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Abstract: Static schedules for systems can lead to an inefficient usage of the resources, because the
system’s behavior cannot be adapted at runtime. To improve the runtime system performance in
current time-triggered Multi-Processor System on Chip (MPSoC), a dynamic reaction to events is
performed locally on the cores. The effects of this optimization can be increased by coordinating the
changes globally. To perform such global changes, a consistent view on the system state is needed,
on which to base the adaptation decisions. This paper proposes such an interactive consistency
protocol with low impact on the system w.r.t. latency and overhead. We show that an energy
optimizing adaptation controlled by the protocol can enable a system to save up to 43% compared to
a system without adaptation.
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1. Introduction

With the increased usage of mixed criticality systems (MCS), a single system on chip (SoC) can
harbor an ample amount of applications at the same time. These various applications share the SoC
resources, thus using the hardware at its full capacity. The MCS are popular because of their reduced
size, weight and the resulting reduced manufacturing cost. The wrong implementation of the MCS
can lead to failures, when the applications are not segregated properly, and low criticality applications
can affect high criticality ones. To ensure the system stability, safety-critical systems use precompiled
schedules to ensure spatial and timely segregation. These schedules, while vital to the system health,
are unfortunately pessimistic in terms of the makespan. To compute static schedules, the scheduler
has to assume the worst case for the execution time (WCET) of a process, to guarantee that it can finish
within its time slot.

At runtime, the difference between the worst case and the real system state can be exploited for
the benefit of the system. Using a meta-scheduler [1], a set of schedules can be computed at design
time, between which the system can switch at runtime. A so-called meta-scheduler is an application
that computes a directed acyclic graph (DAG) of schedules that can be reached at runtime. The DAG
dictates when a schedule change can be performed and which requirements need to be observed for
the change to happen. The adaptation can be performed based on all kinds of runtime phenomena,
which can be quantified and observed. This finite set of values is called the contextt and is defined
as the system state w.r.t. the observed attributes at time t. At runtime, a mode-change state machine
realizes the behavior computed by the meta-scheduler. The mode-change state machine observes the
system at all instances t where, based on the context at this time contextt, it either changes into a new
schedule or continues with the current schedule, as shown in Figure 1.

J. Low Power Electron. Appl. 2017, 7, 13; doi:10.3390/jlpea7020013 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
http://dx.doi.org/10.3390/jlpea7020013
http://www.mdpi.com/journal/jlpea


J. Low Power Electron. Appl. 2017, 7, 13 2 of 18

schedtstart

schedl
t+1

schedt+1

contextt = slack

contextt = no slack

Figure 1. Each node represents a schedule. Based on the context of the system, the schedules can be
changed into a low power schedule or remain the same, if an adaptation is not feasible. In this example
of the mode-change state machine, the state qt can observe two context types: either its observes slack
or not. In case the context indicates slack, the schedule will be changed, and an alternative state qalt

t+1 is
reached. If no slack is observed, the schedule will stay the same, but the meta-scheduler changes into
state qt+1, where it can observe a new instance of slack.

One example for an exploitable runtime behavior is dynamic slack, which is defined as the time
difference between the WCET of a process and its real execution time at runtime. As the schedules
have to be computed with the goal to provide each process enough time to finish during its slot, the
WCET is usually much longer than the average execution time. As can be seen in Figure 2, the WCET
assumption is especially pessimistic for highly critical applications as these applications must finish
their execution at all costs. At runtime, this unaccounted time can be used to rearrange the later
scheduled processes to optimize the system performance. The slack is only one example for exploitable
system behavior.

Figure 2. WCET distribution; only a few processes actually use the whole WCET time; one third already
stops within the first third of the time slot. The execution time (Exec. Time) of a process depends on so
many factors that definite knowledge about the best case execution time (BCET) as well as the worst
case execution time (WCET) cannot be made. WCET estimations can only place a lower (LB) and upper
bound (UB) on the expected execution time, which will include an overestimation [2].

Locally, these changes can be performed directly, since only the local core’s context must be
known to perform a change. The core is aware of its own schedule, state and future scheduled
processes; therefore, the decision to switch schedules can be taken without impacting the overall
system performance. However, if, for example, one wants to use the advantage of dynamic slack
to start a process that is performed on another core, then one needs to assure that the other core is
not busy. These changes can only be performed if the current state of all cores that are affected by
the change is known. This paper proposes a broadcast protocol with low overhead and latency for
this purpose.
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This paper is structured into six sections. It begins with the Introduction followed by Section 2,
which presents related work and points out where our contribution provides improvements. Then,
Section 3 will describe the system model and the requirements. In Section 4, we will describe the
interactive consistency protocol and its implementation. In Section 5, we will describe the simulation
we used to verify our solution, before we draw a conclusion in Section 6 and describe the plans for
future work within this field.

