
Journal of

Low Power Electronics
and Applications

Article

Path Planning for Highly Automated Driving on
Embedded GPUs

Jörg Fickenscher 1,* ID , Sandra Schmidt 2, Frank Hannig 1 ID , Mohamed Essayed Bouzouraa 3

and Jürgen Teich 1 ID

1 Hardware/Software Co-Design, Department of Computer Science, Friedrich-Alexander University
Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; frank.hannig@fau.de (F.H.); juergen.teich@fau.de (J.T.)

2 GIGATRONIK Ingolstadt GmbH, Ingolstadt, 85080 Gaimersheim, Germany; sandra.schmidt@gigtronik.com
3 Pre-/Concept Development Automated Driving, AUDI AG, 85045 Ingolstadt, Germany;

essayed.bouzouraa@audi.de
* Correspondence: joerg.fickenscher@fau.de

Received: 24 August 2018; Accepted: 28 September 2018; Published: 2 October 2018
����������
�������

Abstract: The sector of autonomous driving gains more and more importance for the car makers.
A key enabler of such systems is the planning of the path the vehicle should take, but it can be very
computationally burdensome finding a good one. Here, new architectures in Electronic Control
Units (ECUs) are required, such as Graphics Processing Units (GPUs), because standard processors
struggle to provide enough computing power. In this work, we present a novel parallelization of
a path planning algorithm. We show how many paths can be reasonably planned under real-time
requirements and how they can be rated. As an evaluation platform, an Nvidia Jetson board equipped
with a Tegra K1 System-on-Chip (SoC) was used, whose GPU is also employed in the zFAS ECU of
the AUDI AG.

Keywords: autonomous driving; path planning; embedded GPUs; parallelization

1. Introduction and Related Work

1.1. Motivation

In the automotive industry, the sector for Advanced Driver Assistance Systems (ADASs) has
enormously grown over the last years, and the most significant growth is still to come, with the
moving to more and more autonomy. Nowadays, driver assistance systems, such as adaptive cruise
control, parking assist, or lane-keeping assistance systems are available. However, the driver must
permanently monitor the behavior of the vehicle and, in case of malfunction, intervene. In the
future, fully responsible systems, so-called highly and fully automated systems, will be available for all
driving-related tasks. These will reshape mobility completely, e.g., by enhancing safety and comfort or
introducing new transportation concepts, such as robot taxis. One primary task in such systems is the
planning of the path, which determines the path being taken by the vehicle. In the real world, for a
dependable, highly and fully automated driving vehicle, a multitude of paths has to be considered
and evaluated to ensure that the chosen way is safe, comfortable, and a dynamically possible path.
However, today’s standard processors in ECUs struggle to provide enough computing power for
the enormous computational complexity, due to their lack of parallel computation capacities. As a
remedy, we propose to substitute Central Processing Units (CPUs), responsible for path planning,
with GPUs, embodying hundreds of cores, even as embedded versions. In this work, we introduce a
highly efficient path planning algorithm for GPUs, based on quintic polynomials. Our approach targets
highway scenarios and is for SAE Level 2 or above [1]. At these levels, the system has the control of the

J. Low Power Electron. Appl. 2018, 8, 35; doi:10.3390/jlpea8040035 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
https://orcid.org/0000-0002-3792-312X
https://orcid.org/0000-0003-3663-6484
https://orcid.org/0000-0001-6285-5862
http://dx.doi.org/10.3390/jlpea8040035
http://www.mdpi.com/journal/jlpea
http://www.mdpi.com/2079-9268/8/4/35?type=check_update&version=2

J. Low Power Electron. Appl. 2018, 8, 35 2 of 15

vehicle in lateral and in longitudinal direction. In addition, we show how many paths can be planned
reasonably under real-time requirements and where the sweet spot of the proposed algorithm on a
GPU and CPU architecture is.

The remainder of the paper is structured as follows: In the next paragraph, we discuss the
differences of our approach compared to related work. In Section 2, the fundamentals and the
parallelization of our path planning algorithm are described. In Section 3, experimental results of our
approach are presented and discussed. Finally, we conclude the paper in Section 4.

