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Abstract: This paper considers mineral compositions and prospects for the processing of natural blue
montmorillonite clay, pink Fe (IlI)-containing clay, and green Fe (II)-containing clay into composite
aluminosilicate materials suitable for the sorption of related substances of vegetable oils. New
Brensted and Lewis centers were found on the surface of the materials obtained when solutions of
oxalic and succinic acids and sodium carbonate in scientifically-substantiated amounts were used
as modifying additives. The established changes in the surface states are in correlation with the
assessed affinity degree of active sites towards fatty acids, peroxide compounds, carotenoids, and
chlorophylls in vegetable oils (flaxseed, olive, mustard), which are rarely refined in world production.
These findings are of practical value for the development of a new direction of medical chemistry. It
was revealed that the presence of impure hydromuscovite in natural raw materials and the resulting
materials reduces the effect of extracting dyes from vegetable oils.

Keywords: vegetable oils; impure substances; sorption extraction; natural mineral sorbents; modifi-
cation; composite aluminosilicate materials

1. Introduction

Studies on the optimization of the process of sorption extraction of impurity substances
of vegetable oils are very topical. Natural aluminosilicates are now widely used as binders,
granulators, and sorbents for the purification of aqueous media [1,2] and fatty media [3-5].
In particular, aluminosilicates are widely used for the clarification of vegetable oils, i.e.,
for isolation of the pigment complex components (carotenoids and chlorophylls) during
refining [6]. The requirements of the aluminosilicates include: good adsorption capacity; to
have sufficient number of active centers; be easily separated during filtration; not affecting
the taste characteristics of the oil [7]. The chemical composition of aluminosilicate sorbents
is specified by the peculiarities of the processes occurring in rocks and the earth’s crust.

Among the aluminosilicates, the montmorillonite mineral is the most widespread
in the nature. The properties of montmorillonite have been adequately studied [8]. Its
crystal lattice provides the possibility of introducing fragments of organic substances [9].
This reveals the prospects for the creation of hybrid organic-inorganic composites with a
complex of unique physical and chemical properties.

Another common compound in the composition of natural mineral sorbents is kaolin,
which is well dispersed in various media [10-12]. The particle size distribution is the
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most important characteristic of kaolin. The improved physical, mechanical, and sorption
properties are achieved when using medium-dispersed kaolin with low oil absorption [13].
It is also known [14,15] that kaolin, in combination with calcium carbonate, is used to
obtain high-quality primers. Driven by the search for suitable media for electrophoresis,
the world demand for finely dispersed kaolin with the addition of water-soluble salts has
increased.

When polymineral natural raw materials containing lamellar mica (potassium alumi-
nosilicate, in mineralogy—muscovite) with K,O content >10% are processed into compos-
ite materials, materials with increased adhesion, and water and weather resistances are
obtained.

Natural mineral sorbents are modified to improve their absorption properties. For
example, after the thermal treatment of smectite from Northern Tunisia, its sorption capacity
towards toxicants in industrial wastewater is improved [16]. When using materials based
on acid-activated montmorillonite, this effect of detoxification of systems is especially
pronounced [17]. The required concentration of sorbent in the liquid phase can be low
(0.5 g-L™1), especially if there are phosphoric acid compounds in the system [18]. In some
cases, the required concentration of sorbent does not depend on the medium pH [19].

The composition of natural impurities in vegetable oils is heterogeneous (Figure 1).
At the same time, natural impurities can act as vitamins and affect the duration of storage,
as well as improve biological activity [20-22]. Of particular interest for research are plant
objects, the technological purification of which is not carried out in the world’s fat and oil
industries. As a rule, oils with a high content of accompanying ingredients in seeds and
fruits that have a positive effect on the circulatory (linseed, mustard oil) and biliary system,
liver, and human pancreas (olive oil, milk thistle oil) are not refined.

Oil composition
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Figure 1. The composition and main impurity ingredients of vegetable oils.