2. State of the Art

This section points out related work in the targeted research field. We differentiate between
adaptation on the network on chip (NoC) and the establishment of global states on an SoC, as to our
best knowledge, no combined approach exists.

2.1. Dynamic Adaptation on NoC

The super scheduler proposed by [3,4] is used to react to unforeseen catastrophic events. In these
cases, the system needs to reach a safe state as soon as possible. The super scheduler injects new high
criticality messages into the system to deal with the sudden events while maintaining the real-time
deadlines. The previous high critical events of the normal application execution get downgraded and
interrupted by the new events; this induces errors of up to 0.7% failure rates.

In our approach, we adapt the schedules according to a predefined plan therefore avoiding errors
that result from unpredicted schedule changes. Moreover, we expand the adaptation to enable the
system to adapt to a user-definable context.

2.2. Establishment of Global State

Paukovits [5] introduced the pulsed data stream for a time-triggered NoC (TTNoC). It is a stream
that goes around the mesh of an NoC. Each core reads the message and relays it to the next neighbor.
The transmission is effective and has a time boundary, but we wish to have a protocol that would strain
the network less, as depending on the context, the state consistency could be performed frequently,
e.g., to react to slack, the system state must be exchanged often.

Lodde et al. [6] have shown that the NoC is not suitable for broadcast protocols as such.
They proposed to add a control network within the NoC switches: each switch is equipped with an
additional set of wires, which can be used for the broadcast. They have shown that the additional
network increases the performance of their coherence protocols. Our approach is similar in a way, in
that we also aim to create a dedicated interconnect for the consistency protocol, as we also reached the
conclusion that the NoC is ill suited for it.

Manevich et al. [7] proposed centralized adaptive routing, which reacts to the current network
status. Their scheme continuously monitors the network status and adapts the routing accordingly [7].
They discuss that the NoC’s small size allows establishing a global state of the NoC and, based on that,
make optimized decisions. They also exchange the network state using a separate network, realized in
hardware next to the normal NoC. As mentioned before, we adapt the idea of a separate network for
the exchange of our context information.

3. Interactive Consistency Protocol

The interactive consistency protocol is a way to establish a globally-known state of the system.
The goal of the protocol is to propagate the locally-observed core’s context contextt quickly and with
low overhead, therefore enabling the system to establish a global knowledge of the contextt without
disturbing the application’s communication.
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3.1. System Model

We assume a system where an arbitrary amount of cores is connected via an NoC. The whole
system is an MCS; therefore, each core can contain applications of varying criticality. To ensure that
processes of lower criticality cannot impact processes of high criticality, the processes are temporally
and spatially separated by a predefined execution schedule [8]. The schedule defines the execution
start time and allocates the resources for the duration of the processes’ WCET.

We assume that the applications need to exchange messages between cores via the NoC due
to dependencies between the processes. This means that the local execution schedules can only be
defined with knowledge regarding the message’s transmission delays, which is why we schedule the
communication. The communication schedules define the message injection times, meaning that a
message will not be injected at the time the application sends it, but at the scheduled time. The message
will be buffered within the NI until it can be sent [9]. An example of the schedule dependencies can
be seen in Figure 3. In this case, the process p1 can only start after it receives message m1 sent by
process p0.

time t
0.0 200.0 400.0 600.0 800.0

CoreA

Link

CoreB

p0

p1

m0

Figure 3. An example scenario where two cores are interdependent because the process p1 is waiting
for a message from process p0 to start its computation.

As one can see, it is essential for such a system that the communication and the execution
schedules are aligned with each other. Changes on one schedule impact the other one as the process
could miss the message injection slot, and the message could be delayed for up to a period in the worst
case. Such missing temporal alignment of the cores can lead to failures, when inputs of processes are
not available in time. Sensor values are a good example of this, as they loose their validity as time
passes. When a flight controller needs the sensor data to compute the next motor impulses, a delay of
sensor data can lead to wrong flight maneuvers.

