the fault rock’s porosity and permeability grad-
ually decrease, and thus the faults are more likely to form lateral seals [29]. During the
burial process, with the increase in burial depth and underground temperature, the fillings
in the fault zone during diagenesis are: (1) influenced by mechanical compaction—the pore
water is gradually discharged under the effect of the overlying load and regional principal
stress, and then slowly compacted; (2) influenced by chemical cementation, minerals in
fillings from supersaturated precipitation sealing the fractures or even pores; (3) influenced
by dissolution—secondary porosity can be formed, but the modification degree of the fault
rock by the dissolution is obviously weaker than that of the mechanical compaction and
chemical cementation. (4) In addition, according to the fault deformation mechanism, the
fault rock may successively undergo disaggregation, cataclasis and shear smear in the
process of deep-buried diagenesis, and gradually transform from breccia to finer clastic
particles and argillaceous. Thus, with the increase in burial depth, the permeability of
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the fault rock decreases gradually [61]. This is also characterized by the increase in the
diagenesis degree of fault rock and the formation of sealing ability of faults (Figure 3).
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Figure 3. Relationship between internal structure of fault zone (a), permeability (b), diagenetic degree
(c) and sealing threshold of fault rock (d) with burial depth, where points A, B and C are typical
points of faults, KA, KB and KC are the permeability of each points, QA, QB and QC are the diagenetic
degree of each points, hA, hB and hC are the burial depth of points A, B and C, hddp is the burial depth
of depth demarcation point.

It should be noted that considering different faults in different sedimentary environ-
ments or even different parts of the same fault are affected by the difference of fracture
development degree and hydrothermal subsurface, the fillings in the fault zone have certain
diagenetic heterogeneity in the longitudinal and lateral directions, so it is often inaccurate,
unrepresentative and ungeneralized to characterize the diagenetic characteristics of fault
rocks by using limited data of coring wells drilled in the fault zone. Because the fault rocks
are more prone to cementation than surrounding rocks, this text only uses burial depth to
represent the minimum diagenesis degree of fault rocks, and the lateral sealing ability of
fault based on this criterion is also the safest and most reliable.

The relationship between the activity history of the fault and the hydrocarbon ac-
cumulation period also controls the fault sealing. If the sealed faults that formed in the
early stages of deposition are not active during the period of hydrocarbon accumulation,
they would capture large amounts of oil and gas. Conversely, if the faults reactivate, they
may lose their lateral sealing ability [62], and the oil and gas that accumulated earlier will
be released. Therefore, the analysis of fault activity should be carried out according to
the actual situation of the study area. If the active period is earlier than the hydrocarbon
accumulation period, it has no significant effect on the lateral sealing of faults. If the active
period coincides with or is later than the accumulation period, it is necessary to analyze the
destroy of the already formed accumulation by fault activity.

3.2. Determining the SGR&H Threshold of Lateral Fault Sealing

According to the above analysis, clay content and degree of diagenesis of the fault rock
are the two major geological factors controlling the lateral sealing ability of faults, while
the effect of the fault activity history needs to be analyzed in detail according to the specific
situation, which will not be elaborated upon in this part. Therefore, an SGR&H threshold
method for quantitatively analyzing the lateral sealing ability of faults is proposed, which
considers the influence of the clay content and differences in the sealing ability at different
burial depth. This method is suitable for blocks with weak fault activity after the hydro-
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carbon accumulation period, which is of great significance to hydrocarbon exploration in
mature blocks. The procedures for this method are as follows.