The ingredients can be artificially introduced into oil-containing media. Thus, the
action of inorganic sorbents and organic additives, when they are jointly added into
vegetable oils [23], often provides a high antioxidant effect. Depending on the required
extraction rate of a particular impurity with polar or low-polar properties, the residence
time of the contact between the solid composite material (s) and the liquid phase of the oil (1)
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can be variable. For example, to clarify sunflower oil, it may be necessary to activate natural
aluminosilicate raw materials with hydrochloric acid (molarity = 3) for 2 h [14]. In some
cases, it is recommended to vary the oil processing time up to 6 h to extract >50% of the
components of the pigment complex, and the consumption of the sorption material should
be selected depending on the process temperature (up to 448 K) [24]. For the purification
of exotic oils that are rarely refined, the amount of sorbent can fluctuate in the range of
0.4-2.0% of the weight of the oil [25]. The influence of aluminosilicate materials on the
process of extracting fatty acids (up to 37%) from oil-containing media is shown in [26].

The novelty of the proposed approaches consists in the creation of composite alumi-
nosilicate materials using organic acids as modifying additives for natural mineral sorbents
instead of hydrochloric acid [27], as well as sodium carbonate in scientifically-substantiated
amounts. The created materials are proposed to be used to extract impure substances
from vegetable oils that are rarely refined in world production and are of high value for
medicinal chemistry (flaxseed, olive, mustard).

The practical value of research is associated with the possibility of the simultaneous
sorption extraction of excess fatty acids and peroxides from vegetable oils, which, along
with the whitening effect, makes it possible to increase their shelf life.

This work aims to obtain modified composite materials based on aluminosilicate
raw materials by modifying them with solutions of organic acid (oxalic, succinic) and an
alkaline agent (sodium carbonate), to ensure the redistribution of active centers on the
surface, to study the physicochemical properties of the materials obtained, and to select the
main parameters of the extraction of impurity ingredients of rarely refined oil-containing
media.

2. Materials and Methods
The following materials were used in this study:

e  Unrefined Linseed oil (OOO “LEN NN”, Nizhny Novgorod, Russia); Specification TU
9141-002-55854031-03);

Unrefined olive oil (ABPSAU, Terrega, Spain);

Unrefined mustard oil (OOO Chelyabinsk oil and fat plant, Chelyabinsk, Russia),
corresponds to the Russian State Standard GOST 8807-94);

Glacial acetic acid (chemically pure);

Oxalic acid (pure);

Succinic acid (pure);

Ethyl alcohol (Russian State Standard GOST R 51652-2000);

Chloroform (chemically pure);

Diethyl ether (analytical grade);

Phenolphthalein;

Natural mineral sorbents—powders of blue montmorillonite-containing (Specifica-
tion TU 9158-001-17033721-2014), green Fe (II)-containing (Specification TU 9158-001-
17033721-2014) and pink Fe (III)-containing clays (Specification TU 9158- 003-47308774-
00);

Sodium thiosulfate (chemically pure);

Potassium hydroxide (chemically pure);

Potassium bromide (analytical grade).

X-ray diffraction patterns were registered using the D8 Advance diffractometer (Bruker,
Leipzig, Germany) with CuK«-radiation (A = 1.5406 A) at 2@ = 10-70 deg. Elemental analy-
sis was performed using the CHNS-O Analyzer Flash EA 1112 Series (Thermo Finnigan
Italia S.p.A., Rodano, Italy). Surface titration curves (pKa spectroscopy data) and his-
tograms corresponding to the concentration (molar fraction qi) of active centers were
plotted after processing the experimental data obtained from the IPL-311 Multitest (NPP
SEMIKO, Russia) by the Ryazanov-Dudkin technique [28].

The surface microphotographs of the original and modified composites were obtained
by scanning electron microscopy using VEGA 3 SBH (Tescan, Brno, Czech Republic) at
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a voltage of 5.0 kV. The device is equipped with a carbon spraying unit. The elemental
analysis was carried out by the four-probe method. To assess the particle distribution by
fraction, the Analysette 22 laser analyzer (Fritsch, Idar-Oberstein, Germany) was used. The
infrared spectra in the range of 4000-400 cm~! were recorded using the Avatar 360 FT-IR
(Nicolet Instrument Corporation, Madison, WI, USA), where tableted samples were placed
in a mixture with crystalline KBr.