We can distinguish two types of adaptation in a time-triggered system:

• Local adaptation
• Global adaptation

Local adaptation optimizes the schedule of one core without affecting the rest of the system.
The interface between the core’s local schedule and the NoC’s communication schedule is kept as
it is; therefore, the message injection does not change. If for example the adaptation would react to
dynamic slack, Core 1 could be clocked down to provide the message exactly at the scheduled time for
the message injection.

Global optimization can use the slack to execute dependent processes in other tiles at a lower
frequency and voltage, thus saving more energy. To use the slack globally, the communication schedule
of the NI needs to be changed to inject the message directly into the NoC, and the local schedules of
the depending cores have to be changed to start their computations earlier accordingly.

The global adaptation requires additional functionality within the NI where a state machine is
implemented, which dictates for which context the schedule will be changed. A global consistent
system state is essential for the synchronous and aligned switching between schedules at different cores
and NIs, thereby preserving the properties of time-triggered systems such as implicit synchronization,
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avoidance of contention and determinism. A state machine realized in hardware enables a fast reaction
to the volatile context information. If a predicted context is observed, the NI needs to change the local
communication and execution schedule. Establishing the system-wide knowledge of the global system
state for adaptation, often also called consensus [10], is the goal of our work.

3.2. Requirements

To be applicable in embedded real-time systems, the consistency protocol must ensure low
overhead and satisfy real-time constraints: The low overhead is essential for the real-time requirements
of the system it is supposed to optimize. The usage of the protocol may in no way lead to deadline
misses in the applications. The protocol execution time must therefore be kept to a minimum. If the
overhead in terms of time and resources exceeds the gain from the adaptation, the protocol defeats
its purpose. The fast protocol runtime is also essential in terms of context relevance. The faster the
consistency of a context that can be provided, the more relevant the adaptation and its optimization
will be for the system. Further, the real-time requirements must be ensured at all times; therefore,
the consistency protocol has to be implemented in a way that no deadlines are missed due to the
additional protocol.

3.3. Protocol Description

The protocol we propose is a broadcast protocol that distributes the local context to all cores.
This way, all cores know the context of all other cores and share a unified view on the global context.
The protocol is performed periodically at a rate that can be optimized for each system, because the need
for adaptation varies according to the observed context. It will be realized in hardware within each NI
where the context can be used by the mode-change state machine to perform eventual adaptations.

The protocol has two phases:

• collection of local context data
• propagation of local context

The protocol starts with the collection of context. The core sends its observed local context to the
NI. It will collect all information until the consistency phase starts. As soon as the propagation phase
starts, the assumed context state freezes for the duration of the establishment process. New context
events will be collected, but not included in this execution of the protocol. They will be used in the
next execution. This is shown in Figure 4 where one can see that the two protocol phases overlap.
The propagation phase of a protocol execution that started at time t is performed at the same time as
the context collection phase of the protocol execution that will start at t + 1.

Figure 4. Protocol time-line: the protocol phases overlap, as the collection phase of the next execution
starts as soon as the propagation of the current execution begins.
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The collected state information is sent to all other cores. Each core concatenates the information of
the other cores onto its own after receiving it, as described in Algorithm 1. Once the broadcast of local
information is finished, each NI will have a string containing the global context. This global context
will be sent to the mode-change state machine.

Algorithm 1: Basic consistency protocol description.
Input: Bitstring of local context information collected by a core
Output: Bitstring of a globally-known context
gContext = Input from core ;
if t=Period then

send gContext to other core;
while IncommingMsg < n;
do

gContext = gContext ⊕ other core’s context ;

else
Wait

Freedom of Interference with the Real-Time Constraints

We ensure the timeliness of the applications by scheduling the communication and computations
w.r.t. their time constraints. State of the art schedulers [11,12] generate such a schedule using two
models: the application and the physical model. The application model describes in detail the
inter-process relationships, precedence constraints and deadlines. This model will be mapped by
the scheduler on the physical model, which describes the hardware, topology and interconnection.
Only schedules where processes and messages defined in the application model can be executed
under their defined constraints are valid outputs of the scheduler. The interactive consistency protocol
provides additional messages that need to be considered in the application model. The resulting
schedule then ensures the timeliness of the application while at the same time offering communication
slots for the interactive consistency protocol. If a feasible schedule is found by the scheduler at design
time, no impact of the interactive consistency protocol on the delays of application message can occur
at runtime. However, the additional messages can make the search for a feasible schedule harder.
This drawback is avoided by a dedicated interconnect for the agreement in this paper.