(1) Determination of the SGR&H of the fault rock

The SGR formula [35,36] uses the average value of the clay content of the beds that
have slipped past the target point (as determined by the vertical fault throw) as an estimate
of the upper limit of fault-zone composition [63]. Therefore, the model can use the seismic
interpretation results for the study area to establish a three-dimensional structural model of
the formations and faults and to calculate the vertical throw of the target faults at different
depth. Then, we use the logging data (SP, GR, or other curves) to determine the variation
in clay content of the surrounding rocks. Then, we can obtain the SGR value of the fault
rocks at different burial depths using Equation (1) [35]; that is to say, combined with the
corresponding buried depth (H), the SGR&H value of any points along fault section can be
determined (Figure 4a):

SGR =

n
∑

i=1
∆Zi ·Vshi

L
× 100% (1)

where SGR is the clay content of the target fault rock (%); n is the number of sand and clay
beds that slip past the target fault rock; 4Zi is the thickness of bed i that slips past the
target point (m); Vshi is the clay content of bed i that slips past the target point (%); and L is
the vertical throw of the fault (m).
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(2) Constraining the oil testing area

Considering the influence of the dip angles of the fault and reservoir, the actual oil
testing depth within the well is projected onto the corresponding fault section, and the
top and bottom interfaces (h1–h2) control the longitudinal range of the oil testing area,
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while the oil supply radius of the target well (r1–r2) and the high position of the fault on an
upward inclination jointly control the lateral range of the oil testing area [64,65].

(3) Determination of the SGR&H threshold for lateral fault sealing

For establishment of the evaluation model, first, we selected the typical wells within
the target area, which should follow the two descriptions to effectively avoid the effects of
hydrocarbon migration heterogeneity or other geological factors: The first is that the wells
are located in the fault-related traps, rather than the anticline or lithologic traps, only in
this case, the preservation and sealing conditions of the selected wells are the faults, and
only the lateral sealing faults are the necessary conditions for oil and gas accumulation.
The second is that the oil supplement, reservoir quality, distance from migration path and
other accumulation conditions are well matched (all of them should reach the threshold of
oil and gas accumulation). At this time, whether the typical well can discover oil and gas
is completely affected by the sealing conditions, which are affected by the lateral sealing
property and ability of faults. If the fault is sealed, oil and gas will be discovered above the
oil–aqueous interface corresponding to the minimum SGR value of the fault rock, and vice
versa, oil and gas showing or aqueous layer will be discovered. Then, we determined the oil
testing area of the different layers at different depths above the wells on the corresponding
fault surface and the minimum SGR value in the oil testing area. Taking the minimum
SGR value of the fault surface in the oil testing area as the horizontal coordinate and the oil
testing depth as the longitudinal coordinate, we constructed a scatter-point map. Based
on the oil testing results of the different wells, the boundaries of the lateral opening area
and the moderate and strong sealing area were determined, and an evaluation model of
the lateral fault sealing ability was established (Figure 4b). In this model, the blue area
represents the lateral opening area of the fault, for which the wells controlled by them are
all aqueous layers. The yellow area represents the moderate sealing area of the fault, for
which the wells controlled by them can be either aqueous layers or commercial oil layers,
and the results depend on the height of hydrocarbon column calculated by SGR and the oil
testing depth. The red area represents the strong sealing area of the fault, for which the
wells controlled by them are all commercial oil layers.

Determination of the SGR&H threshold: According to the distribution characteristics
of the lateral opening area, moderate sealing area and strong sealing area that divided in
the previous procedures, the relationship between the SGR value and the burial depth of
fault rock under different critical conditions can be determined using Equations (2) and (3).
The fitting relationship between the lateral opening area and the moderate sealing area is
shown as the SGR&H threshold for fault sealing:

SGRO−MS = f (H) (2)

SGRMS−SS = f (H) (3)

where SGRO-MS is the SGR value of fault rock at the critical condition between lateral
opening and moderate sealing stage when the burial depth is equal to H (%); SGRMS-SS is
the SGR value of fault rock at the critical condition between moderate sealing and strong
sealing stage when the burial depth is equal to H (%); and H is the burial depth of the target
fault rock (m).