1.2. Related Work

Path planning has its origin in robotics. Here, the ultimate goal is [2] to create an autonomous
robot, where user input is transformed, without further interventions, in the right motions of the
robot to achieve the desired task. Quite a lot of research has been done in the area of path planning
algorithms for robotics, so already several algorithms, such as sampling or roadmap based [3], exist.
Some were adapted to the automotive sector, where a distinction can be made between approaches,
which plan paths for structured and dynamic environments [4,5] and for unstructured, but mostly
static environments [6,7]. Generally, it can be distinguished between several approaches of how to plan
the vehicle’s path. Some methods are based on a discrete state grid [4,8]. Paths planned with these
methods can be computed efficiently, but lack in accuracy. Another approach is the optimization of
kinematic quantities [9,10]. These methods are based on a mass point model and minimize kinematic
or geometric sizes. In August 2013, Mercedes Benz used this approach during the Berta Benz drive,
were a mostly autonomous vehicle drove the Bertha Benz Memorial Route [11]. Furthermore, there are
model predictive procedures [12,13]. They integrate dynamic models into the planning to make them
more accurate and to ensure the feasibility of the path. A completely different approach to solving the
path planning problem is multi-agent systems, where the necessary calculations are distributed among
different units [14]. Most of the path planning approaches plan several paths, evaluate these and
choose the best [5,15], but there are also approaches, which plan only one path and iteratively improve
this path [16]. Because path planning can become computationally burdensome, a considerable amount
of research was done to parallelize it. Burns et al. [17] presented a parallel CPU approach with up
to eight threads. In [18], an A∗ algorithm for path planning is parallelized on a GPU, but only a
speedup of two, compared to a single-threaded CPU version could be achieved. Kider et al. [19]
achieved much higher speedups, by using an improved A∗ algorithm, the so-called R∗ algorithm.
The above-mentioned parallel approaches were introduced in the field of robotics. In [20], a swarm
intelligence method is parallelized on a desktop GPU and used for path planning of an unmanned
airborne vehicle. McNaughton et. al. [4] presented a motion planning approach, based on conformal
spatiotemporal lattice and parallelized it on a desktop GPU. In [21], a path planning algorithm for
an unmanned airborne vehicle is analyzed, but they did their experiments on an embedded GPU,
as we do in our work. Contrary to their approach, ours is based on quintic polynomials, as in the
work of [5]. The difference to [5] is that, one the one hand, the planned paths are evaluated with
a different function, which considers more parameters, and, furthermore, the rating points of the
paths are included in the evaluation of the paths. In [5], only the endpoints of the planned paths are
evaluated. On the other hand, we evaluated the approach for a different number of rating points and
paths, which has also not been evaluated in the other work. To the best of our knowledge, this is the
first time that such an approach was parallelized for an embedded GPU in the automotive context.
The advantage of our approach is that an optimal solution, within the discretized space, is found in a
certain deterministic time. The space is discretized by the number of planned paths. The higher the
number of planned path is, the smaller is the discretization. Instead, with A∗ approaches, there is
mostly a solution in less time, but there is no guarantee that you will find an optimal solution within a
certain time. For safety-critical applications (SAE Level 3), however, it is essential for security reasons
to find a solution in a certain time.

J. Low Power Electron. Appl. 2018, 8, 35 3 of 15

2. Methods

2.1. Programming an Embedded GPU

GPUs have initially been introduced for image processing, or rather for graphics output from
desktop computers. With their large number of specialized cores that run into the thousands for
desktop GPUs and hundreds for embedded GPUs, they are far superior to CPUs in problems designed
for such architectures. Not only the architectures differ between CPUs and GPUs, but also the
programming models. On a CPU, the programming model is Multiple Instruction, Multiple Data
(MIMD), while, on a GPU, the programming model is Single Instruction Multiple Thread (SIMT).
This means that on a CPU, parallelized programs perform different operations on different data at
the same time, whereas on a GPU all threads perform the same instructions on different data at the
same time. In 2006, Nvidia introduced the CUDA framework [22], which facilitates General-Purpose
Computation on Graphics Processing Unit (GPGPU) on Nvidia GPUs. Now, it was more practical to
accelerate compute-intensive problems from various domains, besides the classical image processing,
such as financial services [23], SQL Database Operations [24], etc. Generally, program blocks that
should be executed in parallel are called kernels in CUDA. A kernel is similar to a function in C. Each
kernel is executed by n threads specified by the programmer. The threads are grouped in so-called
warps on the GPU, which contain 32 threads. Each thread in a warp executes the same instruction at
the same time. In CUDA threads are grouped into logical blocks and blocks are grouped into logical
grids, as illustrated in Figure 1. The programmer can specify the size, the dimensions (1D,2D,3D) and
numbers of these structures. At the hardware level, the GPU has one or more streaming processors, which
itself contain several executing units. The blocks are executed on the GPU by streaming processors,
with each block allocated exactly one streaming processor. The major difference between a desktop
GPU and an embedded GPU is that the memory of the desktop GPU is separated from the system
memory. Instead, for an embedded GPU, the system memory and the memory of the GPU are the
same, as illustrated in Figure 1. Therefore, it is not necessary to explicitly copy the data to the GPU
and copy the results back into the system memory. The Nvidia Jetson K1 platform, which was used for
the evaluation of our algorithm, is such an embedded GPU.

Host (CPU) Device (GPU) Grid 0

Block (0,0)

Shared Memory

Thread
(0,0)

Thread
(1,0)

Block (1,0)

Shared Memory

Thread
(0,0)

Thread
(1,0)

G
l
o
b
a
l

M
e
m
o
r
y

Grid 1

Block (0,0)

Shared Memory

Thread
(0,0)

Thread
(1,0)

Block (1,0)

Shared Memory

Thread
(0,0)

Thread
(1,0)

H
o
s
t

M
e
m
o
r
y

(a)

Host (CPU)

Grid 0

Block (0,0)

Shared Memory

Thread
(0,0)

Thread
(1,0)

Block (1,0)

Shared Memory

Thread
(0,0)

Thread
(1,0)

M
e
m
o
r
y

Grid 1

Block (0,0)

Shared Memory

Thread
(0,0)

Thread
(1,0)

Block (1,0)

Shared Memory

Thread
(0,0)

Thread
(1,0)

Device (GPU)

CPU 0

CPU 2

CPU 3

CPU 1

(b)

Figure 1. Illustration of the: (a) architecture of a desktop GPU; and (b) architecture of an
embedded GPU.