3.4. Timing Model for State Establishment

The timing is crucial for the consistency protocol. The context should be known to all cores as
soon as possible to maximize the potential efficiency improvements. If for example the system should
adapt to slack times, the information must be used as soon as possible, because the occurrence of slack
is highly volatile. The consistency protocol must therefore be finished within a fraction of the slack
time. The protocol is basically a discrete sampling of the system state where the frequency defines the
accuracy of the state image.

In the following, three different protocol frequencies within a period are shown: the first one
establishes the system state once per period, the second one three times per period and the last one
seven times, as shown in Figures 5–7. These varying frequencies can be useful for different kinds
of applications. The first type in Figure 5 is applicable to systems where the application’s behavior
is mostly static and the context is mainly defined by slowly changing attributes like battery level or
environmental temperature. The second type in Figure 6 and the third type in Figure 7 can be chosen
based on the context type. The more often it is expected that the observed state is changing, the more
frequently the consistency protocol is needed.
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Figure 5. The protocol can be executed up to the systems needs in a frequent or less frequent way.
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Figure 6. More frequent execution of the protocol.
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Figure 7. The more often the protocol is executed, the more information about the system state can be inferred.

The frequency further also dictates at which instances the schedule can be changed: if only one
state consistency establishment is performed during a period, only one schedule change can be done.
The scheduler therefore has to be aligned with the interactive consistency protocol, meaning that the
meta-scheduler has to define changes for the same time steps as they will be monitored at runtime.
The respective mode-change state machine must also be based on the same time steps as are used in
the consistency protocol. If done correctly, possible timing inconsistencies are avoided. For example,
a process could finish at a time t within a period, and the scheduler would predict that the slack
can be used for adaptation and would mark this as a trigger for change. If the protocol evaluates
the trigger at a slight offset, valuable time can be lost, and the decision on a change cannot be taken
precisely anymore.

Therefore, it is also crucial to perform the consistency protocol at time instances where the context
change can be detected. For example, in the context of slack, the trigger most likely occurs, as was
mentioned in Section 1, within the second half of the process’s time slot. If one would use a frequency
as shown in Figure 8, where the dashed line indicates the protocol interval, the slack cannot be
monitored, because the protocol is only performed at the end of the time slot with the duration of the
assumed WCET. Even if the process ended earlier, the system would have no way of noticing that or
reacting to it.
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Figure 8. The timing for the state consistency depends on the context one likes to observe. In this case,
the slack could not be detected, as the protocol was executed right after the WCET.

Simply performing the protocol on top of a running schedule will lead to undefined changes, as
the granularity of the scheduled context change protocol can be different than the time granularity of
the mode-change state machine. If a mode-change is performed based on the context gathered in the
time interval [t0, t1], the adaptation trigger can contain all context triggers that occurred until t1. If the
adaptation frequency is off by only 10 clock cycles, as can be seen in Figure 9 where the red line marks
the adaptation scheduling frequency and the black line the consistency protocol interval, the adaptation
will never be performed, as no input is known to the mode-change state machine. The consistency
protocol must provide the adaptation with the system state whenever a schedule change can be
performed. Due to the runtime of the consistency protocol, the adaptation for the system state t0 is
performed at the tick t1 + tconsistency.

time(ticks)
0.0 200.0 400.0 600.0 800.0

NodeA

Link

NodeB

p0 p4 p1

m0

p0

p0

Figure 9. The mode-change state machine expects a context value that cannot be provided by the
consistency protocol, because they are running out of sync. This would cause the adaptation to fail.

4. Implementation

This section describes the implementation of the protocol. We present two approaches to
implement the protocol on a system with a mesh-NoC, which is the most common NoC topology due
to its low manufacturing cost [13]:

1. We use the available NoC links to propagate the current system state
2. We add dedicated links to the architecture to perform the protocol

4.1. NoC-Based Approach

The consistency protocol occupies the network during its execution for a time frame of m + n + 1
hops to exchange the local context state via the communication network. This means that the usual
NoC traffic must be scheduled to avoid any conflict with the protocol messages. Incorporating the
protocol’s messages into the application model of the scheduler guarantees the system’s real-time
requirements with the resulting schedule.