(4) Determination of the lateral fault sealing properties

We used the defined threshold as a criterion to judge the lateral sealing properties
of different faults in different layers; that is to say, when the location of the minimum
SGR value of the target fault and the corresponding burial depth are projected onto the
lateral opening area, the fault is laterally open. When the projected point is located in the
moderate sealing area, the lateral fault seal and the sealing ability are intermediate. When
the projected point is located in the strong sealing area, the lateral fault seal and the sealing
ability are strong (Figure 4c).
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4. Quantitative Analysis of the Lateral Sealing Ability of Faults in the Hailar Basin
4.1. Fault Characteristics and Method Applicability

The differences in fault characteristics determine the factors and analysis methods of
lateral sealing. In order to better quantitatively analyze the lateral sealing ability of faults
in the Hailar Basin, it is crucial to determine the sealing type and whether the SGR&H
threshold method established above is applicable.

Therefore, based on the above methods and techniques, we selected a typical geological
section near Miandu-Zhadun River of the Hailar Basin, and analyzed the characteristics
of the faults and formations in detail. The results in Figure 5a show that the fault in
J2n Formation (which was shallower than the target K1n Formation) has a certain scale
(displacement = 0.4 m) and the structure of fault zone is fully developed. From the
actual data of Hailar Basin, the porosity of this fault core (fault gouge) is 2% to 10%, the
permeability is 0.05 mD to 0.7 mD, the porosity of reservoir juxtaposed to the fault is
18% to 32%, and the permeability is between 26 mD to 48 mD. The results show that the
petrophysical properties of the fault rock are obviously worse than those of the reservoir
rock, which indicated that the fault can form a fault rock seal.
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Fault rock thickness and displacement data from a wide variety of sources revealed
that there is a positive relationship between them (Figure 5b): with the increase in fault
displacement, the thicker the fault zone thickness is, the higher the grinding deformation
degree of the fault rock, the worse its porosity and permeability, and the more easily fault
rock seals are formed [7,66]. Thus, since the fault shown in Figure 5a shows a fault zone
with a certain width composed of fault rocks when the fault displacement is only 0.4 m. It
can be considered that the faults in different areas of the Hailar Basin with relatively large
displacement (3–400 m, Figure 5c) are all laterally sealed by fault rock seals.

By analyzing the history of the tectonic evolution of the Hailar Basin, we confirmed
that the movements during the late depositional period of the K1t, K1n, and K1y Formations
had a significant effect on the lateral sealing ability of faults [67]. The study area experienced
two main stages of hydrocarbon accumulation, which occurred during deposition of the
K1y Formation and from deposition of the K2q Formation to the present. In particular,
the second accumulation stage played an important role in the formation of oil and gas
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reservoirs in the Hailar Basin [45,50,68–70]. In contrast, the early extensional faults in the
K1n Formation were inactive during the first stage of hydrocarbon accumulation, so the
controlling effect of the fault activity history on fault sealing is not obvious in Hailar Basin.
In other words, the SGR&H threshold method established above is suitable for quantitative
analysis of lateral fault sealing in the Hailar Basin, and can be used for detailed analysis
and demonstration.

4.2. Quantitative Analysis of the Lateral Sealing Ability of Faults

Based on the theory and method for determining the SGR&H threshold of lateral fault
sealing described above, the relationship between the minimum SGR of the fault rock, the
oil testing depth, and the testing results of target layers in different oil fields of the Beixi area
were obtained. Then, we established the evaluation model (Figure 6a) and determined the
SGR&H thresholds as well as curves that divide lateral opening and moderate and strong
sealing areas in the Beixi areas (Equations (4) and (5)). Therefore, in the actual evaluation
process, the lateral sealing ability of faults can be determined by comparing the actual
SGR value of fault rock with the critical SGRO-MS and SGRMS-SS value required for lateral
opening—moderate sealing and moderate sealing—and strong sealing at corresponding
depth. If SGR < SGRO-MS, the faults are laterally opened and do not have the ability to
seal hydrocarbon; if SGRO-MS ≤ SGR < SGRMS-SS, the faults are laterally sealed and have
medium sealing ability; if SGR ≥ SGRMS-SS, the faults are laterally sealed and have strong
sealing ability, the heights of hydrocarbon column are relatively high. According to the
evaluation results of the Beixi area, it can be seen that the main faults in the K1n Formation
have moderate to strong sealing abilities that are beneficial to sealing hydrocarbon, and
only a small number of opening faults are developed in the center of the Huoduomoer area
(Table 1).
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Table 1. Statistics for oil testing, SGR&H, and the fault sealing attributes of typical wells in the
Hailar Basin.

