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Abstract: This paper presents a power efficient analog front-end (AFE) for electrocardiogram (ECG)
signal monitoring and arrhythmia diagnosis. The AFE uses low-noise and low-power circuit design
methodologies and aggressive voltage scaling to satisfy both the low power consumption and low
input-referred noise requirements of ECG signal acquisition systems. The AFE was realized with
a three-stage fully differential AC-coupled amplifier, and it provides bio-signal acquisition with
programmable gain and bandwidth. The AFE was implemented in a 130 nm CMOS process, and it
has a measured tunable mid-band gain from 31 to 52 dB with tunable low-pass and high-pass corner
frequencies. Under only 0.5 V supply voltage, it consumes 68 nW of power with an input-referred
noise of 2.8 µVrms and a power efficiency factor (PEF) of 3.9, which makes it very suitable for
energy-harvesting applications. The low-noise 68nW AFE was also integrated on a self-powered
physiological monitoring System on Chip (SoC) that is used to capture ECG bio-signals. Heart rate
extraction (R-R) detection algorithms were implemented and utilized to analyze the ECG data received
by the AFE, showing the feasibility of <100 nW AFE for continuous ECG monitoring applications.

Keywords: analog front end (AFE); electrocardiogram (ECG); IoT; sub-threshold operation;
ultralow power

1. Introduction

In recent years, there has been a growing demand for ultralow power (ULP) energy-harvesting
body sensor nodes for continuous and low-cost monitoring of patient bio -signal data for diagnosis and
prevention of various illnesses, such as heart arrhythmia [1–4]. One of the most important challenges
for many of these sensors is the operating lifetime. These sensors often operate in energy-constrained
environments where there is a need to harvest energy by different methods, such as photovoltaic
cells or thermoelectric generators (TEGs). Additionally, these systems need to operate from very low
supply voltages. For example, a 1 cm3 TEG energy harvester attached to a running person delivers
only 2.2 µW of power, and the voltage available at the output of TEG energy harvesters is often only
tens of millivolts [5]. Therefore, low-voltage operation of battery-less signal acquisition sensors highly
relaxes the voltage boost conversion requirement for generating a usable supply voltage.

Due to the continuous bio-signal monitoring of these sensor nodes, the power consumption
of signal acquisition analog front-ends (AFEs) plays an important role in the overall power
consumption of the sensors. Recent advancements in state-of-the-art self-powered systems, such as [2],
have demonstrated sub-µW operation for these systems. This highlights the requirement for <100 nW
AFEs. However, targeting low absolute power often results in poor noise performance. One of the
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important requirements of ECG signal acquisition systems is the capability to detect very small input
signals on the order of 100 µV to 4 mV at near-DC frequencies, where flicker noise is dominant.
Therefore, low noise operation of the AFE is one of the primary specifications of an ECG front-end,
and signal acquisition systems often compromise the power consumption of the system to achieve
lower input-referred noise specifications or vice versa.

In this work, we present an ultralow power low-noise AFE that meets the requirements of ULP
energy-harvesting physiological sensors. By utilizing a weak inversion biasing technique, and with
a power consumption of only 68 nW, the AFE realizes a very low flicker noise corner frequency
and achieves an input-referred noise of 2.8 µVrms. The AFE operates from a low power supply of
0.5 V, which relaxes the voltage boost requirements of energy-harvesting systems. Fully differential
topology is utilized to ensure a high common-mode rejection ratio (CMRR) and power supply rejection
ratio (PSRR). The AFE in this work attains a noise efficiency factor of 2.78, corresponding to a power
efficiency factor [6] (PEF, also known as NEF2xVDD) of 3.9. The AFE achieves an input-referred noise
of <10 µVrms with a <100 nW power consumption, which demonstrates a very good balance for the
noise–power trade-off, compared to state-of-the-art amplifiers. Figure 1 presents a comparison of
power consumption versus root mean square (RMS) input-referred noise per square root of bandwidth
for the recent state-of-the-art signal acquisition systems [6–18]. The proposed AFE has the lowest
input-referred noise per square root of bandwidth compared to the state-of-the-art AFEs with power
consumptions below 100 nW. Constant PEF contours are shown on the figure, highlighting the
low-power and low-noise trade-off for designs of amplifiers with similar PEF. PEF is used here to
account for noise, current, and required voltage headroom of amplifiers.
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Figure 1. Power efficiency comparison between this work and other state-of-the-art works in power
efficiency factor (PEF) (NEF2xVDD) contours. [6–18].