2.1. Obtaining Composite Aluminosilicate Materials from Natural Mineral Raw Materials

To obtain acid-modified composite materials, acid (acetic, oxalic, amber) in the form
of an aqueous 6% solution in mass ratio 1-s = 1:1 was vaporized on the surface of natural
mineral raw materials (powder blue, pink, and green clays) [27]. The clays were previously
calcined for 3 h at 373-393 K, sieved with the release of particles with a size of 2-30 um. The
obtained mixture was dried at 293 K and 1 atm. To obtain composite materials modified by
the acid-base method, sodium carbonate was added at the rate of 1:10, 15-18 wt% water,
ground in a mortar, again dried to constant weight at 393403 K, and ground to a powder
state.

2.2. Determination of Dyes and Acidity of Vegetable Oils

The sorption effect of the developed composite aluminosilicate materials was tested
on samples of unrefined linseed oil (acid number 1.9 mg KOH), mustard oil (acid number
2.9 mg KOH), and olive oil (acid number 3.4 mg KOH).

The experiments were carried out under normal conditions (293 K, 1 atm). In a glass
flask containing 100 g of vegetable 0il, 1 g of a natural sorbent or a developed composite
aluminosilicate material was introduced. Stirring was carried out at an intensity of 1-2 5!
for 5 h. Every hour, samples were taken, the solid phase was separated on the filter. To
determine the total content of chlorophylls and carotenoids, oil was mixed with acetone in
a ratio of 1:5, and the total content of chlorophylls and carotenoids was determined using
the Shimadzu UV-1800 (Shimadzu, Kyoto, Japan) two-beam at Amax = 670 nm and Amax =
450 nm, respectively [29].

The absence of a solid phase in the vegetable oil after the adsorption of impurity
chlorophylls and carotenoids was confirmed by atomic absorption spectrometry using
the 210 VGP apparatus (Buck Scientific, Norwalk, CT, USA). The extraction rate of dyes
from vegetable oils («, %) was calculated according to the method described in [27]. Acid
and peroxide numbers of oils before and after contact of the solid and liquid phases were
determined according to the Russian State Standard GOST 31933-2012 “Vegetable oils.
Methods for determination of acid number” and the Russian State Standard GOST 1SO
3960-2013P “Animal and vegetable fats and oils. Determination of the peroxide number.
Iodometric (visual) endpoint determination”.

Chromatographic studies were carried out in accordance with the Russian State Stan-
dard GOST 30418-96 “Vegetable oils. Method for determination of fatty acid composition
of samples of unrefined olive oil and oil treated with blue clay”. The samples of unrefined
olive oil and oil treated with blue clay were studied for 1 h with the concentration of clay
in the liquid phase of 10 g-kg~!. The Kristall Lux 400 (Chromatec, Yoshkar-Ola, Russia)
device and a solution of sodium ethylate in ethanol with a concentration of 2 mol dm~3
were used.

3. Results
3.1. Modification of the Surface of Natural Mineral Raw Materials and Production of Composite
Materials for the Sorption of Vegetable Oil Impurities

The detected intense lines at pK, near 7.0 (Figure 2a) emphasizes the presence of
surface neutral centers in blue montmorillonite-containing clay [21], which simultaneously
function as donors and acceptors. The natural sample also has Brensted centers (pKa
working area of 5.0-6.0). The possibility of the presence of Brensted surface centers, which
have pKa from 5.0 to 6.0, in such aluminosilicates is shown in [21] and the works of M.A.
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Ryazanov and B.N. Dudkin. They are formed with the help of hydroxyl groups at the
vertices of montmorillonite tetrahedra, prone to protonation.
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Figure 2. Distribution of active sites on the surface of blue clay before (a) and after spraying with
acetic acid (b) and acid-base treatment (c).

As a result of spraying acetic acid solution on the surface of the raw material (dis-
sociation constant K = 1.8 x 107°), only a weak line remains on the histogram at pKa =
5.7-6.1 instead of three clear lines in the “neutral” region (Figure 2b). In this case, the total
concentration of acid sites increases sharply (Figure 2b, region 1.8-4.2) as a consequence of
the binding of carbonyl oxygen according to the reaction, Figure 3 [30]:

— Al :0: — Al:0O:
I N\ N
L) -k C— CH;—» O C— CHs
I /s | \
HO
—Si— - Si— i

Figure 3. The reaction of binding of carbonyl oxygen.

