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Abstract: This paper describes the stochastic-based Spin-Programmable Gate Array (SPGA),
an innovative architecture attempting to exploit the stochastic switching behavior newly found
in emerging spintronic devices for reconfigurable computing. While many recently studies have
investigated using Spin Transfer Torque Memory (STTM) devices to replace configuration memory
in field programmable gate arrays (FPGAs), our study, for the first time, attempts to use the
quantum-induced stochastic property exhibited by spintronic devices directly for reconfiguration
and logic computation. Specifically, the SPGA was designed from scratch for high performance,
routability, and ease-of-use. It supports variable-granularity multiple-input-multiple-output (MIMO)
logic blocks and variable-length bypassing interconnects with a symmetrical structure. Due to its
unconventional architectural features, the SPGA requires several major modifications to be made in
the standard VPR placement/routing CAD flow, which include a new technology mapping algorithm
based on computing (k, l)-cut, a new placement algorithm, and a modified delay-based routing
procedure.Previous studies have shown that, simply replacing reconfiguration memory bits with
spintronic devices, the conventional 2D island-style FPGA architecture can achieve approximately
5 times area savings, 2 times speedup and 1.6 times power savings. Our mixed-mode simulation
results have shown that, with FPGA architecture innovations, on average, a SPGA can further achieve
more than 10 times improvement in logic density, about 5 times improvement in average net delay,
and about 5 times improvement in the critical-path delay for the largest 12 MCNC benchmark circuits
over an island-style baseline FPGA with spintronic configuration bits.

Keywords: emerging devices; FPGA; stochastic computing

1. Introduction

Emerging spintronic devices, such as spin-valves and domain-wall magnets (DWM),
have rekindled significant research interests in novel circuit and architecture design methodologies [1,2].
Sharply deviating from CMOS device technology, spintronic devices use spin transfer torque, instead of
charge, as the medium of information processing, therefore offering not only ultra-low critical current
(e.g., ≤100 µA at 65 nm), simple switching scheme, and ultra-fast-speed, but also many fascinating
probabilistic-related physical properties [3–6]. In particular, as shown in Figure 1a, Magnetic Tunnel
Junctions (MTJ), the cornerstone of spintronic devices, can be densely embedded into CMOS logic
circuits and fabricated with extremely small footprint on top of the metal layers and occupy almost
“zero” chip area. Therefore, a hybrid MTJ-CMOS chip is considered by many as a potentially powerful
solution that brings non volatility, instant on/off, and low standby power to today’s integrated
circuit technology.
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(a) (b)

Figure 1. (a) Cross-section of a Magnetic Tunnel Junctions (MTJ)-CMOS hybrid chip; (b) Monolithically
stacked 3D-Field Programmable Gate Arrays (FPGA) [7].

Recently, in the arena of FPGA research, studies on exploiting Spin Transfer Torque Magnetisation
(STTM) switching devices have surged. For example, newly emerging memristor devices have been
investigated to replace SRAM as the storage of elements in CMOS-based FPGA [8]. More recently,
the nano crossbar architecture has been touted [9–11]. as an even more superior alternative to
the conventional non-volatile phase-change memory due to its high density and lower power
consumption [12,13]. Another conceptually appealing approach to directly applying MTJ-CMOS
devices is to stack the programming overhead of an FPGA on top of the logic blocks and interconnect
layers that would be implemented in a state-of-the-art CMOS technology. This approach resembles
the monolithically stacked 3D-FPGA architecture, as depicted in Figure 1b, which achieves significant
performance benefits [7,14]. Besides the obvious benefit of higher logic density, vertical stacking with
a hybrid MTJ-CMOS device can potentially reduce interconnect length, hence reducing signal path
delay and power consumption and offers a possible route to closing the performance gap between
FPGAs and cell-based ASICs. However, the vast majority of these studies have focused on using
spintronic devices as storage elements and configuration memory bits, therefore achieving low power
dissipation and high speed without making significant changes to the conventional FPGA architecture
and circuit design.

In this study, we attempt to directly use the inherent quantum-induced stochastic property
of spintronic devices, not merely as memory storage, but for logic computation. Together with
other researchers [15,16], we strongly believe that, without more innovations in FPGA architecture,
the advance in device technology alone can not fully shrink the significant performance gap
between FPGA and ASIC devices. The major motivation behind our study is to solve the following
two well-known FPGA architecture design challenges, which can not simply be tackled by replacing
conventional SRAM-based memory bits in a modern FPGA chip with the emerging spintronic devices,
such as MTJs (Magnetic Tunnel Junction).