Since most NoCs do not provide broadcast algorithms, we needed to formulate a broadcast
protocol for the state consistency. Our proposed protocol is round-based to reduce the time needed for
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the propagation. In the first round, which starts right at the beginning of the interval, we let every core
send its local information to all neighbors. Then, all cores wait till they received the information from
all neighbors and concatenate the information to a new intermediate context string. Once all neighbors’
information is gathered, the intermediate context will be sent to all neighbors again, as shown in
Algorithm 2. Figure 10 shows how the local context bits expand through the network. In the top left
corner, you can see the first stage of the protocol with each core knowing only its own local context.
In the second step, shown in the top right corner, the transmission of the local context is performed in
the direction of the arrows; leading to the intermediate state shown in the bottom left corner, where
the cores are aware of their neighbors’ context, as well. After performing another transmission of
the complete locally known context, all cores know the context values of all other cores. This will be
repeated for n + m + 1 times with n and m being the number of rows and columns in the network,
because this is the amount of hops it takes for one edge to reach the opposite edge.

Algorithm 2: NoC consistency protocol description.
Input: Bitstring of local context information collected by a core
Output: Bitstring of a globally known context
gContext = Input from core ;
if t=Period then

send gContext to neighbor;
while IncommingMsg < n;
do

gContext = gContext ⊕ NeighborContext ;
send gContext to all neighbors;

else
Collect Status Data

Figure 10. Propagation on NoC: the four cores are connection via the NoC, represented by the
lines. The colored sticks show how the local context is traversing through the network for each
propagation step.
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4.2. FIFO Approach

An alternative to the usage of the NoC for the consistency protocol is the use of dedicated links
between the NIs serving as FIFOs. These additional links will not only transmit the messages faster,
because only one send operation will be performed, instead of various transmissions between the
NoC’s routers, but they also do not influence the scheduling problem of the NoC. To access the links,
two buffers are added in the NI; one buffer is the sending buffer where the agreement layer will place
the local context to send it to the next neighbor, while the other buffer is the receiving buffer for the
other neighbor’s local context, as seen in Figure 11.

Figure 11. Hardware block of the establishment Layer. The layer is located within the NI and has
dedicated connections to its direct neighbors in the dedicated FIFO ring. As the communication
channels are unidirectional, the layer can only actively communicate to its right neighbor and receive
information from its left neighbor. After establishing the global context, the layer has a direct link into
the adaptation manager where the local NI’s schedule changes will be performed by the mode change
state, machine taking the global context as an input.

This means that the consistency protocol can be performed without restrictions for the regular
communication. In order to minimize the additional wires, we only use a uni-directional link
between the NIs that connect them in a ring shape. This way, the propagation is performed in
a ring: at the beginning, each NI simultaneously sends its local context to its right neighbor and
waits for the left neighbor’s context to arrive, as seen in Figure 12. Once it received the neighbor’s
message, it concatenates the new information to its local knowledge and relays it to its right neighbor.
The protocol can stop as soon as the core receives its own original information from the left neighbor,
as described in Algorithm 3. The whole protocol duration increases compared to the NoC version, as
each message has to pass the ring once, meaning that it has to make n hops with n being the amount of
nodes in the network. However, since the transmission on the dedicated link takes only one tick, the
overall duration is typically still smaller than the transmission over the NoC.
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Figure 12. Propagation on FIFO; the four cores are connected via the NoC, represented by the normal
line, and a directional link represented by the arrows. The colored sticks show how the local context
is traversing through the network for each propagation step. In this scheme, the propagation step is
equal to one tick.

Algorithm 3: FIFO consistency protocol description.
Input: Bitstring of local context information collected by a core
Output: Bitstring of a globally known context
gContext = Input from core ;
if t=Period then

send gContext to right neighbor;
while IncommingMsg < n;
do

gContext = gContext ⊕ NeighborContext ;
send gContext to right neighbor;

else
Collect Status Data

5. Simulation

This section focuses on the simulations that were made to evaluate the two variants of the
consistency protocol. We have simulated both implementations in an already existing framework
realized in gem5 [14]. The existing framework provided functionalities to test time-triggered message
injection based on schedules [9], and it was extended with an adaptation unit as shown in Figure 13.
The simulated NI consists of a core interface where messages are enqueued from the core. When the
schedule defines a message to be sent, the egress bridging unit reads the ports and relays the message
to the priority queue, where the message is enqueued in the corresponding send channels. From these
channels, the serialization unit reads the message and packetizes it for the transmission. The adaptation
manager gets the global context from the core interface and, based on its value, pushes the new injection
schedule into the egress bridging unit, as well as into the serialization unit. In the figure, the letters D
and E stand for de- and enqueue; A represent the adaptation signal, which triggers changes; and S
represents the signal, which informs about slack occurrence.