The introduction of sodium carbonate into the system after treatment with acetic acid
promotes the appearance in the pKa spectrum of a cascade of lines in the range 8.7-11.2
(Figure 2c). This indicates the formation of new basic Brensted centers (the bond between
oxygen and hydrogen atoms in the hydroxyl group is strengthened). At the same time,
the resulting hybrid material is characterized by a high concentration of acid sites on the
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surface (scattering of lines at pKa from 2.8 to 5.3). When the metal electron takes its place
on the oxygen orbital, the acid Lewis centers make contact with the oxygen atom of the
alkaline, modifying the additive according to reactions, Figure 4 [30]:

—Al —OH All—O— cf:o
|
O +2Na'+(CO)" » O -
—Si— —Si— + NaOH,
| |
—Al —OH Al— 0 —Na
|
(I) + NaOH —» (I) - H20.
—Si— —Si—

Figure 4. The reaction occurring after sodium carbonate introduction into the system.

Since both Bronsted and Lewis centers are present on the surface of the resulting
modified material, this should have an effect on increasing its sorption capacity both to
free fatty acids contained in vegetable oils in various amounts and to other impurities in
triglyceride solutions (for example, compounds of heavy metals). The question arises about
the influence of the strength of an organic acid on the destruction of the crystalline skeleton
of polymineral raw materials.

Montmorillonite in its natural form and modified state [31] is of great interest to
researchers as a sorption-active material. The scanning electron microscopy studies of the
surface of blue clay, consisting mainly of SiO; compounds and montmorillonite, showed
that particles of 1-2 um in size predominate in natural raw materials (Figure 5a).

Figure 5. Surface of blue clay (a) and composite aluminosilicate material after acid modification by
oxalic acid (b) at 5000 x magnification.

Spraying on the surface of a 6% solution of dibasic oxalic acid (dissociation constants
K1=5.6 x 1072, K2 =5.4 x 10~°) resulted in obtaining a more crystallized meso- and macro-
porous sorbent with increased surface cleanliness and porosity, in comparison with the
initial sample (Figure 5b). The scattering of pores in the resulting material (100 nm-2 um) is
also wider than that of natural blue clay powder. It can be assumed that impurity molecules
of esters of fatty acids (waxes) or cyclic compounds of vegetable oil, in view of there being
a great variety in diameters, will be more actively sorbed on such a surface, as described
in [31,32].
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The chemical composition of blue clay (natural raw material) consists mainly of silicon
and aluminum oxides. The impurity compounds are oxidized forms of iron, magnesium,
and potassium, as well as tin and titanium dioxide (rutile form) (Table 1).

Table 1. Concentration of elements on the surface of a blue clay sample and composite aluminosilicate

materials.
Sample/Material Found on the Surface by the Four-Probe Method, wt%
Si Al Na K Mg Fe Sn Ti C (0]
Blue clay 15.0 6.5 - 2.7 1.2 3.2 0.3 0.2 204  50.6
Clay-oxalic acid 13.7 9.0 - 1.2 8.0 8.0 - - 9.0 50.6
Clay-oxalic acid—sodium carbonate 20.2 8.0 1.2 6.3 1.2 3.5 - - 9.0 50.0

A solution of relatively strong oxalic acid affects the deep impurity layers of blue clay;
part of the alkaline cations is carried to the surface. The Mg?* content changes are especially
noticeable (see Table 1), and the flaky saponite particles (1-3 pm) with the inclusion of
magnesium are seen more clearly in the scanning electron microscope (Figure 5b). The
number of flaky impurity clots, which are a distinctive feature of the surface of natural blue
clay (Figure 5a), also decreases after exposure to the specified acid (Figure 5b). Additionally,
when decoding the signals of the diffraction patterns of natural blue clay that were treated
with oxalic acid, we revealed an increase in the signal intensity at 20 = 26.64 deg. (quartz)
and, on the contrary, the disappearance of 20 = 17.77 deg and a slight decrease of 20 = 12.4
deg reflections attributed to cristobalite and kaolinite, respectively.