Area Well Testing
Layer

Testing
Conclusion

Daily Oil
Production

(Layer
Number) (t)

(Layer)

Fault Dis-
placement

(m [ft])

Buried
Depth
(m [ft])

SGR (%) Fault Sealing
Property

Beixi
Area

B3 K1n2 Oil 6.97 (5) 15 (49) 1130 (3707) 71 Strong Seal
H3-12 K1n2 Showing / 23 (75) 1245 (4085) 50 Open

D124-137 K1n1 Oil 0.31 (1) 175 (574) 1790 (5873) 62 Moderate seal

Beier
Area

X03-61 K1n2 Water 0 (1) 12 (39) 2507 (8225) 26 Open
X2-1 K1n2 Oil 8.48 (1) 8 (26) 2440 (8005) 43 Moderate seal
X5 K1n1 Oil 8.64 (3) 3 (10) 2696 (8845) 62 Strong Seal

X09-55 K1n1 Showing 0.13(3) 13 (43) 2599 (8527) 27 Open

Wuerxun
Area

W112-88 K1n1 Oil 1.27 (1) 25 (82) 2675 (8776) 56 Strong Seal
W144-108 K1n1 Water 0 (3) 5 (16) 2033 (6670) 40 Open
W148-70 K1n1 Water 0 (4) 18 (59) 2713 (8901) 21 Open

W29 K1n1 Oil 2.09 (4) 23 (75) 2489 (8166) 53 Moderate seal

Surennuoer
Area

S31 K1n2 Oil 0.21 (1) 48 (157) 1545 (5069) 47 Moderate seal
XW1 K1n2 Water 0.06 (4) 60 (197) 1601 (5253) 33 Open
S20 K1n1 Oil 4.37 (3) 9 (30) 2065 (6775) 38 Moderate seal
S15 K1n1 Water 0 (2) 32 (105) 1911 (6270) 28 Open

Using the same method to determine the SGR&H threshold of fault sealing in the
K1n Formation of the Beier, Wuerxun, and Surennuoer areas (Figure 6), we delineated the
boundaries between lateral opening, moderate sealing, and strong sealing areas, and then
established the corresponding functions, as shown in Equations (6) and (11).

Beixi Area : SGRO−MS =
Ln( H

4.10×105 )

−10.3
(4)

SGRMS−SS =
Ln( H

1.83×106 )

−10.3
(5)

Beier Area : SGRO−MS =
Ln( H

1.12×104 )

−4.45
(6)

SGRMS−SS =
Ln( H

2.04×104 )

−4.45
(7)

Wuerxun Area : SGRO−MS =
Ln( H

7.25×103 )

−2.57
(8)

SGRMS−SS =
Ln( H

9.99×103 )

−2.57
(9)

Surennuoer Area : SGRO−MS =
Ln( H

6.54×103 )

−3.98
(10)

SGRMS−SS =
Ln( H

1.08×104 )

−3.98
(11)

Through the analysis of Figure 6 and Equations (4)–(11), it can be concluded that in
the shallow strata, the fault rock is subjected to small lithostatic pressure, which results in a
relatively low degree of diagenesis. Therefore, the fault rock needs to reach a higher SGR
to form a lateral seal. Thus, there exists an upper depth threshold. When the fault is at
this depth and the fault rock behaves as pure shale (SGR value equal to 100%), it reaches
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the critical transition state of an open seal. With increasing burial depth, the pressure on
the fault surface gradually increases as the overlying sedimentary load and the degree
of diagenesis of fault rock increases. The SGR threshold of lateral fault sealing decreases
correspondingly. When the SGR of the fault rock reaches a certain value, with increasing
burial depth, changes in the sealing threshold are not obvious. The relationship between
the above influencing factors controls the boundaries of the fault opening–sealing area,
which appears to be upper gentle and lower steep (Figure 5b). At the same depth, the
higher the SGR of the fault rock is, the easier it is to form a lateral seal. Only when the
SGR is greater than or equal to the threshold of lateral fault sealing does the fault have the
ability to seal oil and gas laterally. For the same SGR, the sealing properties of the fault
rock at different depths are different. The larger the breakpoint depth is, the smaller the
threshold required for lateral fault sealing.