The first major challenge in FPGA architecture design is to determine the granularity of logic
blocks in an FPGA. All prominent FPGAs [17–20] today have fixed and uniform logic granularity for
each logic block. From the architecture point of view, coarse-grain blocks have much less stress on the
placement and routing but often result in long internal logic delays and under-utilization for designs
in small size, whereas fine-grain logic blocks can achieve shorter internal delay but often requires
excessive amount of routing resource in order to successfully route a circuit. From the application point
of view, data-path functions, in particular arithmetic functions, often operate on coarser arguments
than control-path logic and are usually realized by fine-grain logic elements, while the implementation
of control-path logic mostly benefits from coarser granularity. A rather interesting question is whether
the logic blocks in an FPGA should be heterogeneous or homogeneous in size.

The second challenge is to determine the optimal segmentation of routing interconnects.
In conventional routing architecture, each routing channel consists of a group of interconnects
with variable lengths. For example, Virtex II [18] has 16 Single, 40 Double, 120 HEX, and 24 long
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interconnects in each routing channel. In general, short segments are advantageous to routability but
bad for delay and power performance, while long interconnects achieve better delay performance but
may result higher power consumptions. For a given set of benchmark circuits, what is exactly the
optimal segmentation for a particular routing architecture remains an open question.

We propose the stochastic-based Spin-programmable Gate Array (SPGA) architecture to meet the
above design challenges. Our objective is to develop an architecture that maximizes the application
spectrum for both data-path and control-path applications without compromising performance and
area efficiency, while fully exploiting the performance benefits entailed by the emerging MTJ devices,
especially its inherent quantum-induced stochastic switching. The central idea of SPGA is to design
and implement stochastic-based programmable logic blocks (SLB) in order to replace the traditional
lookup-based (LUT) logic blocks. In addition, both the granularity and the input-output numbers of
the new logic blocks can be dynamically configurable on a per-mapping basis at configuration time.
More specifically, our major contributions include:

• We invented a new curve-based method to reinterpret and redefine Boolean logic functions,
therefore can efficiently implement multiple-input-multiple-output logic block without noticeable
hardware usage overheads. This technique compounds the overall performance benefits resulting
from the MTJ devices.

• Taylor expansion, although mathematically elegant and powerful, has never been considered in
hardware-assisted functional evaluation due to its excessive hardware cost. Our stochastic-based
approach natively exploits the inherent Gaussian-like stochastic switching behavior of
the emerging spintronic devices, therefore bypassing the excessive hardware overhead of
Boolean-based methodology.

• Due to the SPGA’s unconventional architectural features, we have made several modifications to
the existing academic-grade software flow of logic synthesis, technology mapping, placement,
and routing. In particular, given the freedom of configuring the output number of SLBs,
we developed a variant of the conventional technology mapping algorithm based on computing
(k, l)-feasible cuts.

The rest of our paper is organized as follows. In Section 2, we briefly overview the overall
architecture of the Spin-Programmable Gate Array (SPGA). We then illustrate in Section 3 how
a stochastic-based logic block (SLB) can be constructed with MTJ devices. In particular, We review the
newly discovered stochastic switching behavior of Magnetic Tunneling Junctions (MTJ) and discuss
the circuit design of a typical SLB. In Section 5, we detail each necessary module for logic synthesis,
placement, and routing of SPGA. The performance comparison results of three performance metrics
(hardware usage, delay, and energy consumption) between the SPGA architecture and three other
island-style baseline FPGAs in Section 6. The error analysis are performed in Section 7. Finally,
in Section 8, we summarize our findings and comment on several open research problems related to
the SPGA architecture.