The infrared spectrum of acid-modified composite material (Figure 6), showed an
increase in the band at 1740-1580 cm ! and the appearance of a peak at 1649 cm ! (Figure 6,
curve 2). The result should be interpreted as the contact of carboxyl groups with the surface
of blue clay and the activation in the system of polymer hydrate forms caused by the
addition of a solution. The intensity of stretching vibrations of the silicon—oxygen Si-O
bond in the region of 1020 cm™! (Figure 6, curves 1 and 2) remains unchanged. This
emphasizes the stability of the silicon—oxygen framework when exposed to an organic
acid on the surface. Elemental analysis data (Si, 15.0 and 13.7%, Table 1) confirm the
hypothesis [25] about the absence of significant destruction of the mineral framework when
a sufficiently strong oxalic acid is sprayed onto the surface. In this case, the content of
aluminum compounds in contact by reaction (1) increases in the system from 6.5 to 9.0%
(Table 1).

T

L~

3439
3620

3692

4000 3500 3000 2500 2000 1500 1000 500 ]
vV, cm’

Figure 6. Infrared spectra of samples of blue clay (1) and material after treatment with oxalic acid (2).
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As a result of acid-base treatment of the surface, oxidized forms of sodium (1.2%,
Table 1) obtained during the reaction (3) were additionally detected in its composition.
This is expressed by the presence of light, newly-formed structures on microphotographs.
The resulting X-ray amorphous material, in comparison with natural raw materials, which
includes individual globules and agglomerates up to 50 um in size (Figure 7a), is looser,
more porous, and has significant differences in the size and shape of particles (Figure 7b).
In addition to round quartz particles (<1 pum), cristobalite (<3 pm), and montmorillonite,
acicular rocks, and fibrous structures (wollastonite-like) were also found on the surface
(Figure 7b), which should affect the sorption properties.

Figure 7. Surface of blue clay (a) and composite aluminosilicate material obtained as a result of
treatment with oxalic acid and sodium carbonate (b) at 400 x magnification.

Similar changes in the state of the surface after modification using the considered
compounds are also observed for the samples of green and pink clays.

3.2. Results of Sorption Extraction of Vegetable Oil Impurity Substances

It was found that even at a low consumption of pink Fe (IIl)-containing clay (3-5 g-kg 1),
which includes, in addition to montmorillonite and quartz, a significant (up to 30%) amount
of impurities of saponite, kaolinite, and goethite, the extraction rate of free fatty acids (FFA)
from mustard oil is 27%. Modified pink Fe (III)-containing clay is superior to other materials
(up to 37%) with respect to the extraction of peroxide compounds of oils (consumption
of 10 g-kg™1). The study of the dynamics of sorption of fatty acids of flaxseed oil during
its processing with composite materials shows that the modification of aluminosilicate
raw materials with solutions of dibasic succinic (K; = 7.4 x 107, K, = 4.5 x 107°) and
oxalic (stronger) acids generally, but insignificantly (by 20-30%), increases its affinity for
adsorbate molecules (Figure 8a,c, curves 1 and 3), and in some cases it is not required at all
(Figure 8b, curves 1-3).

The action of acid-base modification of raw materials is characterized by a more
striking effect of the extraction of fatty acids compared to natural clays (Figure 8a—c, curves
1 and 4).
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Figure 8. Extraction of free fatty acids of linseed oil during processing with natural (1, a-c) clays and

composites with the inclusion of oxalic (2), succinic (3) acids, oxalic acid and Nay,COj3 (4); (a)—Dblue;
(b)—pink; (c)—green.

The sorption process has the highest activity in the first two hours (stage I, up to
90% of impurities are extracted). In the next 3—4 h (stage II), the limiting value of appg
is reached, not exceeding 0.5 g-g~!. Another important characteristic is the content of
peroxide compounds in the liquid phase. The dynamics of changes in the peroxide number
was monitored for 90 days of storage of the unrefined vegetable oils in a dark place at 293 K.
In the medium of mustard oil, the presence of antioxidant properties in all samples of
natural mineral raw materials was revealed, while pink Fe (IlI)-containing clay slows down
the oxidation process most qualitatively. This result is in line with the lower (in comparison
with other aluminosilicate raw materials) content of quartz additive in pink clay and the
presence of a cascade of intense bands in the pK spectrum near 8.0. In this case, a certain
influence is apparently also exerted by the specificity of the granulometric composition of
pink clay (the content of kaolinite is increased; 45% of the particles have a size of no more
than 2.5 um). Thus, the use of natural blue clay, including partial formations up to 50 pm
(Figure 7a), when introduced into mustard oil to stabilize its properties, is less effective,
even in comparison with green clay.