In summary, compared with the previous research methods, the method established
in this paper considers the main controlling factors of fault lateral sealing more comprehen-
sively and strengthens the connection and restriction between multiple main controlling
factors through the establishment of the relationship between the burial depth, clay content
of fault rock and testing results of typical wells. To a certain extent, it can reflect the control
effect of the internal structure and porosity of the fault zone at different depths on the
properties and sealing ability of fault. However, the previous methods have considered the
diagenetic degree of fault rocks too roughly or even not at all, nor have they considered the
relationship between the clay content and diagenetic degree. A change in one factor con-
trols the value of the other factor. Therefore, the evaluation results are not more consistent
with the actual underground conditions than those obtained by the SGR&H method.

4.3. Analysis of Typical Cases

The B3 Fault is located in the Huhenuoren Oilfield, its displacement in K1n2 is equal
to 80 m (262 ft), the structure of fault zone is fully developed and its porosity (5.5–8.3%)
is lower than the surrounding rocks (10.5–34.3%), which indicates that the B3 Fault forms
a fault rock seal. In this case, whether the fault sealing is controlled by the fault rock
rather than the juxtaposed clay from the K1d1, the sealing ability is affected by the clay
content and the burial depth of the fault rock. Then, we analyzed the SGR properties of
the target fault (Figure 7a) and found that the SGR values of the fault rocks at the top of
K1n2 Formation are relatively large. The minimum SGR value (69%) is greater than the
SGRMS-SS threshold (58%) at corresponding burial depth, which indicates a strongly sealed
fault. With increasing burial depth, the surrounding rocks of the fault gradually transition
from a large set of mudstone to interbedded sand and mudstone (Figure 7b). Because the
fault rock is formed by surrounding detritus, which is cut and falls into the fault zone
when the fault slides, the decrease in the clay content on both sides of the fault controls
the decrease in the SGR of the fault rock. Within the same depth range in K1n2, the lateral
fault sealing ability is weakened, and it is gradually transformed into a moderately sealed
fault. Because the B3 Fault has a certain lateral sealing ability in K1n2, due to the effects
of the reservoir quality (porosity of 21.6%, permeability of 18.86 mD) and hydrocarbon
migration, the testing results for the K1n Formation at the B3 Fault show a transition from a
commercial oil layer to a hydrous oil layer, and eventually to an aqueous layer (Figure 7c).
Similarly, the differences in the SGR&H values of the fault rock in the plane also control
the distribution of the different reserves. Areas B301 and B13 have relatively high SGR&H
values and are expressed as proven reserves, while area B70 is a prognostic reserve with a
lower SGR&H value than that of the first two areas, but is still controlled by sealing faults.
Therefore, moderate to strong sealing faults are favorable faults for sealing oil and gas.
The stronger the lateral sealing ability is, the more advantageous the fault is to oil and
gas accumulation.
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For area B70 in the northern Huhenuoren Oilfield, the porosity of the B70 Fault (2–5%)
is smaller than that of the surrounding rocks (6–23%); thus, the sealing type of target fault is
also fault rock seal. The lateral sealing property of the fault in the K1n2 Formation is mainly
influenced by the SGR value and diagenetic degree of the fault rock. Figure 8a illustrates
the fact that the sealing properties are different along different positions of the B70 Fault.
Combined with the corresponding burial depth, it can be seen that the upper part of the
fault acts as a moderate sealing fault, while the lower part is laterally open by comparing
the SGR value with the SGRO-MS and SGRMS-SS threshold. Due to the fact that the tail of
the B70 Fault lacks lateral sealing ability, the effective scope of the target trap is reduced on
the basis of the original trap. When the other reservoir forming conditions are favorable,
successful wells are drilled within the scope of the effective trap, such as wells B17 and B70,
which intersect oil layers (Figure 8b), while failed wells are drilled outside the effective trap
or even outside the scope of the trap, such as wells B17-110-42, which lack hydrocarbons.
Hence, opening faults may reduce the effective scope of a trap and even lead to failure of
the entire trap, and the development of an abundance opening faults in the northern part
of the Wuerxun area and southwestern part of the Surennuoer area is the main reason for
the abundance of failed wells in these areas.
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Compared the evaluation results with earlier calibration of SGR against the burial
depth [63,71], no matter what the SGR of the fault rock is, the trap can seal a certain
hydrocarbon column, while for the method in this text, if the SGR&H is lower than the
threshold, the trap is invalid and has no sealing ability, which indicates that the former
method might overestimate the sealing ability of faults.