J. Low Power Electron. Appl. 2018, 8, 35 4 of 15

2.2. Overview

Generally, between two major steps in path planning, algorithms can be distinguished: the rough
planning and the detailed planning. In rough planning, the possible solution space for the detailed
planning is reduced, by examination where the vehicle is allowed to drive, e.g., no obstacle on an
endpoint of a path. The endpoint of a path is the temporary target position of the vehicle. Furthermore,
the reference path is determined during rough planning. In Figure 2, the dashed orange lines, which
are parallel to the reference path, illustrate possibilities for endpoints of paths. The blue points are
concrete calculated endpoints, nine in this case. The paths are planned from the vehicle to these points.
During detailed planning, which is evaluated for parallelization in this paper, the single paths are
completely planned, evaluated, and, finally, the best one is chosen. Our parallelized path planning
algorithm is based on Werling et al. [5,25], who used quintic polynomials for generating the lateral
as well the longitudinal part of the paths. The new path is calculated based on the relative position
to the reference path. The goal is to lead the vehicle on a path between the two corridor boundaries,
respectively driving tube. Since it is assumed that the vehicle is always driven in a structured
environment, there are road or lane edges, respectively markings, and therefore the reference path can
be set into the middle of one lane. The detailed path planning, as also illustrated in Figure 2, consists
of the following steps:

• Calculate start values in Frenet coordinates for the path planning algorithm in relation to the
current vehicle position.

• Plan different paths with different lengthwise and crosswise variations with respect to the
reference path.

• Transform from Frenet coordinates to Cartesian coordinates.
• Calculate the costs for each path and select the best path.

Figure 2. The planning of one path (red arrow) is illustrated. The road consists of two lanes. The red
points are the rating points of this path. These points will later be used to evaluate the course.
The green dashed line is the reference path. The orange dashed lines are possibilities for endpoints of
paths. The blue points are calculated endpoints of paths. The corridor boundaries are the upper lane
marking and the center lane marking. For improved clarity, no paths (red arrows) are drawn to these
calculated endpoints.

J. Low Power Electron. Appl. 2018, 8, 35 5 of 15

2.3. Frenet Coordinates

The Frenet coordinates [26], also known as the Frenet–Serret formulas, describe the geometric
properties of a curve. Let~r(t) be a curve in three-dimensional Euclidean space R3, which represents
the position vector of a particle as a function of time t and l(t) the arc length, which a particle has
moved along the curve in time t. ~̇r(t) is the velocity of the particle, and ~̈r(t) the acceleration. It is
assumed that~̇r 6= 0 and therefore l is a strictly monotonically increasing function. Then, it is possible
to solve for t as a function of l and it can be written~r(l) =~r(t(l)). The coordinate system is formed by
s, d, and b. It is defined in R3, but it is also possible to generalize it for higher dimensions, as follows:

• s is the tangent unit vector, s =
d~r
dl

‖ d~r
dl ‖

• d is the normal unit vector, d =
ds
dl

‖ ds
dl ‖

• b is the binormal unit vector, b = s× d

The Frenet–Serret formulas, stated in a skew-symmetric matrix [27], are:s′

d′

b′

 =

 0 κ 0
−κ 0 τ

0 −τ 0


s

d
b

 (1)

where κ is the curvature and τ is the torsion of the curve.
For the path planning algorithm, it is not necessary to know the absolute coordinates of the

planned path. Having coordinates relative to the vehicle’s position is sufficient. In our case, s indicates
how far the vehicle has moved along the path and d is the distance of the normal to the observed point.
Therefore, the Frenet coordinate system indicates the distance of a point to the reference path, from the
position of the own vehicle. The usage of Frenet coordinates uncurls the coordinate system and allows
the separated optimization of lengthwise and crosswise path planning, respectively. In each planning
step, the start state described in the Environment Sensor Coordinate System (ESCS) is transformed
into the Frenet space in order to calculate then a path to the target point also described in Frenet space.
The result is then transformed back into the ESCS. Since the computational effort for the coordinate
transformation is quite high, some approximations are used to reduce this effort. To get the Frenet
coordinates s and d of a point Q, the following limitations apply:

• The change of the angle between two polygon courses can only be moderate. Otherwise, there
will be jump discontinuity in the polygon course. Since our approach is proposed for highway
scenarios, that is not a limitation.

• The polygon course has to be monotonically increasing along the x-axis.
• The path P is an open polygon course and is defined as P = {P1 → P2 →, . . . ,→ Pn} with S1 =

[P1, P2], S2 = [P2, P3], . . . , Sn−1 = [Pn−1, Pn].