The chromatographic analysis of olive oil esters shows that in an unrefined medium,
the share of saturated acids is only 19.1%. After processing this oil for 1 h with blue clay;, it
was found that at stage I of the adsorption process, the clay material most actively absorbs
oleic Cyg.1 and linoleic Cyg.p unsaturated fatty acids. These acids are the main components
of the oil-containing medium (Table 2).
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Table 2. Calculated data on the concentration of fatty acids in olive oil before/after treatment with
blue montmorillonite clay and adsorption.

Component bConcentration of Fatty Acicls1 Adsorption of Fatty Acids on
efore/after Contact, mol-L Blue Clay, g/g
Unsaturated acids:
-palmitoleic C 14 0.00100/0.00037 0.018
-oleic C 1.1 0.04/0.01 0.926
-linoleic C 155 0.0077/0.0021 0.172
-linolenic C 153 0.00040 /0.00009 0.009
-eicosene C 5.1 0.00014 /0.00003 0.004
Saturated acids:
-palmitic C 14, 0.010/0.003 0.195
-stearic Cqg, 0.00130/0.00038 0.029
-arachidic C 5.9 0.00018/0.00003 0.005

The pink Fe (IlI)-containing clay after 1 h of contact with olive oil under normal
conditions absorbs 4 x 10~* mol-L~! of palmitoleic acid, 1.9 x 10~2 mol-L~! of oleic acid,
3.7 x 1073 mol-L~! of linoleic acid, and 1.6 x 10~% mol-L~! of linolenic acid. The activity
of this mineral sorbent towards total fatty acids of olive oil, in comparison with blue clay, is
lower by an average of 27%.

When flaxseed oil is purified from peroxide compounds, a satisfactory result is
achieved after acid modification of blue montmorillonite-containing clay. However, the
best results were again obtained using pink Fe (IlI)-containing clay (50%) subjected to
acid-base modification (Table 3).

The absorption spectra of linseed oil revealed the presence of dyes. These are unsatu-
rated hydrocarbons (lycopene, maximum at 475 nm), flavoxanthins C40H5603 (A = 422 nm),
and their mixtures with luteoxanthins (maximum at 447 nm) (Figure 9). The oxidized hy-
drocarbon forms, which include oxygen atoms and are called xanthophylls, are valuable
biological compounds and, together with lycopene, form the total carotenoids of vegetable
oils.

The high effect of the release of carotenoids at their initial concentration Cg =26 mg-kg ™!
is provided by natural blue clay (Table 4), not processed into a composite sorbent. In the
presence of powders of pink Fe (IlI)-containing and green Fe (II)-containing clays, this
effect is much less pronounced (by 21-31%). Moreover, an active absorber of linseed
oil carotenoids is a composite material obtained by spraying solutions of succinic and
oxalic acids on the surface of natural green clay (Table 4), including, according to X-ray
phase analysis, in addition to quartz and montmorillonite, impurity «-cristobalite, scolecite,
brewsterite, and kaolinite, and having a plurality of pores with a diameter of about 10 um.

Table 3. Influence of natural and composite aluminosilicate materials on the peroxide number of
flaxseed oil.

Peroxide Number of Liquid Phase, mmol 12 O-kg~1, after Contacting with Material

System
Y Blue Clay Pink Fe (II)-Containing Clay Green Fe (II)-Containing Clay
Unrefined oil 53402
Linseed oil-natural clay 37401 40+0.1 37401
Linseed oil-clay
-succinic acid 31+£01 35402 35401
Linseed oil-clay
-oxalic acid 29401 33+01 31+01
Linseed oil-clay
-oxalic acid 31401 26+0.1 2.6+0.1

-sodium carbonate
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Figure 9. Linseed oil absorption before (1) and after exposure for 1 h (2) and 5 h (3) with acid-modified
material of blue clay (2, 3).