Our interactive consistency protocol completes the setup with the propagation of the local
values. We expanded the hardware model with an additional hardware block dedicated to the
consistency protocol. The additional block injects the context messages into the normal communication.
The message injection is performed based on the time-triggered schedule, which has the protocol
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intervals included. In the FIFO version, the NoC remains unchanged, as the additional FIFOs that
were implemented between the NIs perform their duty decoupled from the rest of the system.

Core

Core Interface

Adaptive
Communication

Egress
Bridging

Unit

Priority
Queue
Unit

Serialization
Unit

Ingress
Bridging

Unit

Network Interface

D E

E S A D

E

D

S

A

A

D E

Figure 13. The architecture of an NI.

Our goal of the simulation is to show that the additional overhead created by the consistency
protocol will not diminish the effect of the adaptation. In the simulation, adaptation is used to save
energy by dynamically changing the system schedule and applying power gating on the cores when
they finish a computation. As a result, we designed our power model to include idle and running
states of the cores. For the core energy usage, we computed the difference of idle and running states as
published by [15].

The simulation is evaluated based on the assumed energy consumption at runtime. In the version
we used, Gem5 does not support power models; therefore, we needed to design a customized model
to measure the energy consumption in the NoC. This power model approximates the consumed power
based on the behavior of CMOS-circuits, by deriving a typical energy consumption per tick. A tick in
gem5 equals 10n s, based on the transmission duration between two routers. Therefore, we assumed
that we have 108 ticks per second. To compute an upper bound for the per tick energy consumption
of an FPGA as described in [16], we took the maximum power value of 30 Watts and divided it by
the ticks per second, giving us the per tick energy consumption of 3× 10−7 Watts. To monitor the
simulated consumption, we add this value for each tick in which a component is running.

To compute the overall energy consumption, the associated core energy usage is added to the
global energy counter each tick, as well. At the end of the simulation, the energy counter is shown.
The traces that were used on the core are created by randomly scaling the WCET to simulate the
unpredictable core behavior. For the results, we have created traces with low slack and high slack.
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We compare our results to a baseline configuration. In this configuration, we let the core run in idle
mode until the WCET is finished.

5.1. Use-Case

We used two use cases to evaluate the runtime behavior of our protocol: a synthetic use case and
an open source benchmark.

5.1.1. Synthetic Use Case

The implemented use case assumes two nodes connected in a 4 × 4 mesh architecture with
16 cores connected to it. We used x-y routing to determine the message paths. There are seven
applications consisting of a set of processes, p0–p7. The assumed processes are located on seven of the
16 cores some need to receive a message from another process before they can start their execution:
p2 depends on p0; p3 depends on p1; p7 depends on p5, which in turn depends on p2. All processes
are high criticality processes. The corresponding schedule can be seen in Figure 14. The goal of our
simulation is to execute the defined schedule with randomly-selected slack times. The slack times will
be made globally known by the context consistency protocol, which in turn will trigger the adaptation
process into a low power schedule where either the upcoming process will be executed at a lower
frequency if possible or the process will be put into idle mode. The scheduling decisions were made a
priori in the meta-scheduler, where the subset of reachable schedules was generated. The simulation
shows that the interactive consistency protocol helps to save energy [1].

time(ticks)
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Node0

Node1

Node2

Node3

Node4

Node5

Node6

p0

p1

p2

p7

p3

p4

p5

p6

Figure 14. The use case schedule for the NoC implementation with context intervals scheduled within.

5.1.2. Results

In the synthetic use case, because all activities are executed with a frequency of 100% when the
adaptive communication is disabled, the consumed energy amounts to 29.4 W. Figure 15 shows the
energy saving that can be obtained with both implementations.