In Figure 3, the coordinate transformation from Cartesian coordinates (ESCS) to Frenet coordinates,
as well as the other way round are illustrated. On the left side, the Frenet coordinates for a given point
Q in the ESCS are computed. On the right side of Figure 3 a point Q is given in Frenet Coordinates
and the corresponding ESCS coordinates should be determined. The ESCS’ origin is in the middle of
the vehicle’s rear axis. To obtain s, it is first necessary to calculate an auxiliary point U, which is the
intersection point of path P with a parallel line to the y-axis through the point Q. The segment on
which the point U lies is St. The length of one segment Si is li. The partial length4l is the length of
the segment Ŝ = [BuU]. With the limitations mentioned above, s results from the sum of all lengths li
of the sections which lie before a point U, the partial length4l and the correction term4s.

s =
u−1

∑
i=1

li +4l +4s with 4 s = 4y · sin ϕ (2)

J. Low Power Electron. Appl. 2018, 8, 35 6 of 15

The correction term4s = 4y · sin ϕ is necessary and improves the approximation, if the segment
Su is not parallel to the x-axis. It is calculated from the vertical distance4y of point Q to the path P
and the rotation φ around the segment Su, which is rotated with respect to the x-axis. The calculation
of d follows the same procedure:

d = 4d = 4y · cos ϕ (3)

ESCS to Frenet Frenet to ESCS

P1

P2

P3 Pu

Pu+1

Δs

ΔyΔd
φ

φ
U

P1

P2

P3 Pu

Pu+1Δl
U

l2

l1
lu

l1

l2

lu

Q

d

d

y

x

y

x

Q

s

PP

lu+1lu+1

Δl

Figure 3. Transformation from ESCS to Frenet coordinates and back.

After the paths are planned in Frenet coordinates, it is necessary to transform them back into
the ESCS. Therefore, the Frenet coordinates s and d, respectively, the longitudinal and lateral portion,
should be transformed to x and y coordinates in the ESCS. They refer to the path P, which will
be covered by an open polygon (P1, P2, . . . , Pn) with the lines (S1 = [P1P2], S2 = [P2P3], . . . , Sn =

[Pn−1Pn]). s in Frenet coordinates is equal to a distance between the searched point U and the start
point Bu. Therefore, s is:

s =
u−1

∑
i=1

li +4l (4)

If U is calculated, it is possible to determine the normal vector d on the segment Su. Afterwards,
d has to be extended to the length d to get the point Q:

Q = U + d · d (5)

Due to the independence of the rating points of each path and also the independence between
the different paths, it is possible to create one CUDA thread for every rating point of each path. Thus,
one CUDA thread transforms one point Q from ESCS to Frenet coordinates s and d or vice versa.

2.4. Path Generation

To generate a single path, it is necessary to find a continuous course ξ(t), which transfer the initial
state ξ(0) into the final state ξ(τ) [5]. To calculate the continuous course ξ(t), the following equation
has to be solved:

ξ(t) = M1(t)c012 + M2(t)c345 with t ∈ [0, τ] with τ > 0 and τ = {τs, τd} (6)

This course can be computed by determining the coefficients of a fifth-degree polynomial[
cT

012, cT
345

]
=

[
c0, c1, c2, c3, c4, c5, c6

]
. The coefficient c012 is independent of the final state ξ(τ) and

results from:

J. Low Power Electron. Appl. 2018, 8, 35 7 of 15

c012 = M1(0)−1ξ(0) with M1(t) =

1 t t2

0 1 2t
0 0 2


and M1(0)−1 =

1 0 0
0 1 0
0 0 0.5


(7)

The other coefficient c345 results from:

c345 = M2(τ)
−1

[
ξ(τ)−M1(τ)c012

]
with M2(t) =

 t3 t4 t5

3t2 4t3 5t4

6t 12t2 20t3


and M2(τ)

−1 =
1

2t5

 20t2 −8t3 t4

−30t 14t2 −2t3

12 −6t t2


(8)

In literature, a path, which has information of how to traverse it with respect to time, e.g., a velocity
profile is also called trajectory. In this paper, we use the term path for simplicity synonymously. For an
autonomous vehicle, it is not sufficient to plan only a single path. For such cars, a lot of paths have to
be planned and evaluated to find one, which fulfills the requirements of safety and comfort. Every
path has the same initial state lengthwise s0 and crosswise d0, which is the current state of the vehicle.
Only the final states lengthwise sτ and crosswise dτ are varied. Thereby, sτ is varied in time and dτ by
distance. The variation of these two components, which make up an endpoint of a path, results in a
multitude of variations. Every state has three components: s is the lengthwise relative position, ṡ(t)
the velocity, and s̈ the acceleration. The same applies to d. Therefore, we have:

ξs(t) =

s(t)
ṡ(t)
s̈(t)

 and ξd(t) =

d(t)
ḋ(t)
d̈(t)

 (9)

For the computation of the lengthwise part, the same algorithm is used as for the crosswise
part, but they are executed in succession. Since it is mathematically burdensome to calculate the
continuous course ξ(t) for thousands of paths, they are predestined to be calculated on a GPU.
At first, the lengthwise part of a path with associated rating points is computed. Due to the
dependence between the lengthwise part of a path and the crosswise part of a path, the crosswise part,
with associated rating points, has to be computed after the lengthwise part. On the contrary, the rating
points of each path lengthwise as well crosswise are independent. Therefore, one CUDA thread can be
started for each rating point of each path lengthwise and crosswise, respectively.

The part that the vehicle already traveled is deleted from the current path. Only if there is no
valid path at all or the rest of the current path is too short, a new path is entirely planned from scratch.

2.5. Rating of Paths

After planning numerous paths, it is necessary to evaluate them, and to find the one which fulfills
the requirements the most. Those requirements, amongst others, can be:

• Distance to the left corridor boundary (dcl) and to the right corridor boundary (dcr).
• A crosswise deviation related to the reference path in the endpoint of the path (dREF).
• Maximum lateral acceleration (dacclY) of the vehicle along the planned path.