The presented AFE was also integrated in a self-powered physiological monitoring System on
Chip (SoC) [2]. The performance of the AFE was validated in a real-world test scenario, by capturing
and processing ECG bio-signals from human subjects. The AFE output signals were digitized on the
SoC using an integrated successive approximation (SAR) analog-to-digital (ADC), and they were used
to successfully perform ECG heart rate (R-R) extraction.

The outline of the paper is as follows. We introduce the AFE architecture in Section 2, focusing on
the three-stage AFE integration and features of circuit building blocks. In Section 3, we discuss
the state-of-the art low-noise biopotential amplifiers and present the low-noise amplifier design in
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this work. The design considerations for a low-noise low-power design of the AFE are discussed
here. Section 4 presents the designs of the low-pass filter and variable gain amplifier. Finally,
the measurement results for the AFE chip are discussed in Section 5 and the AFE integration on
the SoC and real-world test scenarios for arrhythmia detection are presented, and we conclude in
Section 6.

2. AFE Architecture

To meet the low-power and low-noise performance requirements of battery-less signal acquisition
sensors, and the specifications for the ECG signal detection, the AC-coupled ultralow-power analog
front-end was employed as shown in Figure 2. Achieving minimum input-referred noise performance
and high power efficiency at low current levels is a major challenge. This is enabled by several
considerations in the architecture and component level design of the AFE. The fully differential
non-chopping capacitive feedback architecture was chosen in order to transfer the high dynamic
range and hence gain requirements of the AFE to the lower ECG band frequencies, as opposed
to chopper amplifiers where the amplification is done at higher chopping frequencies. The low
supply voltage and efficient weak inversion biasing approach in the design of the AFE’s building
blocks enables low-power and high-gain realization of the AFE. Transistor-level low-noise design
considerations were implemented in the design of the AFE to enable a low-noise performance. In this
work, we present a fully integrated AFE, which realizes a low-noise performance, as well as an
ultralow-power consumption, and ensures enough circuit reliability, bandwidth, and precision to
enable practical ECG monitoring applications. The AFE consists of three stages and includes a low-noise
instrumentation amplifier (LNA), a tunable bandwidth low-pass filter (LPF), and a variable gain
amplifier (VGA). A self-biased current reference generator provides bias currents to the building
blocks of the AFE, and a digital control scan chain block sets the gain and bandwidth of the AFE by
programming the integrated voltage digital-to-analog converters (DACs).
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Figure 2. Block diagram of the analog front-end (AFE).

The differential input bio-signals are capacitively coupled to the input LNA to reject DC offsets
introduced at the electrode tissue interface. The LNA provides a mid-band gain of 30 dB, and therefore
alleviates the following stages input-referred noise requirements. The high-pass corner frequency of
the AFE is set by the feedback resistors and capacitors in the LNA. The LNA is followed by a tunable
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low-pass filter, which controls the low-pass corner frequency of the AFE and provides a tunable
bandwidth of 40–250 Hz. This corner frequency was chosen in order to capture the usable spectral
content in a typical ECG signal. The LPF is loaded by the VGA, which has a programmable gain with
a 21 dB range. As a result, the total gain of the front-end can be adjusted from 31 to 52 dB based on the
input data. Extensive digital tuning, controlled with the digital back-end on the chip, is implemented
to account for the sensitivity of pseudo-resistors to process variations.