In the figure, one can see that using the NoC for the protocol even with the additional context
consistency, the adaptation enables power savings of up to 8.26 W. Using the dedicated links, the total
energy that could be preserved can be increased to 12.96 W. The increased energy savings in the FIFO
version are a result of the more flexible scheduling of the consistency protocol interval as the FIFO
version must not consider the on chip communication for its execution. This way, the consistency
intervals can be scheduled more often, thus increasing the sampling rate of the system behavior.
The difference between the implementation is marginal, but it already shows the main disadvantage of
an NoC implementation. With increasing on chip communication, the scheduling complexity increases
and fewer protocol instances can be placed within a period.
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E (W)
0.0 1.0 2.0 3.0 4.0

Baseline
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NoC Implementation

29.9

21.14

16.44

Figure 15. Energy consumption of the whole on-chip system per second in the synthetic use case
simulation. The baseline energy consumption is the consumption without any adaptation. The FIFO
implementation shows the consumption when the consistency protocol is executed on a dedicated
network; the NoC Implementation shows the consumption when the network is shared by the
protocol instances and the normal communication. The slightly increased energy savings in the
FIFO implementation are the result of the more flexible scheduling of the protocol instances.

5.1.3. Benchmark

To verify that the execution of the additional protocol does not negatively impact the timeliness
and to evaluate the efficiency improvements under real and overload conditions, we tested the protocol
with a benchmark. As a system architecture, we chose the same 4 × 4 NoC with 16 cores. As our
system assumes a time-triggered message injection based on static communication schedules, we had
to schedule the benchmark. For this reason, we chose the NoC traffic pattern as the source by [17] as
the library provides a detailed description of the inter-process dependencies and the message sizes
that we needed to successfully schedule the traffic onto our simulation platform. This library provides
accurate values as it depicts recorded real traffic patterns showing the observed behaviors of the
task while executed on processors within a 4 × 4 NoC. We could therefore simulate real execution
times and therefore real slack values. The library provided a set of applications for different types of
topologies and NoC sizes. We chose the random sparse matrix solver for electronic circuit simulations
on a 4 × 4 mesh NoC.

This application contains 96 tasks with 67 communication links. The tasks were mapped to a DAG
describing the applications dependencies. We expanded the application model with the consistency
messages and scheduled the application. The 96 processes were mapped to the 16 cores, as shown in
Table 1.

Table 1. Mapping of the processes to the cores.

Core Process

(0,0) 0, 27, 49, 85, 92
(0,1) 1, 24, 42, 65, 58
(0,2) 2, 28, 43, 69, 53, 94, 91
(0,3) 3, 29, 53, 95, 55, 61
(1,0) 4, 25, 39, 66, 63, 79
(0,1) 5, 30, 51, 12, 41, 93, 86
(0,2) 6, 31, 44, 71, 59, 77, 88, 90
(0,3) 7, 32, 45, 72, 47
(2,0) 8, 33, 52, 73, 13, 89
(0,1) 9, 34, 56, 76, 64
(0,2) 10, 35, 57, 76, 64
(0,3) 11, 26, 46, 83, 23, 74
(3,0) 14, 36, 48, 67, 70, 75
(0,1) 15, 37, 60, 16, 54
(0,2) 17, 21, 40, 68, 18, 87, 22
(0,3) 19, 38, 62, 84, 20
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We increased the scheduling problem by adding the interactive consistency protocol’s messages
to the regular application messages. The resulting schedule described a system execution where the
time slots for the establishment protocol intervals were scheduled within the normal communication
schedule, while ensuring the real-time constraints set by the application. We used the same 4 × 4 mesh
NoC as for the synthetic use case to execute the traffic of the random sparse matrix solver for electronic
circuit simulations. As a baseline, we executed the benchmark traffic without any protocol instances
and without adaptation within the NI. As shown in Figure 16 we observed that both implementation
reduced the energy usage of the system. The adaptation enables the system to execute the processes
more quickly, and cores could be powered down in the slack times, therefore reaching savings of 14%
for protocol instances using the NoC for the establishment and 21% for instances using the FIFO.

E (W)
0.0 1.0 2.0 3.0 4.0

Baseline

FIFO Implementation

NoC Implementation

29.92

23.14

21.42

Figure 16. Energy consumption of the whole on-chip system per second in the benchmark simulation.
The baseline energy consumption sums up to 29.92 W, while the NoC version uses 23.14 W, and the
FIFO version consumes 21.42 W.