J. Low Power Electron. Appl. 2018, 8, 35 8 of 15

Therefore, the total costs C are in this case:

C = λC ·
1

(dcl + dcr)
+ λREF · dREF + λA · dacclY

with λC + λREF + λAy = 1
(10)

where λC, λREF, and λAy are weighting factors of the requirements. In the end, the path with the
smallest cost is chosen. Therefore, for each path, its cost function C is calculated. In Figure 4,
the evaluation of one path, which has two rating points, is illustrated.

dREF

dCR dCR

dCL
dCL

Figure 4. Evaluation of the cost of one path, with two rating points (red points). The road consists of
only one lane. The vehicle is too far on the left part of the lane and should be guided back towards the
reference path.

Since every rating point of each path is independent, it makes sense to create one CUDA thread
for every rating point, which calculates the cost function C. After C is calculated, the one with the
lowest costs has to be chosen. This is done on the CPU. Solving this reduction problem on the GPU
would not be rational because of the small number of operations necessary and, therefore, the small
number of CUDA threads, which could be used. In addition, the results of the threads would have to
be synchronized via shared memory on the GPU, which would require further computation time.

As mentioned above, an important criterion in the evaluation of a path P is the distance to
the corridor boundaries. For each rating point, the Euclidean distance to the corridor boundaries is
calculated. For the final cost calculation, only the smallest Euclidean distance of the path is taken,
because it is vital to leave the corridor boundaries nowhere.

3. Experiments

3.1. Evaluation Environment

Our experimental platform is an Nvidia Jetson board [28]. The board embodies an embedded
Nvidia Kepler GPU with 192 CUDA cores at 850 MHz. The CPU is a quad-core ARM Cortex-A15 with
2.3 GHz. Although the board has a high computing power, the energy consumption amounts only to
8–10 W, which results in a high performance per Watt ratio. With such a low energy consumption, it is
possible to cool a board passively, which is essential for embedded systems in general and ECUs in cars
in particular. First, we implemented a single-threaded reference implementation in the programming
language C. Each C implementation is tested on one of the ARM cores available on the Jetson board.
Thereby, we can show which algorithm could be potentially accelerated on the embedded GPU and

J. Low Power Electron. Appl. 2018, 8, 35 9 of 15

which speedups are achievable. To smooth jitter in the experiments, all experiments are always
performed 100 times, and the mean value is taken.

3.2. Evaluation of the Coordinate Transformation from Frenet Coordinates to Cartesian Coordinates

Since we plan our paths in Frenet coordinate space, but the final map coordinate system is in
Cartesian space, a coordinate transformation is necessary. Therefore, all paths, including the rating
points of each path, have to be transformed from Frenet into Cartesian coordinate space. At the first
evaluation of the coordinate transformation, the number of paths was varied and a fixed number of
rating points, 20 in this case, was chosen. As can be seen in Figure 5, the GPU outperforms the CPU
nearly in all configurations. The reason for the high speedup is that the coordinate transformation can
be parallelized straightforwardly because there are no data dependencies between the single rating
points, as well between the individual paths. Only the configuration with the smallest number of
paths the CPU is faster than the GPU. Here, the GPU cannot be fully exploited, to due to unbalanced
and low workload in the warps. A warp consists of 32 threads, which is the smallest unit threads are
grouped on an Nvidia GPU. Even if only 16 threads are active in a warp, resources for 32 might be
allocated. The increase in computing time on the GPU is not linear, due to its low utilization for a
small number of planned paths. In Figure 6, a plateau occurs for the evaluation of varying rating
points on the GPU. This is due to a different number of blocks, in which the threads are grouped.
With an increasing number of blocks, the workload can be scheduled better on the GPU’s streaming
processors and almost no increase in execution time occurs. In addition, if the number of threads in a
block is not multiple of 32, the GPU cannot be fully exploited. We also performed experiments, with an
increased number of blocks for a low number of paths, but no decrease in execution time could be
observed. Another reason is that the usage of a GPU has an overhead. The necessary area for the data
must first be allocated, then the data which have to be processed need to be copied to that area and
finally the results have to be copied back. This is particularly noticeable in the case of low-complexity
problems and their execution time, such as a small number of paths or evaluation points. In the second
experiment considering the coordinate transformation, the number of paths was set to nine and the
number of rating points was varied. The number of paths was set to nine because, even if the number
of rating points per path is increased, every step of the algorithm is executed once. For nine paths and
endpoints, we have a variation of three in the longitudinal direction and then, for each of these points,
a variation of three in the lateral direction.

101 102 103 104

10−1

100

101

102

103

number of planned paths

ti
m

e
in

[m
s]

CPU-Jetson GPU-Jetson

Figure 5. Evaluation of the coordinate transformation. The number of paths was varied. The number
of rating points per path was always 20.

J. Low Power Electron. Appl. 2018, 8, 35 10 of 15

102 103 104

10−1

100

101

102

103

number of rating points

ti
m

e
in

[m
s]

CPU-Jetson GPU-Jetson

Figure 6. Evaluation of the coordinate transformation. The number of rating points for each path was
varied. The number of paths was always nine.

The results of that experiment are illustrated in Figure 6. Similar to the previous experiment,
the workload on the GPU is for a small number of rating points per path not high enough to fully
utilize the GPU. With an increasing number of rating points, the speedup between the CPU and GPU
increases, due to better utilization of the GPU. By comparing both experiments, it can be seen that
for an increased number of paths, respectively rating points per path, the growth in execution time
is similar.