As for the power distribution among the three stages of the AFE, the LNA consumes 27 nW,
which is the most power consumption among all the blocks to enable a low-noise performance.
The following stages have much less contribution to the overall noise performance, therefore, the filter
has a much lower power consumption at 5 nW. Finally, the third stage, VGA, has a negligible noise
contribution but drives larger capacitive loads due to the integration with the ADC; therefore, its power
consumption lies between those of the LNA and LPF and is 20 nW.

3. Low-Noise Amplifier Design

3.1. State-of-the-Art Biopotential Low-Noise Amplifiers

Reducing the amplifier power consumption while keeping the noise level the same is crucial for a
wide range of energy constraint applications. The input-referred noise of the overall AFE is dominated
by the noise performance of the first stage of the amplifier. Therefore, the current consumption in
LNAs is often set for an optimized noise–power trade-off. Many outstanding research works have
been carried out to address the power–noise tradeoff of AFEs [6–18]. One main idea in these designs
is to increase the transconductance (gm) of amplifiers by keeping the bias current constant. The AFE
designs in prior work include inverter-based LNAs, where the amplifier gm is increased by using
stacked PMOS and NMOS pairs [18]. Another design approach is current-reuse through stacking
amplifiers to further boost gm of the overall amplifier [19]. The AFE in [18] achieves a very good noise
efficiency factor (NEF) by using a single-stage current-reused differential amplifier topology. However,
it requires a high supply voltage due to the cascode configuration and is not suitable for low-voltage
ULP energy-harvesting sensors. Additionally, the orthogonal current-reuse amplifier in [19] achieves a
high level of current-reuse by using N-time current-reuse between N-channel inputs. The 2N number
of outputs are then combined, which results in an increased power consumption due to the additional
peripheral circuits, which is not desirable.

In addition to the above techniques, the chopping method has been widely employed to enhance
the noise performance of amplifiers [7,8]. Although chopping significantly reduces the flicker noise
contribution of amplifiers, it requires amplifiers with larger bandwidths and chopping clock generation
circuits that can increase the overall power consumption of the amplifier. In chopper amplifiers,
the bio-signals are up-converted to a higher frequency and the amplification is done at high frequencies,
therefore, the power consumption performance of the amplifier is not optimized. Additionally,
this technique reduces the DC input impedance of the sensing front-ends [9], and the low input
impedance can generate harmful offset currents.

In this work, we were able to lower the flicker noise corner frequency of the AFE below 100 Hz
by keeping the power consumption less than 100 nW. This is enabled by using weak inversion
biasing and low-noise design techniques, without the necessity of using chopping modulators. This
allows the amplifier to operate at lower frequencies compared to chopper amplifiers. The frequency
domain behavior of the voltages in chopper amplifiers and in the non-chopper approach is presented
in Figure 3.
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3.2. Low-Power Low-Noise Amplifier

3.2.1. Capacitively Feedback Amplifier

The LNA block diagram is shown in Figure 4a. It uses capacitive feedback topology, a popular
topology in biomedical recording amplifiers [20], and uses capacitors to set the mid-band gain and
to reject DC offset from the input signals. A fully differential architecture is used to achieve a high
PSRR and CMRR. The ratio of the capacitors Cf and Cin sets the gain of the LNA amplifier. The lower

cutoff frequency of the amplifier is set by 1/
(

2πR f C f

)
, where R f resistors are implemented by

pseudo-resistors. Pseudo-resistors can realize resistances larger than 1012 Ω by occupying a small
area. We have used thick oxide PMOS devices to implement the pseudo-resistors due their better
noise performance. The tunable lower cutoff frequency of the amplifier is adjusted by selecting the
pseudo-resistors in the feedback path of the LNA with 4b resolution.
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The input-referred noise of the overall amplifier can be estimated using the capacitive feedback
circuit diagram of the LNA shown in Figure 4a. From the nodal analysis, the operation of the feedback
amplifier can be described by the feedback block diagram of Figure 4b, where v2

n,OTA represents the
input-referred noise per unit bandwidth of the operational transconductance amplifier (OTA), and Cp
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represents the parasitic capacitance at the input of the amplifier. According to the block diagram of
Figure 4b, the overall input-referred noise of the LNA can be expressed as

v2
n,LNA =

1 + sr f

(
Cin + C f + Cp

)
sr f Cin

2

. v2
n,OTA (1)