5.2. Scalability

To analyze the scalability, we inspected how increasing the network size will affect the networks
utilization. Adding the consistency protocol instances, we refer to the instantiation of the protocol
based on a certain number of cores, context values and topology as protocol instances, expanding
the application model by the context messages. If a certain amount of protocol instances must be
scheduled within a period, these additional time frames need to be scheduled alongside the normal
communication. Ideally, the protocol instances can be scheduled in parallel to the core execution times,
thus hiding the impact of the additional message transmissions in time slices where the network is
not used. However, the new schedule could lead to the communication becoming a bottleneck, not
allowing the full utilization of the cores. We assume that the constant wctn depicts the worst case
transmission time of a message in an NoC with nnodes and size returning the length of a message in
words. We will in the formula refer to the interactive consistency protocol as ICP and assume that the
protocol will be executed k times per period. With the additional messages, the NoC utilization of an
NoC with n cores will increase in the following way:

utilizationn =
∑i∈Msg wctn · size(i) + ∑i∈k wctICP · size(msgICP)

Period
(1)

The upper part of the fraction can be rephrased as the following, if we assume the worst
case transmission time for each message, which for x-y routing means 2

√
n − 2, based on the

Manhattan metric:

Period · utilizationn = wctn · ∑
i∈Mgs

size(i) + k · (wctn + 1) ·msgIPC (2)

We then analyze the runtime behavior:

Period︸ ︷︷ ︸
constant

· utilizationn︸ ︷︷ ︸
O(n
√

n)

= wctn︸︷︷︸
O(
√

n)

· ∑
i∈Mgs

size(i)︸ ︷︷ ︸
constant

+ k︸︷︷︸
constant

· (wctn + 1)︸ ︷︷ ︸
O(
√

n)

· size(msgIPC)︸ ︷︷ ︸
O(n)
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As one can see, the consistency protocol increases the usage growth of the network by a factor of
O(n), while the normal communication utilization would grow at a pace of O(

√
n), as the protocol

execution time is increasing more quickly than the worst-case communication time. This growth
puts restrictions for the scheduling of the application messages as it takes up more time from the
schedulable execution period. This problem only occurs in the shared network implementation as the
additional messages generated by interactive consistency protocol increase the scheduler’s application
model and make it harder to find feasible schedules. With increasing message sizes, the amount of
possible protocol instances can be lowered to compensate for the increased execution time, which
would however lower the reaction time to context events. When using the NoC for the consistency
protocol for big NoCs, a hierarchical model could be used where the domains to establish a context
consistency are small and the overhead created by the messages is kept low.

Scaling the network size in the dedicated implementation type will linearly increase the protocol
runtime as the path around the ring will increase with each new core. This increased protocol
execution time can be avoided by changing the topology into a higher intertwined topology like the
torus. Other than the protocol duration, the increased network size will not affect the utilization of the
NoC, as the dedicated network leads to a separation of concern where the context messages do not
imply any restrictions on the application model and need not be scheduled. Changes in the network
size and the inherently longer context messages of larger systems do not need to be scheduled at the
NoC. In the end, the scalability in increasingly big networks will be a trade-off between resources for
the links and the latency of the interactive consistency protocol.

6. Conclusions

In this paper, we proposed a protocol to establish a global state within an NoC. We have shown
that the additional propagation time of the state can be bounded by a maximum duration time within
a mesh-NoC, and the effect on the system does not negatively impact the possible energy saving.

The protocol is a broadcast protocol, which can be implemented in different ways, where both of
them have respective advantages and disadvantages: one of which would need additional links in the
MPSoC, which leads to additional fault possibilities, while the other expands the scheduling problem,
making it unfeasible to find a usable adaptation schedule to begin with. Since we focus our work on
safety-critical real-time systems, the real-time requirement must be ensured at all times. Therefore, the
NoC implementation is not adaptable.

In the simulation, we did not take into account the impact that the additional hardware has on
the energy consumption, as we used an abstract energy model. Our goal was to have an initial proof
of concept. Having the initial idea verified, the next steps will be to evaluate the energy savings on a
physical platform. In future work, we also plan to implement a fault tolerant version of the protocol,
by introducing redundant links and a voting mechanism. In a further step, we also aim to optimize
the agreement frequency. By finding the factors that determine how frequent a system needs to be
observed to be able to apply improvements, we can keep the protocol overhead minimal. Finally we
plan to explore the scalability of the protocol onto a distributed system.
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Abbreviations

The following abbreviations are used in this manuscript:

MCS Mixed Criticality Systems
TTNoC Time Triggered Network on Chip
MPSoC Multi-Processor System on Chip
NoC Network on Chip
SoC System on Chip
NI Network Interface
FIFO First In First Out
WCET Worst Case Execution Time
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