2. Architecture Overview

To a large extent, the architecture of SPGA resembles that of the conventional well-structured
island style FPGA as shown in Figure 2a, in which an array of logic blocks (called Configurable Logic
Block, CLB, or Logic Array Block, LAB, depending on vendor) are surrounded by pre-fabricated
programmable routing channels and I/O pads. However, the SPGA architecture depicted in Figure 2b
differs from the existing norm in at least two aspects. First, in the traditional CMOS-based FPGA
technology, all configurable bits are implemented with memory devices such as 6-T SRAM. In the
SPGA, we do not use binary bits to “define” our target logic function. Instead, we use the spin-based
magnetization to configure the logic blocks. Second, the functionality of the memory-based LUT hinges
on the concept of K-map and is based on the Boolean algebra. In a sharp contrast, the stochastic-based
LUT uses a new curve-based method to reinterpret and redefine Boolean logic functions, therefore can
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efficiently implement a logic block with a configurable number of logic inputs and outputs without
negatively causing excessive hardware overheads. Finally, given the 3D “nature” of the MTJ-CMOS
hybrid device technology, we can redesign the interconnect architecture of the SPGA. Specifically,
the LB inputs and outputs connect first to local segments. These segments can then be programmable
connected to segments in neighboring routing blocks and/or to interconnect segments in a routing
channels via programmable buffers and muxes with buffered outputs. The interconnect segments can
be directly connected to form longer segments using programmable buffers without going through
routing blocks (we shall refer to such interconnects as bypass interconnects).

(a) (b)

Figure 2. (a) 2-D Island-style FPGA architecture; (b) Spin-programmable Gate Array (SPGA)
architecture with hybrid MTJ-CMOS devices.

3. Stochastic-Based Logic Block (SLB)

One of the most important foundations in modern FPGA technology is the concept of
Lookup-Table (LUT), which acts as a hardware implementation of K-map that directly performs
reconfigurable logic functions. In Subsection 3.1, we present a new perspective to reinterpreting the
K-Map in an algebraic way based on encoded logic inputs and outputs. Furthermore, we propose
to use the well-known Taylor expansion to implement this new function evaluation method with
hardware. However, with CMOS device technology, our new replacement to SRAM-based LUT may
be too expensive in hardware usage. therefore, in Subsection 3.2, we introduce the newly-established
stochastic switching behavior in MTJ devices and demonstrate how to build a reconfigurable random
sample generator efficiently with them. Finally in Subsection 3.3, we we show how to take advantage
of the stochastic switching behavior of emerging spintronic devices to natively perform curve
fitting with ultra-low energy consumption, thus fulfilling logic functions. We present the complete
circuit of our stochastic-based logic block (SLB) and validate its correct operation with mixed-mode
circuit simulations.

3.1. Algebraically Reinterpreting K-Map

We now interpret the standard Boolean K-map in a different angle. For example, a 4:2 encoder
shown in Figure 3a can be represented as a truth-table listed in Figure 3b. If we encode its binary input
and output bits as decimal numbers, we obtain a single-input-single-output function as in Figure 3c.
Furthermore, such a functional one-to-one mapping can be plotted as a simple algebraic curve shown
in Figure 3d. For example, as shown in Figure 3a, when (D3, D2, D1, D0) = (0, 1, 0, 0), the output
(Q1, Q0) = (1, 0), which can be computed either by looking up the K-map in Figure 3b, or by evaluating
the curve at the point (4, 2). This idea can be used to implement a new kind of reconfigurable logic
fabric, which has been wildly successful in modern computing due to its low NRE cost. However,
the conventional Look-Up Table (LUT), although logically universal, incurs approximately O(2N) of
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hardware cost for a N-input-1-output logic function due to the number of required reconfiguration
memory bits. Our stochastic curve-based logic block can potentially achieve O(N) in hardware cost.
This research thrust also involves developing various CAD modules of logic synthesis, LUT placement,
and routing algorithms.

(a) (b) (c)

(d)

Figure 3. (a) Logic diagram of a 4:2 encoder; (b) Truth table; (c) Encoded inputs and outputs;
(d) Logic curve interpretation.

Note that both representations in Figure 3a,b are logically equivalent, albeit in totally different
forms. Moreover, any given m-input and n-output logic function, with a properly chosen encoding
scheme, can be transformed into a well-defined algebraic curve. Therefore, we can recast the problem
of logic circuit design into building hardware structure that performs functional evaluation by
interpolating algebraic curves. Unfortunately, although Taylor expansion is known to be capable
of approximating any form of complex algebraic function by summing power terms calculated

at specified points, i.e., f (x) = ∑N
n=0

f (n)(x0)
n! (x − x0)

n, where x0 is constant, directly performing
all these constituting operations are quite expensive in CMOS digital hardware. Fortunately,
we exploit the quantum-induced Gaussian-like stochastic switching behavior of spin-torque-transfer
devices, therefore completely bypassing the aforementioned performance bottlenecks. Specifically,
(x − x0)

n = exp(ln (x− x0)
n) = exp(n ln(x − x0)), where n = 0, 1, 2, · · · . Because, the stochastic

switching behavior of a MTJ device exhibits a probability density function (P.D.F.) in an exponential
form, as discussed in the following subsection, we can bypass both expensive operations exp(·)
and ln(·).