4.4. Analysis of Application Effect

The above analysis confirms that the evaluation results of the lateral fault sealing
ability obtained using the method established in this text are consistent with the actual
oil–water distribution in the study area. This method has been widely used to evaluate
the fault sealing ability and to identify new targets in the K1n Formation in the immature
blocks in the Hailar Basin.

Block SX1011-S1012 is located in the northern part of the Surennuoer area
(Figures 1 and 9a), and the troughs on the eastern and southern sides of this block have a
certain hydrocarbon-generating capacity. Thus, the oil and gas generated from the K1n1
source rock can migrate laterally into K1n2 after vertical transport along oil-source faults.
Through detailed structural interpretations, we determined that this block is controlled by
the F4 Fault in the east and forms a fault trap with a structural amplitude of about 15 m (49
ft). In addition, the seismic attribute inversion data confirm that the sand bodies in this trap
are well developed and have a certain connectivity (Figure 9b) and the RSF is about 38–46%.
The SGR value of the fault for the upward inclination of K1n2 is 35–56%, and the burial
depth is 1320–1710 m (4331–5610 ft). By comparing the actual two factors with the SGR&H
threshold of K1n2 in the Surennuoer area, it can be seen that the actual SGR value of fault
rock is greater than the SGRO-MS threshold (33–40%) in most areas, and even greater than
the SGRMS-SS threshold (46–52%) in partial areas, so we conclude that the F4 Fault has a
moderate to strong sealing ability (Figure 9c). The above accumulation factors correspond
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perfectly with each other. Thus, this block is a key block for oil and gas exploration in the
Hailar Basin, and an oil bloom can be expected when drilling commences.
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5. Discussion
5.1. Differences in the Lateral Sealing Ability of Faults within Different Layers in the Same Area

Based on the above analysis, we conclude that although in general, the Beixi, Beier,
Wuerxun, and Surennuoer blocks in the Hailar Basin have similar fault sealing characteris-
tics, this only occurs when the actual SGR value of fault rock is not smaller than the critical
SGRO-MS value of the fault lateral sealing at corresponding burial depth. If the fault is
laterally sealed, hydrocarbons can accumulate. If the fault is laterally opened, hydrocarbons
may leak across the fault. However, by comparing the SGR&H threshold of lateral fault
sealing, we conclude that there are some differences in the lateral sealing ability of faults
within different layers in the same area and within the same layer in different areas due to
the controlling of the fault and formation attributes.

Taking the Surennuoer area of the Wuerxun Depression as an example (Figure 6d), the
lateral sealing thresholds of faults within different layers are different. As the burial depth
increases from K1n2 to K1n1, the SGRO-MS threshold of the sealing gradually decreases from
33–41% to 28–33%. From the logging and seismic date, the depth of the K1n2 Formation is
1300–1740 m (4265–5709 ft), which indicates that the effective stress on the fault surface due
to overlying deposition is relatively small and the degree of diagenesis of the fault rock is
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low, so a relatively high SGR value of the fault rock is required to form sealing. While the
depth of the K1n1 Formation is between 1740–2135 m (5709–7005 ft), the diagenesis of the
fault rock due to thicker overlying deposits is more obvious, and the degree of diagenesis
of the fault rock is high, so a relatively low SGR value can form sealing.