3.3. Evaluation of Lengthwise and Crosswise Path Planning

Our approach for path planning first solves the variational problem lengthwise and then crosswise.
In the following experiment, the number of endpoints of the paths in the lengthwise and the crosswise
direction were increased. In the first test case of this experiment, the entire number of planned paths
was nine, a mesh of 3× 3 endpoints. If the number of endpoints was increased, they were increased in
lateral, as well in longitudinal direction, e.g., to 45, the mesh of endpoints had the size 9× 5, nine in
the longitudinal and five in the lateral direction. In this experiment, the number of paths was varied
whereas the number of rating points per path remained fixed.

As illustrated in Figure 7, the GPU outperforms the CPU already for a small number of paths,
which is nine in this case. The reason is that it is quite mathematically complex to solve the variational
problem in longitudinal as well as in lateral direction. The complexity of the path planning algorithm
is O(m · n · o), with m the number of endpoints in longitudinal direction, n the number of endpoints
in lateral direction and o the number of rating points per path. Typically, both m and n are increased.
With an increasing number of rating points per path, the speedup between the GPU and CPU also
increases. We also evaluated the solution of the variational problem lengthwise and crosswise,
separately. In general, the execution times were lower due to the less number of paths planned
and also the break-even point is starting later, i.e., where the GPU outperforms the CPU.

In the following evaluation, the number of rating points per path was varied, whereas the number
of paths remained the same. The results of that experiment are shown in Figure 8. Similar to the
previous experiment, the GPU outperforms the CPU for all scenarios. The calculation of numerous
rating points for each path also requires numerous mathematical operations, which is the reason that
the GPU is already faster than the CPU for a small number of rating points.

J. Low Power Electron. Appl. 2018, 8, 35 11 of 15

101 102 103 104

100

101

102

number of planned paths

ti
m

e
in

[m
s]

CPU-Jetson GPU-Jetson

Figure 7. In this experiment, lengthwise and crosswise path planning was evaluated. The number of
rating points per path was set to 20. The number of paths was varied.

102 103 104

100

101

102

number of rating points

ti
m

e
in

[m
s]

CPU-Jetson GPU-Jetson

Figure 8. In this experiment, lengthwise and crosswise path planning was evaluated. The number of
rating points per path was varied. The number of paths was set to nine.

3.4. Evaluation of the Path Rating

After all paths have been planned, it is necessary to evaluate them to ensure that the vehicle drives
the most convenient path. As with the other experiments, we evaluated the cost function ones with
varying paths and a fixed number of rating points per path and vice versa. In Figure 9, the results of the
cost functions are shown for the variation of the number of paths. The computation time on the CPU
to evaluate the quality of the planned paths increases more or less linearly with the number of planned
paths. However, on the GPU, the computation time is for a low number of paths nearly constant, due
to the low utilization of the GPU. Only if a high number of paths is planned, the computation time is
increasing with the number of planned path, because the GPU is then well utilized. For a low number
of paths, the CPU is faster than the GPU. This is due to the low utilization of the GPU for a small
number of paths and also the lower mathematical complexity, compared to solving the variational
problem lengthwise and crosswise.

In the next experiment, the number of rating points per path was varied, and the number of paths
was set again to nine. The results of this experiment are illustrated in Figure 10. The CPU is faster than
the GPU for a small number of rating points per path. For higher number of rating points for each

J. Low Power Electron. Appl. 2018, 8, 35 12 of 15

path, the GPU outperforms the CPU. The reasons for the speedup with an increased number of rating
points for each path are the same as for the case of an increased number of paths, as explained in the
experiment above.

101 102 103 104

10−1

100

101

number of planned paths

ti
m

e
in

[m
s]

CPU-Jetson GPU-Jetson

Figure 9. Evaluation of the cost function. The number of paths was varied. The number of rating
points per path was always 20.

102 103 104

10−1

100

101

102

103

104

number of rating points

ti
m

e
in

[m
s]

CPU-Jetson GPU-Jetson

Figure 10. Evaluation of the cost function. The number of paths was set to nine and the number of
rating points for each path was varied.

Finally, it has to be answered how many paths and rating points for each path are necessary to
enable a safe, comfortable, and dynamically feasible path. Generally, it can be stated that, the more
paths are planned, the more likely it is to find one that meets the requirements of safety and comfort.
For example, if the desired path has a narrowing, then with a higher number of planned paths it is
more likely to find one with which the vehicle can pass the bottleneck in compliance with the safety
criteria. A recent paper [29] from Mobileye N.V. argues that planning more than 104 is not reasonable
for having a safe path on hand all the time. The further paths would differ only slightly, and, thus,
not offer many advantages. Our experiments show that our proposed parallel algorithm is real-time
capable, even if 104 paths are planned. To find the optimal path with 100% certainty, one would have to
scan or evaluate it continuously, i.e., infinitely often. This would result in an infinite number of rating
points. If a path is discretized based on the rating points, the rating points may be placed, such that it