3.2. Stochastic Switching with MTJ Devices

Emerging spintronic devices can exhibit complex switching behaviors due to the shifting of
their intrinsic magnetic moment (spin) of electrons. For example, in MgO-based magnetic tunneling
junctions (MTJs) (depicted in Figure 4a) [23], the switching characteristic of their spin-torque switching
is highly stochastic and exhibits a well-defined probability as shown in Figure 4b. Several recent
studies have discovered that MTJ’s switching probability, Psw, mainly depends on its intrinsic switching
current and a thermal stability parameter (∆), where the ∆ = Eu/kBT, Eu, kB, and T are uni-axial
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magnetic anisotropy energy, Boltzmann’s constant, and temperature, respectively. In fact, if assuming
the initial state of MTJ is parallel and one bit current information is stored in the MTJ, a write current
signal Iw applied during time t can exhibit a switching probability defined by pw = 1− exp(−t/τp),
where τp is the switching time constant. According to [24], its switching probability Psw can be
controlled by changing the applied pulse width and amplitude [25] and can be concisely formulated as
Psw(I) = 1− exp(− t

τp
exp(−∆(1− I/Ic0))), where Ic0 is the critical switching current at 0 K. Therefore,

by controlling the critical current Ic and the duration of applied pulse current τp, one can accurately
predict the switching probability of a given MTJ device. In Figure 4c, we have plotted some of
our experimental and analytical results of switching probability vs. the pulse duration for different
voltages [6,22].

(a)

(b)

(c)

Figure 4. (a) Structure of an MTJ device given from [21]; (b) Our SPICE (Simulation Program with
Integrated Circuit Emphasis) simulation results of random signal generation; (c) Experimental and
analytical results of switching probability vs. the pulse duration at different voltages [6,22].

In Figure 5, we present our design of a reconfigurable random sample generator with two MTJ
devices. Its key idea is to exploit the stochastic switching of a MTJ device at different input
currents under a fixed pulse duration. Compared with the conventional LFSR-based random number
generation, such a MTJ-based methodology can provide not only true randomness but also ultra-fast
generation speed. In its configuration mode (Figure 5a), depending on the precomputed STL weights,
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the MTJ-based memristor is configured with its resistance set in order to produce the required current.
The probability of spin-torque switching model Psw(I) according to the current I is given by

Psw(I) = 1− exp(−τp exp(−∆(1− I/Ic0))) (1)

where I is applied current, τp is the pulse width normalized by the attempt time. In its operation mode
(Figure 5b), depending on the applied logic input, a “0” or “1” value is first written into the right MTJ.
Subsequently, a stochastic reading current will be used to perform a read operation on the right MTJ
device. The logic output values, i.e., the random samples, are completely determined by both the logic
value stored and the reading success probability, which in turn is determined by the magnitude of
the reading current I. Note that, by controlling the reading current I and fixing Ic0, ∆, and τp, we can
match a specific logic weight with a predefined probability value. Finally, the magnitude of reading
current I is determined by the reading voltage that is controlled by the resistance of the left MTJ device.
The sensing circuit is based on previous MTJ-based true random generator scheme. The analog sensing
comparator is used to generate bit stream with an appropriate reference voltage. This analog sensing
comparator can be replaced by one or more integrated CMOS inverter to decrease the occupies area on
chip [26]. The simulation results from recent fabrication chip test provides sufficient statistical accuracy
with negligible device degradation. The distribution of the comparator output voltage typically needs
to stay within 50%± 1% to pass the NIST frequency test. Paper [26] utilizes comparator at output,
resulting in bimodal abrupt distribution of output voltage along 1000 cycles.

(a) (b)

Figure 5. Circuit design of random bit stream generation. (a) Configuration mode; (b) Operation mode.
Devices in gray area are active for each mode. Red curves depict signal directions.