In summary, taking into account the variations in the burial depth of the different
layers and the controlling effect of depth on the fault sealing, the deeper the fault rock is
buried, the more likely it is to form a lateral seal with comparatively stronger diagenesis
over a relatively long period. All these factors cause the threshold of lateral fault sealing to
gradually decrease with increasing burial depth.

5.2. Differences in the Lateral Sealing Ability of Faults within the Same Layer in Different Areas

The differences in the sealing thresholds are not only reflected within different layers
in the same area but also within the same layer in different areas.

From the above analysis, the coupling relationship between the SGR value and the
burial depth of fault rock affects the lateral sealing ability of the fault; that is, the deeper
the fault is buried, the larger the SGR value of the fault rock, the higher the hydrocarbon
column that can be sealed laterally by the fault. However, whether the fault is laterally
sealed or open depends on the difference in the leakage capacity between the fault rock
and the reservoir rock, namely, the difference in the entry pressure [27,44]. Only when the
entry pressure of the fault rock is greater than or equal to that of the reservoir rock can the
fault seal hydrocarbons in and form a deposit. At this time, it is meaningful to study the
lateral sealing ability of the fault. Therefore, the fault sealing is not only controlled by its
own properties, e.g., the SGR value and the degree of diagenesis of the fault rock [72] but
also the physical properties of the reservoir. Assuming that the burial depths of faults do
not vary much, if the RSF is high, which indicates that the clay content of the reservoir rock
and its entry pressure is relatively low, then the minimum entry pressure of the fault rock
required to form a seal is correspondingly reduced; that is to say, the higher the RSF, the
smaller the SGR&H threshold required for lateral fault sealing to occur.

Based on the above principles, the reasons for the differences in the SGR&H thresholds
of fault sealing in the target layers of the different blocks can be discussed in detail. By
analyzing the evolution and distribution of the sedimentary facies, as well as the well
logging and stratigraphic data, the thickness of sandstone layers and the whole formations
in each well are counted, and then the ratio of them are calculated to obtain the RSF values
of the K1n Formation in the different blocks (Figure 10). Taking the K1n1 Formation as
an example, the Surennuoer area is dominated by a fan delta front and shore-shallow
lacustrine sediments. Its average RSF is the highest in the entire basin (69%), followed by
the Beier and Wuerxun areas. Because the Beixi area locally developed the deep-semi-deep
lacustrine sediments, its RSF is only 33%.

By comparing the relationship between the actual SGR value and burial depth of
the fault rock, the SGR&H threshold of fault lateral sealing and the layer RSF value,
the following can be concluded. (1) For the Surennuoer Area, the K1n Formation has the
shallowest burial depth. With all other influence factors being equal, the SGR&H threshold
for fault sealing would be slightly larger than that of other areas in the Hailar Basin according
to the method described above, but the actual analysis results reveal (Figure 7) that this
SGR&H threshold is significantly smaller than that of other areas. The main reason for this
difference is that the RSF value of the K1n Formation in the Surennuoer Area is relatively
high, even though its burial depth is shallow, and the SGR&H threshold required by a
lateral sealing mechanism of fault is relatively small. (2) For the Beixi Area, due to the
relatively shallow burial depth and relatively low RSF value of the K1n Formation, its
SGR&H threshold is significantly higher than other areas in Hailar basin. (3) For the Beier
and Wuerxun Areas, the burial depths of the K1n Formation are similar, mostly between
2100 m (6890 ft) and 2800 m (9186 ft), and the SGR&H thresholds required for lateral sealing
are almost the same: the threshold in Beier Area which has a slightly higher RSF value is
slightly lower than that in the Wuerxun Area.
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In summary, with decreasing RSF of the target layers, the SGR&H threshold for fault
sealing gradually increases, which is consistent with the changes described above. The
difference in the reservoir properties is the main reason for the obvious differences in the
SGR&H thresholds of lateral fault sealing within the same layer in the Hailar Basin.