3.2.2. Design of the OTA

Due to the low supply voltage, cascode and current-reuse topologies for the amplifiers are
impractical. Therefore, all three main blocks in the design are implemented by two stage differential
common source amplifiers with PMOS input devices for the best noise and power efficiencies.
The circuit implementation is illustrated in Figure 5a. Currents and dimensions in the amplifiers
are optimized for the input-referred noise, gain, power, and loading conditions in each stage of the
AFE. The device dimensions for the main transistors in the OTA for the LNA are shown in Figure 5a.

According to Equation (1), in order to achieve a low-noise performance, the input-referred noise
of the OTA, v2

n,OTA , needs to be minimized. It is well known that to ensure a low input-referred
noise, as well as a low power consumption, the Gm of the first stage amplifier in the LNA has to
be maximized. Therefore, the currents in the first stage differential pair are set at a higher value
than the second stage to meet the noise requirements. The input-referred noise of the OTA can be
approximated by the input-referred noise of the first transconductance stage, which is dominated by
the noise contributions from the differential PMOS (M1 and M2) input pair and the NMOS (M3 and
M4) load devices. Using the transistor’s small signal parameters, the input-referred thermal noise of
the OTA can be approximated as

V2
n,OTA,th =

1
gm1

2

(
4kTgm1

κ
+ 8kTγgm3

)
(2)

where k is the Boltzmann’s constant, T is the absolute temperature in kelvin, γ is the noise excess factor
of transistors in strong inversion, and κ is the reciprocal of the sub-threshold slope factor np.

The input-referred flicker noise can be calculated as:
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where Cox is the gate dielectric capacitance, and Kn and Kp are process-dependent values that represent
the PMOS and NMOS flicker noise constants.
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In order to minimize the input-referred thermal noise and to achieve maximum gm, transistors M1

and M2 are biased in the sub-threshold region with low bias currents. A constant gm current reference
with voltage regulation is used as the current reference generator, providing the bias current for the
amplifiers (Figure 5b). In the sub-threshold region, gm of the transistors is independent of the device
width and is proportional to the driving current. Therefore, for a given current level, it is advantageous
to operate the input transistors M1 and M2 in the sub-threshold region to achieve a high gm efficiency.

According to [21], PMOS and NMOS devices have a lower noise contribution in the weak inversion
region for low frequencies (1 mHz to 100 Hz) compared to strong inversion. However, Equation (2)
suggests strong inversion biasing for a low thermal noise contribution for NMOS load devices in the
OTA. For an optimized noise performance, in order to minimize the flicker noise contribution of the
NMOS devices in low frequencies, as well as to satisfy the low thermal noise requirement suggested
by Equation (2), these transistors are biased in the near-threshold region.

In order to further reduce the flicker noise and to lower the noise corner frequency, the input
devices are implemented with large gate area PMOS transistors (M1,2). In addition, long NMOS devices
M3 and M4 (L = 20 µm) are employed as the load in the differential pair to achieve a lower gm3,4

(transconductance of M3 and M4) value and hence further improve the flicker noise and thermal noise
performance. Equation (1) highlights the importance of the parasitic capacitance at the differential
input of the OTA. While using large transistors at the differential input of the OTA reduces the flicker
noise corner frequency, it can degrade the overall input-referred noise of the amplifier. Therefore,
in this design, a proper sizing for the transistors was implemented to address this trade-off.