3.3. Detailed Circuit Design of SLB

Figure 6 depicts one possible circuit architecture of stochastic-based logic block (SLB). Specifically,
each MTJ device implements an exponential Random variable, whose random samples will subject
to simple AND or OR logic operations with CMOS gates. In general, the number of required Taylor
terms equals to the the number of needed STT devices, with specific Taylor coefficients are configured
with setting different Vi. As shown in Figure 6b, each Stochastic-Based Lookup Table (SLB) exploits
multiple streams of carefully controlled random bits, instead of deterministic Boolean algebra used
in a conventional FPGA technology to accomplish reconfigurable logic operations. As depicted in
Figure 6, the key element of a typical N-input STL circuit consists of N controllable random sample
generators, each of which corresponds to one logic input. Each random bit generator is implemented
with two MTJ devices, where one MTJ device emits random bits with certain probability determined
by the other MTJ device. The detailed circuit design of each random sample generator is also shown
in Figure 6c. Note that our design of a reconfigurable random sample generator contains two MTJ
devices and their detailed operations are discussed in Subsection 3.2. Subsequently, all these N streams
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of random bits will be aggregated with simple analog circuits and fed into a simple capacitive voltage
integrator. The final logic output value will be computed by comparing the integrated value with
a predetermined voltage reference Vref = T.

Figure 6. (a) Simple conventional LB; (b) Architecture of stochastic-based logic block (SLB);
(c) Programmable random bit generator.

Given the circuit design of our stochastic-based logic block (SLB), we can perform the detailed
mixed-mode HSPICE circuit simulation using the model of MTJ devices in Cadence from [21].
The specific device parameters include: Id0 = 0.1 nA, n = 2, the critical current Ic0s = 50 µA,
the characteristic resistance RP = 1 KΩ, RAP = 2 KΩ, E/kBT = 60, the relaxation time trelax = 50 ps,
and the attempt time t = 1 ns. To illustrate, in Figure 7, we plotted the HSPICE simulations results
from a STL circuit that implements F = A + BC. The first four subfigures, Figure 7a–d present the
random signals generated from four constant coefficients c0, c1, c2, and c3. Similarly, three additional
random sample streams, Figure 7e–g, represent the three power terms. The aggregated and integrated
random signals are plotted in Figure 7h. Finally, after thresholding, the resulting logic outputs are
presented in the Figure 7i. Note that each of these nine subfigures comprises of eight input epochs and
all logic values corresponding to these input epochs are printed in green squares.

Two circuit blocks are essential: log-amplifier block and analog-to-stochastic converter block.
The log-amplifier naturally fits an input current into the exponential form of the Taylor series, so that
the input analog current Iin and the output voltage Vout satisfy Vout = −m×VT × ln( Iin

Is
), where m is

correction factor, Is is the theoretical reverse-saturation current, and VT is the temperature equivalent
voltage. In the stochastic converter block, when the logarithmic voltage is applied to a MTJ device,
the resulting current for controlling stochastic switching follows Iw = Vdd−Vbias

RMTJ
− m×kB×T×ln(Iin/Is)

q×RMTJ
.

Therefore, ln(Pw) = β ln( Iin
Is
) + α(Ic0s − Vdd−Vbias

RMTJ
), where β = αm kBT

qRMTJ
. One rudimentary stochastic

subsection unit is presented in Figure 8. More efficient circuit designs are to be explored.
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Figure 7. Mixed-mode circuit simulation results of our stochastic-based logic block.

Figure 8. Hardware implementation of stochastic subtraction.

As shown in Figure 6a, a standard logic block also contains flip-flops for supporting sequential
circuits. We developed a simple MTJ-CMOS circuit design for a master-slave flipflop. As shown in
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Figure 9, our design is largely inspired by the 6T-SRAM cell design except replacing the cross-linked
feedback cells with four MTJ devices [27]. We believe this design may be further optimized to use
fewer devices.

Figure 9. Circuit of a MS -register with four MTJ devices.