J. Low Power Electron. Appl. 2018, 8, 35 13 of 15

would be not recognized that a piece of the path is not within the corridor boundaries. For example,
two rating points of a path are just inside the corridor boundary, but a short part of the path is outside
the corridor boundaries. Since an infinite number of rating points is not possible, a number must
be chosen that represents a compromise of computing time and accuracy. A rating point for every
50 cm should be sufficient for a highway scenario and all the paths for the next four seconds need to be
planned ahead. Four seconds is a reasonable value since we do not have to consider any reaction time
of the driver because the vehicle takes over this task. Assume that a vehicle driving on a highway at a
speed of 130 km/h, which is 36 m/s. Then, the distance of the path that needs to be calculated for the
future is 4 · 36 = 144 m. Correspondingly, 144/0.5 = 288 rating points per path should be calculated.
If we look at the individual execution times of the sub-algorithms, we can see that our approach is
real-time capable for 1000 paths, but not for 10,000 paths. In addition to the execution times for our
path planning approach, there are also other execution times, such as for sensor data processing.

4. Conclusion and Future Work

In this work, a path planning approach based on quintic polynomials was parallelized on an
embedded GPU. It was shown that the proposed path planning algorithm and its single steps can
be efficiently parallelized on a GPU. Furthermore, we showed that the speedup between CPU and
GPU increases with a higher number of paths and rating points per path. In addition, for a high
number of paths and rating points, the GPU approach is real-time capable, which is necessary for
highly automated vehicles. In the future, we want to further evaluate how many paths and rating
points per path are necessary for varying real driving situations.

Author Contributions: J.F. is the main author of the paper. He implemented the algorithm, performed the
evaluation and wrote the paper. S.S. and F.H. provided valuable guidance during the implementation and
contributed to the writing. M.E.B. and J.T. did the technical proofing and supervised the work.

Funding: This research was funded by AUDI AG.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ADAS Advanced Driver Assistance System
GPU Graphics Processing Unit
CPU Central Processing Unit
ECU Electronic Control Unit
SIMT Single Instruction Multiple Thread
SLAM Simultaneous Localization and Mapping
FMA Fused Multiply Add
ROI Region of Interest
OVM Own Vehicle Motion
ESCS Environment Sensor Coordinate System
SoC System-on-Chip
GPGPU General Purpose Computation on Graphics Processing Unit
MIMD Multiple Instruction, Multiple Data

References

1. Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems.
Available online: https://www.sae.org/standards/content/j3016_201401/ (accessed on 26 September 2018).

2. Latombe, J.C. Robot Motion Planning; Kluwer Academic Publishers: Norwell, MA, USA, 1991.
3. Choset, H.; Lynch, K.M.; Hutchinson, S.; Kantor, G.A.; Burgard, W.; Kavraki, L.E.; Thrun, S. Principles of

Robot Motion: Theory, Algorithms, and Implementations; MIT Press: Cambridge, MA, USA, 2005.

https://www.sae.org/standards/content/j3016_201401/

J. Low Power Electron. Appl. 2018, 8, 35 14 of 15

4. McNaughton, M.; Urmson, C.; Dolan, J.M.; Lee, J. Motion planning for autonomous driving with a conformal
spatiotemporal lattice. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, 9–13 May 2011; pp. 4889–4895. [CrossRef]

5. Werling, M. Ein neues Konzept für die Trajektoriengenerierung und -stabilisierung in zeitkritischen
Verkehrsszenarien. Ph.D thesis, Karlsruher Institut für Technology (KIT), Karlsruhe, Baden-Württemberg,
Germany, 2011.

6. Fassbender, D.; Müller, A.; Wuensche, H. Trajectory planning for car-like robots in unknown, unstructured
environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Chicago, IL, USA, 14–18 September 2014; pp. 3630–3635. [CrossRef]

7. Ferguson, D.; Howard, T.M.; Likhachev, M. Motion planning in urban environments. J. Field Robot. 2008,
25, 939–960. [CrossRef]

8. Ziegler, J.; Stiller, C. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving
scenarios. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,
St. Louis, MO, USA, 10–15 October 2009; pp. 1879–1884. [CrossRef]

9. Ziegler, J.; Bender, P.; Dang, T.; Stiller, C. Trajectory planning for Bertha — A local, continuous method.
In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA , 8–11 June
2014; pp. 450–457. [CrossRef]

10. Choi, J.W.; Curry, R.; Hugh Elkaim, G. Continuous Curvature Path Generation Based on Bezier Curves for
Autonomous Vehicles. Int. J. Appl. Math. 2010, 40, 91–101.

11. Ziegler, J.; Bender, P.; Schreiber, M.; Lategahn, H.; Strauss, T.; Stiller, C.; Dang, T.; Franke, U.; Appenrodt, N.;
Keller, C.G.; et al. Making Bertha Drive — An Autonomous Journey on a Historic Route. IEEE Intell. Transp.
Syst. Mag. 2014, 6, 8–20. [CrossRef]

12. Gotte, C.; Keller, M.; Hass, C.; Glander, K.H.; Seewald, A.; Bertram, T. A model predictive combined planning
and control approach for guidance of automated vehicles. In Proceedings of the 2015 IEEE International
Conference on Vehicular Electronics and Safety (ICVES), Yokohama, Japan, 5–7 November 2015; pp. 69–74.
[CrossRef]

13. Anderson, S.J.; Karumanchi, S.B.; Iagnemma, K. Constraint-based planning and control for safe,
semi-autonomous operation of vehicles. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium,
Alcala de Henares, Spain, 3–7 June 2012; pp. 383–388. [CrossRef]