The design considerations mentioned above and the biasing technique approach allow us to
considerably lower the noise corner frequency, as well as reduce the thermal noise level, and to
implement a low-power low input-referred noise instrumentation amplifier at the ECG signal
frequency level.

4. Low-Pass Filter and VGA Design

The tunable bandwidth low-pass filter controls the upper corner frequency of the AFE and
adjusts the input voltage swing at the input of the VGA to prevent any distortion or clipping of the
AFE’s output signal. A multiple feedback topology is employed for the differential second-order LPF,
which offers an increased dynamic range in the output, as shown in Figure 6. The gain of the filter is set
by the ratio of the pseudo-resistors R1 and R3, and the upper cutoff frequency is tuned by the variable
pseudo-resistors R2 with fixed capacitors C1 and C2. The employed architecture has the advantage
of having separate controls over bandwidth and gain. A 5b voltage mode resistive DAC is used to
program the cutoff frequency of the LPF. The use of variable pseudo-resistors for gain and bandwidth
tuning, instead of capacitor arrays, has the advantage of minimizing the area, which is one of the key
factors in energy-harvesting signal acquisition devices.
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Figure 6. Circuit implementation of the low-pass filter (LPF) and variable gain amplifier (VGA).

As the last stage of the amplifier, the VGA provides sufficient gain for the maximum voltage
swing. Similar to the LPF, the gain of the VGA is defined by the ratio of resistors Rfeedback and Rin and
is tuned by varying the value of the pseudo-resistors in the feedback path by adjusting the control
voltage values applied to the gate of the transistors. The variable pseudo-resistors are controlled by a
5b voltage DAC that is programmed by the digital back-end. The circuit implementation of the VGA is
shown in Figure 6.

5. Experimental Results

5.1. AFE Performance Measurements

The prototype was fabricated in a 130 nm CMOS process, and the AFE core blocks, not including
the I/O pads, occupy an area of 0.24 mm2. Figure 7 shows the die micrograph of the AFE chip.

The LNA–VGA chain consumes 53 nW of power and delivers a variable gain of 31–52 dB.
The measured gain and bandwidth of the AFE are presented in Figure 8. All the measurements were
done at room temperature with a measured ±2 dB gain variation in the 0–40 ◦C range. The AFE
offers a digitally tunable bandwidth control, where the lower corner frequency is set by the LNA and
varies from 0.5 to 5 Hz. The upper corner frequency is adjusted to meet the ECG signal monitoring
requirements. Most of the diagnostic information in ECG signals is contained below 100 Hz [22],
and the AFE is designed to satisfy this requirement with a tunable bandwidth up to 155 Hz at the
maximum gain. For applications with higher frequency contents, such as ECG signals for infants,
the bandwidth can further be increased by sacrificing the gain of the VGA stage with a constant
gain–bandwidth product. For example, for a tunable bandwidth of up to 250 Hz, the AFE can provide
a gain of 39 dB.
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Figure 9 shows the measured input-referred noise density of the amplifier. The measurements
show a good matching to the expected performance, confirming the power-efficient low-noise design
techniques of the AFE. The AFE has a measured RMS input-referred noise of 2.8 µV over a 155 Hz
bandwidth and has an input-referred noise density of 200nV/

√
Hz at 155 Hz. The circuit exhibits a

noise efficiency factor (NEF) of 2.78, which is well in range with other state-of-the-art AFEs. This work
realized a PEF (NEF2xVDD) of 3.9, while maintaining a balanced power consumption–input-referred
noise trade-off. As shown in Figure 1, the proposed AFE has the lowest input-referred noise per square
root of bandwidth compared to the sub-100nW state-of-the-art AFEs. The measured CMRR and PSRR
exceed 60 dB and 70 dB over the bandwidth of the AFE. Total harmonic distortion (THD) is measured
in the low-gain setting of the AFE. The THD stays below 1% for inputs less than 2.5 mV peak–peak.
Table 1 summarizes the measured performance of the AFE and presents a comparison between this
work and the state-of-the-art AFEs [6–8,10,18].
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Table 1. Performance summary and comparison with the state-of-the-art biopotential AFEs.