When designing, implementing, and programming a stochastic-based logic block (SLB),
four parameters, input number m, output number n, the number of random sample units K, and the
number of random samples K per logic epoch, are essential. We now discuss the tradeoff relationship
between them. During technology mapping stage, the granularity of a SLB, defined by both m and n,
can significantly affect the total number of SLB usage for any given target circuit. Intuitively, increasing
the output number n allows each SLB to implement larger logic function. However, when n increases,
as shown in Figure 6b, we need larger muxes and higher ADC resolution, both of which consumes
more chip area. Furthermore, to meet the accuracy requirement of stochastic-based logic operations,
more random sample are often needed, which prolongs the overall stochastic processing time. Note that
adding and evaluating more Taylor power terms can also greatly improve the logic precision. But again,
this needs more programmable random sample generators, which almost linearly increases the chip
area for each SLB. Apparently, how to optimally tradeoff these competing parameters in the application
of SPGA remains to be quite challenging and more systematic investigations are needed.

4. Interconnect Architecture

In modern FPGAs, the routing fabric not only contributes the most to the system delay but also
consumes most of the chip area [28,29]. To make the situation even worse, the fraction of total delay
due to routing in an FPGA is increasing with each process generation [7]. Consequently, an FPGA
architect must devise routing architectures that are both fast and area-efficient in order to fully exploit
the performance and density potential of deep-submicron technologies. It is known that interconnect
segment length can significantly impact the overall performance of an FPGA [30,31], therefore a good
mixture of segment lengths is often sought to optimize its overall performance. We took a different
approach and developed a new bypassing interconnect for the SPGA. The key idea is to construct long
interconnects without passing through heavy switching points and therefore improve delay and power
performance without sacrificing routability. Additionally, the more regular structure in bypassing
interconnects makes the delay of long interconnects in the SPGA much more predictable than that in
a conventional segmented routing architecture, and therefore makes it easier for the CAD software to
find the most optimal routes.

As shown in Figure 10, each routing channel comprises only Single and Double segments.
Each Single or Double segment consists of two unidirectional wires controlled by two tri-state buffers.
Segments can be connected directly to form longer interconnect segments by appropriately setting
the states of the tri-state buffers without entering SLB blocks. This helps reducing the parasitic
loading along interconnects due to programming overhead. The segments can also be connected
through routing blocks to make bends, fan-out, or connect to logic blocks. The number of interconnect
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segments in each routing channel is denoted by T and the number of routing tracks in each interconnect
segment is r.

Figure 10. Interconnect overlay and its logic design.

Connections between the interconnect overlay and a SLB block are made through a structure
similar to the conventional Connection Box (CB) as illustrated in Figure 11. For a SLB block with
m MUTs on each side, there are m + 1 lines crossing over with the W interconnect segments from
the overlay. We define Fc as the connecting flexibility of this structure. In Figure 11, Fc = 0.5.
Note that when the SLB block is configured as a routing block, this connecting structure enhances the
routing capability of the routing block which in the conventional island-style FPGA, if a LB is unused,
its associated CB will be idle and only add parasitics to the interconnects.

Figure 11. Connections between interconnect overlay and a SLB block.

5. CAD Algorithms

To make meaningful FPGA architecture comparison, it is essential that the CAD tools used to
place and map circuits into each architecture are of high quality. The routing phase of the SPGA are
largely based on the previously published VPR [32]. Unfortunately, the traditional VPR style CAD flow
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is not totally suitable for the SPGA architecture because the stochastic-based logic block can efficiently
provide multiple outputs and the logic and routing resource has to be partitioned before routing stage.

5.1. Logic Synthesis and Technology Mapping Algorithm

Technology mapping for the SPGA architecture needs to be modified in order to consider
multiple-output logic block. Note that most standard cell libraries have multiple output cells,
e.g., full adders. Similarly, library free technology mappers could use multiple output cells to
significantly reduce area of a circuit. Moreover, current FPGAs have multiple output LUTs. We have
implemented a simple algorithm Specifically tailored for the SPGA technology that performs a full
covering of a circuit by (k, l)-cuts. This algorithm doesn’t stress on achieving the state-of-the-art on
mapping. Instead, We implemented a simple greedy algorithm to search for local maxima. The covering
is performed from the inputs to the outputs. At each iteration the largest possible (k, l)-cut is chosen,
and all (k, l)-cuts with overlapping nodes are eliminated from the solution space. These iterations are
repeated until the circuit is fully covered.

Obviously, the algorithm for efficient cut computation is essential for our approach. Typically,
computing single output cuts is only considered. In the case of SPGA, because the cost of using
multiple-value logic blocks are relatively low, exploring multiple-output-port logic blocks becomes
necessary. We adopt the concept of (k, l)-feasible cuts introduced in [33] in our logic synthesis and
technology mapping.