14. Dafflon, B.; Gechter, F.; Gruer, P.; Koukam, A. Vehicle platoon and obstacle avoidance: A reactive agent
approach. IET Intell. Transp. Syst. 2013, 7, 257–264. [CrossRef]

15. Von Hundelshausen, F.; Himmelsbach, M.; Hecker, F.; Mueller, A.; Wuensche, H.J. Driving with Tentacles:
Integral Structures for Sensing and Motion. J. Field Robot. 2008, 25, 640–673. [CrossRef]

16. Heil, T.; Lange, A.; Cramer, S. Adaptive and efficient lane change path planning for automated vehicles.
In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC),
Rio de Janeiro, Brazil, 1–4 December 2016; pp. 479–484. [CrossRef]

17. Burns, E.; Lemons, S.; Ruml, W.; Zhou, R. Best-first Heuristic Search for Multicore Machines. J. Artif.
Intell. Res. 2010, 39, 689–743. [CrossRef]

18. Bleiweiss, A. GPU Accelerated Pathfinding. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware (GH), Sarajevo, Bosnia, 20–21 June 2008; pp. 65–74.

19. Kider, J., Jr.; Henderson, M.; Likhachev, M.; Safonova, A. High-dimensional planning on the GPU.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage,
AK, USA, 3–7 May 2010; pp. 2515–2522. [CrossRef]

20. Cekmez, U.; Ozsiginan, M.; Sahingoz, O.K. A UAV path planning with parallel ACO algorithm on CUDA
platform. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Orlando,
FL, USA, 27–30 May 2014; pp. 347–354. [CrossRef]

21. Palossi, D.; Marongiu, A.; Benini, L. On the Accuracy of Near-Optimal GPU-Based Path Planning for UAVs.
In Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems
(SCOPES), Sankt Goar, Germany, 12–13 June 2017; pp. 85–88. [CrossRef]

22. Programming Guide — CUDA Toolkit Documentation, 2016. Available online: https://docs.nvidia.com/
cuda/cuda-c-programming-guide/ (accessed on 25 September 2018).

http://dx.doi.org/10.1109/ICRA.2011.5980223
http://dx.doi.org/10.1109/IROS.2014.6943071
http://dx.doi.org/10.1002/rob.20265
http://dx.doi.org/10.1109/IROS.2009.5354448
http://dx.doi.org/10.1109/IVS.2014.6856581
http://dx.doi.org/10.1109/MITS.2014.2306552
http://dx.doi.org/10.1109/ICVES.2015.7396896
http://dx.doi.org/10.1109/IVS.2012.6232153
http://dx.doi.org/10.1049/iet-its.2011.0125
http://dx.doi.org/10.1002/rob.20256
http://dx.doi.org/10.1109/ITSC.2016.7795598
http://dx.doi.org/10.1613/jair.3094
http://dx.doi.org/10.1109/ROBOT.2010.5509470
http://dx.doi.org/10.1109/ICUAS.2014.6842273
http://dx.doi.org/10.1145/3078659.3079072
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

J. Low Power Electron. Appl. 2018, 8, 35 15 of 15

23. Grauer-Gray, S.; Killian, W.; Searles, R.; Cavazos, J. Accelerating Financial Applications on the GPU.
In Proceedings of the 6th Workshop on General Purpose Processor Using Graphics Processing Units,
Houston, Texas, USA, 16 March 2013; pp.127–136. [CrossRef]

24. Bakkum, P.; Skadron, K. Accelerating SQL Database Operations on a GPU with CUDA. In Proceedings of
the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, Pittsburgh, PA, USA,
14 March 2010; pp. 94–103. [CrossRef]

25. Werling, M.; Ziegler, J.; Kammel, S.; Thrun, S. Optimal trajectory generation for dynamic street scenarios in
a Frenet Frame. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation,
Anchorage, AK, USA, 3–7 May 2010; pp. 987–993. [CrossRef]

26. Serret, J.A. Sur quelques formules relatives à la théorie des courbes à double courbure. J. de Mathématiques
Pures et Appliquées 1851, 16, 193–207.

27. Gantmacher, F.; Brenner, J. Applications of the Theory of Matrices; Dover Publications: Mineola, NY, USA, 2005.
28. NVIDIA Jetson TK1 Developer Kit. 2016. Available online: http://www.nvidia.com/object/jetson-tk1-

embedded-dev-kit.html (accessed on 25 September 2018).
29. Shalev-Shwartz, S.; Shammah, S.; Shashua, A. On a Formal Model of Safe and Scalable Self-driving Cars.

Comput. Res. Repos. 2018, arXiv:1708.06374v5.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2458523.2458536
http://dx.doi.org/10.1145/1735688.1735706
http://dx.doi.org/10.1109/ROBOT.2010.5509799
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Related Work
	Motivation
	Related Work

	Methods
	Programming an Embedded GPU
	Overview
	Frenet Coordinates
	Path Generation
	Rating of Paths

	Experiments
	Evaluation Environment
	Evaluation of the Coordinate Transformation from Frenet Coordinates to Cartesian Coordinates
	Evaluation of Lengthwise and Crosswise Path Planning
	Evaluation of the Path Rating

	Conclusion and Future Work
	References