5.3. Advantages and Limitations of the SGR&H Threshold Method

Through the above analysis, it can be seen that the SGR&H threshold method changes
the static SGR threshold value (based only on the clay content of the fault rock previously)
into a dynamic SGR threshold value that gradually changes with the burial depth. The
latter evaluates the lateral sealing ability of the fault based on more comprehensive factors,
and comprehensively analyzes the influence of the changes in internal structure, porosity
and permeability of fault rock and the requirement for clay content with the increase in
burial depth. Taking the Beier Area as an example, when the SGR threshold method is
used for analysis, the threshold value obtained is about 35%. At different depths of all
strata, only when the actual SGR value of the fault rock is greater than or equal to 35%
can the fault be sealed; otherwise, the fault is open. When using the SGR&H threshold
method (Equations (6) and (7), Figure 6b) to evaluate the lateral sealing of the fault, if
the buried depth is less than the depth demarcation point, which is about 2250 m, the
improved SGR&H threshold is significantly greater than the SGR threshold, that is, the
SGR threshold method significantly overestimates the actual sealing ability of the fault.
As we all know, faults developed near the earth’s surface do not seal easily, due to late
cessation of fault activity. If the burial depth is greater than the depth demarcation point
(2250 m), the improved SGR&H threshold is significantly smaller than the SGR threshold,
which means that the SGR threshold method obviously underestimates the actual sealing
ability of the fault.

The evaluation of fault lateral sealing ability by the SGR&H threshold method is carried
out under the condition that the activity history of fault is earlier than the hydrocarbon
accumulation period, and the SGR value of fault rock used to establish the templates is
the clay content of the fault rock in the present period. With the evolution of geological
history, the fault rock and surrounding rock are affected by various diageneses, such as
compression and cementation. The parameters used to calculate the SGR value of fault
rocks (such as formation thickness and fault displacement) are constantly changing, so
the current SGR value of fault rocks cannot represent the ancient SGR value at the key
moment of hydrocarbon accumulation. There may be a variety of situations, such as the
accumulation period and the present both being sealed, the accumulation period and the
present are both opened, or the accumulation period is sealed and the present is opened,
the accumulation period is opened and the present is sealed. Therefore, in order to more
accurately analyze the control of fault lateral sealing on hydrocarbon distribution, it is far
from enough to only change the static boundary from space to dynamic boundary, and it
is also necessary to carry out dynamic analysis of fault lateral sealing in terms of the time
dimension. Therefore, quantitative research on lateral sealing of faults still needs the joint
efforts of many scholars.

6. Conclusions

(1) The lateral sealing ability of faults is controlled by multiple geological factors. For
the faults developed in the Hailar Basin, which form fault rock seals, the influencing
factors are the clay content of the fault rock (SGR), the degree of diagenesis of the fault
rock, and the fault activity history. The degree of diagenesis can be represented by
the burial depth of the fault rock. With higher SGR of the fault rock, the deeper the
burial and the fault activity occurs before hydrocarbon accumulation such that the
lateral sealing ability of the fault will be stronger, which is more favorable for oil and
gas accumulation.

(2) The lateral sealing property and the lateral sealing ability of a fault are two different
but mutually restrictive concepts. The former depends on the relative difference in the
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entry pressures of the fault rock and the reservoir rock, while the latter depends on
the relationship between the SGR value and the burial depth of the fault rock. For a
set of reservoir rocks, the higher the RSF is, the smaller the critical entry pressure and
the lower the SGR&H threshold required for the fault rock to become laterally sealed.

(3) The lateral sealing ability of faults in different areas and within different layers is
different. (a) In the same area, the thresholds of faults sealed in different layers are
different because the deep strata are subjected to greater pressures and longer loading,
so the faults are more likely to seal laterally; that is to say, the SGR&H threshold is
relatively small. (b) Within the same layer, the thresholds for fault sealing in different
areas are also different, and the threshold gradually decreases with increasing RSF.
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