This Work [6] [7] [8] [10] [18]

Technology (nm) 130 65 180 180 130 350
VDD (V) 0.5 0.5 1 1.8 1.2 2.5
Area (mm2) 0.24 0.013 0.25 - 0.4 0.17
Blocks in comparison AFE AFE, ADC AFE AFE AFE AFE
Power (nW) 68 5040 266 8250 * 5300 82.5
Gain (dB) 31–52 32 42–51 52–80 45–71 40.7
HP corner Freq. (Hz) 0.5 1 1 0.07 1 0.05
LP corner Freq. (Hz) 40–250 300–10,000 500 30–100 100 100
Input Referred Noise
(µVrm)

2.8
[1.5–155 Hz]

4.9
[300 Hz–10 kHz]

1.54
[1–500 Hz]

0.91
[0.5–100 Hz]

0.45
[1–100 Hz]

2.8
[0.05–100 Hz]

Input Impedance (MΩ) 115 N/A N/A >500 >100 N/A
NEF 2.78 5.99 1.38 5.12 3.7 1.96
PEF 3.9 17.96 1.9 47* 16.4 9.6
CMRR (dB) 62 75 89 >90 >95 >70

* This value is calculated based on the reported performance.
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5.2. Arrhythmia Diagnosis

The AFE is also integrated on an energy-harvesting continuous monitoring SoC [2], and the SoC
is used to perform human ECG signal acquisition in a real-world scenario. In the SoC, the AFE is
directly coupled to an integrated single-ended 12-bit SAR ADC. When enabled, the ADC uses the clock
generated on the SoC to provide 12-bit parallel output every 16 clock cycles. The combined power
consumption of the integrated AFE and ADC is 301 nW at 0.5 V. The input impedance of the AFE
is measured at 115 MΩ, which is sufficient for our measurements of ECG signal acquisition. In this
measurement setup, we have used the commercial, 3M 2560 Red Dot, electrodes to successfully capture
ECG data from a human subject. The performance of the AFE with dry electrodes, where the input
impedance imbalance from electrodes can cause large DC drifts, has not been evaluated.

The digitized ECG signals were processed and analyzed off-chip using heart rate
extraction algorithms. The R-R extraction algorithm is based on the popular Pan–Tomkins
algorithm [23]. The algorithm uses an initial 4 s time frame to estimate the DC baseline value for the ECG
waveform, and through thresholding and time windowing, extracts the ECG R-peaks. Desired accuracy
can be achieved by adjusting the sampling rate in the algorithm. Figure 10 shows the measured R-R
interval for the ECG signal calculated by the R-R extraction algorithm, with a sampling rate of 200 Hz.
The annotated numbers represent the number of samples between consecutive peaks.
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6. Conclusions

An ultralow power ECG AFE with a balanced noise and power performance is presented
in this paper. The AFE provides bio-signal monitoring with programmable gain and bandwidth,
amplifying ECG signals as low as a few microvolts while consuming <100 nW. To realize a high-noise
and -power efficiency, a weak inversion biasing technique was used together with other low-noise
design techniques. The proposed AFE has a power consumption of only 68 nW operating at 0.5 V
supply voltage. The AFE provides a variable gain of 31–52 dB with NEF and PEF of 2.78 and 3.9,
respectively. It was fabricated in a 130 nm CMOS technology and occupies an area of 0.24 mm2.
Arrhythmia diagnosis algorithms were implemented and the feasibility of the AFE performance for
energy-harvesting applications was validated by integrating it on a battery-less SoC and successfully
performing human ECG signal acquisition with an R-R extraction algorithm.
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