Algorithm 1 presents key steps of computing (k, l)-feasible cuts for any given And-Inv-Graph
AIG. It starts with enumerating all k-feasible cuts and all l-feasible backcuts on the circuit AIG.
Each computed backcut generates a set of (k, l)-cuts. The function combine_kcuts combines the
k-feasible cuts of the nodes belonging to the current backcut d.

Algorithm 1 Algorithm of computing (k, l)-feasible cuts.

1: kcuts← compute_kcuts(AIG, k)
2: lcuts← compute_lcuts(AIG, l)
3: for each lcut ∈ lcuts do

4: P← combine_kcuts(lcuts)
5: for each π ∈ P do

6: klcut← create_klcut(π, lcut)
7: if check_and_fix(klcut) then

8: klcuts.add(klcut)
9: end if

10: end for
11: end for
12: return klcut

5.2. Placement Algorithm

Our placement software for the S-FPGA is based on a simulated annealing approach with a cost
function especially designed to match the routing fabric of the stochastic-based SPGA. For a island-style
FPGA, the placement normally uses metrics such as wirelength as well as some measure of the
routability and delay. If applying the same methodology to the SPGA, minimizing these metrics
will not be able to exploit the configurable logic output and logic granularity of a SLB, which almost
certainly results in less efficiency. The placement procedure of the SPGA architecture differs from the
island-style FPGA in a fundamental way: its successful routing relies heavily on configuring some
SLBs as variable-output logic blocks. To achieve high logic density, the routing resource in a SPGA
should be distributed non-uniformly based on the routing demands between each pair of logic blocks.
As a result, all SLBs must be configured and positioned as part of the placement process.
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Algorithm 2 The placement algorithm of SPGA.

1: p← RandomPlacement()
2: T ← InitialTemperature()
3: g← g(A,p)
4: freeze_count < 50
5: while (ExitCriterion() is FALSE) do

6: changes← 0
7: trials← 0
8: c← EvaluateCost(g,b)
9: while (InnerLoopCriterion() is FALSE) do

10: trials← trials + 1
11: pnew ← RandomSwap(p)
12: IncrementalRoute(g(A,pnew), b)
13: ∆c← EvaluateCost(g(A, pnew)) − c
14: if ∆c < 0 /*downhill move*/ then

15: changes← changes + 1
16: p← pnew
17: g← g(A, p)
18: c∗ ← EvaluateCost(g(A, pnew))
19: end if
20: if ∆c > 0 /*uphill move*/ then

21: r ← Random(0,1)
22: if r < e−

∆c
T then

23: s← pnew
24: g← g(A, p)
25: end if
26: end if
27: end while
28: T ← UpdateTemperature()
29: if c∗ changes then

30: freeze_count← 0
31: end if
32: if changes

trials < 0.01 then

33: freeze_count← freeze_count + 1
34: end if
35: end while

We now describe some of functions referred to in Algorithm 2 in more detail. ExitCriterion()
make sure the freeze_count is less than a predetermined number, which is set equal to 50.
InnerLoopCriterion() is true if trials < TRIALS and changes < CHANGES. Both constants
TRIALS and CHANGES are related to the problem size. We set TRIALS and CHANGES equal to 10 W
and 0.01 W, respectively. Given a placement of SLB blocks and the benchmark design, the first step of
evaluating the cost is to perform the routing using the Steiner tree algorithm. It is well-known that
most Steiner tree problems are NP-complete, i.e., thought to be computationally hard. To simplify our
placement algorithm and to combat the intractability, we use a heuristic [34], in which we compute the
Euclidean minimum spanning tree to approximate the Euclidean Steiner tree problem. Let (xi,j, yi,j)

be the cost pair for a SLB block located at (i, j). xi,j be the total number of routed signals along both
x- and y-directions above the SLB block (i, j), yi,j be the total number of routed signal turns above
the SLB (i, j),

x̄ =
1

MN

M

∑
i=1

N

∑
j=1

xi,j, ȳ =
1

MN

M

∑
i=1

N

∑
j=1

yi,j (2)
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c =

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

x2
i,j − x̄2 +

√√√√ 1
MN

M

∑
i=1

N

∑
j=1

y2
i,j − ȳ2 (3)

The value of cost c roughly reflects the variance of the demand for routing resource from all SLB
blocks. Intuitively, small c means high placement quality in terms of the overall routability.