Table 4. Influence of composite aluminosilicate materials on the extraction rate of carotenoids from
linseed oil.

Extraction Rate (o) after Treatment, %, during

Type of Material h ah 5h

Blue montmorillonite clay 38.5 39.2 40.0
Green Fe (II)-containing clay 26.2 29.2 31.5
Pink Fe (III)-containing clay 22.3 24.2 27.3

Blue clay modified with succinic acid 36.9 38.8 40.8
Green clay modified with succinic acid 35.0 35.4 39.2
Pink clay modified with succinic acid 31.2 36.9 38.1
Blue clay modified with oxalic acid 17.7 215 28.5
Green clay modified with oxalic acid 28.1 34.2 35.8
Pink clay modified with oxalic acid 25.0 27.7 30.8

The effect of the action of these acid solutions on the sorption capacity of this material
towards the total carotenoids is numerically comparable and is estimated at 1.1 mg-g .

The result of extracting the acid solutions after 3 h of mixing flaxseed oil (I) and sorbent
(s) practically does not require a longer contact of the phases, a choice between organic acids
of different strengths for modification and, in the case of blue clay, the actual processing of
the raw material. It was also revealed that the presence of depleted intermediate cationic
layers (impurity hydromuscovite) in the material, despite the presence of an active fraction
of montmorillonite in blue clay, largely neutralizes the bleaching effect on vegetable oils (the
color number does not change). Another important factor determining the weak extraction
of dying (pigment) substances from oils is the moderate temperature (293 K) of the liquid
phase processing. However, it should be remembered that the heat exposure on oxalic acid
increases the risk of carbon monoxide emission and adversely affects the environmental
friendliness of the adopted technical solutions. Similar dependences were also obtained
when monitoring the peroxide value of flaxseed oil.

At the same time, the experimental data show that the extraction rate of common
carotenoids from olive oil using natural mineral sorbents and acid-modified clay materials
is the following:
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e 50% for blue clay; no effect for blue clay and succinic acid modifier; 64% for blue clay
and oxalic acid modifier;

e 38% for pink Fe (III)-containing clay; no effect for pink clay and succinic acid modifier;
45% for pink clay and oxalic acid modifier.

When processing mustard oil with natural and modified composite materials, the
spraying of 6% succinic acid solutions on the surface of pink Fe (III)-containing clay
increases the limiting sorption of carotenoids from the specified oil by almost 50%, and
when processing this material with a stronger oxalic acid, the doubling of the positive effect
is observed.

The extraction rate of chlorophylls from linseed and olive oil using the developed
composite materials is at the level of 70-80%. This indicator, in comparison with the effect
of natural mineral sorbents on oils, changed weakly. The adsorption process, by analogy
with impurity fatty acids, actively proceeds for 1 h. Then, after 5-6 h, a state of equilibrium
is reached in the l-s system.

4. Conclusions

New composite aluminosilicate materials were obtained based on the processing
of powders of blue montmorillonite-containing, pink Fe (III)-containing, and green Fe
(II)-containing clays. These new materials are intended for the efficient extraction of
unsaturated fatty acids, peroxide compounds, total carotenoids, and chlorophylls contained
in flaxseed, olive, and mustard oils.

It was shown that the modification of the surface of aluminosilicate raw materials
with solutions of acetic, oxalic, and succinic acids leads to the dilution of impurity minerals
(kaolinite, saponite, etc.). In this case, the removal of cations of magnesium, aluminum, and
iron to the surface occurs and the porosity of materials increases. Subsequent treatment
with sodium carbonate in a ratio of 1:10 ensures the formation of new basic centers with
the inclusion of sodium on the organic-inorganic surface. Their effect is expressed in the
increased adsorption of fatty acids from oils not refined in production by up to 0.5 g-g~!
and a 30-50% decrease in the content of peroxide compounds in them.

It was revealed that the developed composite materials allow the extraction of 64—
80% of total carotenoids and chlorophylls from linseed and olive oils that have not been
subjected to industrial purification.
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