5.3. Routing Algorithm

To map designs into the SPGA, we modified the VPR router [32,35] to accommodate the differences
between the routing architecture of our new stochastic-based SPGA and the island-based architecture.
The routing algorithm initially routes one net at a time using the shortest path it can find without
considering interconnect segment or logic block pin overuse. Each iteration of the router consists
of sequential net rip-up and re-route according to the lowest cost path available. The cost of using
a routing resource is a function of its current overuse and any overuse that occurred in prior routing
iterations. By gradually increasing the cost of an oversubscribed routing resource, the algorithm
forces nets with alternative routes to avoid using that resource, leaving it to the net that most needs
it. The main difference between our router and VPR is that we keep track of visited nodes during
the breadth-first-search to improve the run time. More details of this routing algorithm can be found
in [14].

6. Performance Analysis and Comparison

Using the 45 nm CMOS technology node and the In-plane Magnetic Anistrophy (IMA) MTJ
Compact model [22], we compare the delay, energy consumption, and transistor count between
a baseline island-style FPGA and our stochastic-based spin-programmable gate array (SPGA).
Specifically, the MTJ device parameters include: Id0 = 0.1 nA, n = 2, the critical current Ic0s = 50 µA,
the characteristic resistance RP = 1 KΩ, RAP = 2 KΩ, E/kBT = 60, the relaxation time trelax = 50 ps,
and the attempt time t = 1 ns. The 45 nm CMOS technology is modelled with the Berkeley Predictive
Technology Model (BPTM) [36] for both devices and interconnects.

As in [14], we assume an island-style FPGA as the baseline architecture, referred to henceforth
as baseline FPGA, for our performance comparison. It comprises a 2D array of logic blocks
(LBs) interconnected via programmable routing. We assume each LB comprises four logic slices,
each consisting of two 4-input Lookup Tables (LUTs), two flip-flops (FFs), and programming overhead.
The routing fabric comprises horizontal and vertical routing channels each having sets of Single,
Double, HEX-3, and HEX-6 interconnect segments. We classify the interconnects into two groups,
short, which includes Single and Double FPGA tile width interconnects, and long, which includes
HEX-3 and HEX-6 interconnects. The segments can be connected to the inputs and outputs of the LBs
via connection boxes and to each other via switch boxes. We assume the MUX-based switch box design
described in [37].

For the SPGA architecture, we choose four benchmark circuits to first determine the input number
m and output number n for each stochastic-based logic block. The logic synthesis and technology
mapping for a given benchmark was conducted with a modified version of the ABC tool based on
computing the full covering with (k, l)-cuts as discussed in Subsection 5.1. As shown in Figure 12,
with the output number of SLBs increasing, for all four benchmarks, the total number of SLBs will
decrease significantly. Not surprisingly, when we increase the input numbers, the total number of SLBs
also decreases. However, just as in the case of island-style conventional FPGA, there exists a trade-off
between logic block granularity and average net/critical-path delay, in the case of SPGA architecture,
there is an additional trade-off between the output number and the total delay performance. This is
because, as the output number increases in SLB, the number of total random samples required
to compute logic function also increases, therefore prolonging the processing time. In this study,
we choose (m, n) = (5, 2) for all measurements.
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Figure 12. The logic synthesis of large fanin and multible fanout Loop-Up table is shown and
simulated through logic synthesis tool ABC. The 4 benchmark circuits are taken into consideration.
In this Figure, we can see to deceasing trends, one is with Look-Up table size increasing, another is with
output increasing. The results show that with the Look-Up table size and output number increasing.
The number of nodes in logic network is significantly decreasing. The ratio of decreasing is trending
slow, since the small input and output node is decreasing.

To accurately measure the chip area of all FPGA architectures we compared, we adopted
two different methodologies. For the 2D island-style FPGA, we used the area modelling method
at the transistor level, which was first developed in [28,38]. The based FPGA is first decomposed into
components including SRAM based LUTs, flip-flops, intra-cluster muxes, inter-cluster routing muxes
and switches. The chip area of each of these components is then estimated by counting the total number
of minimum-width transistors used. Figure 13 depicts this simple transistor area model. For the SPGA
implemented with the hybrid MTJ-CMOS technology, we have to account for its “3D effect”.

Figure 13. Layout area measuring model. (a) Conventional transistor layout; (b) 3D MTJ and control
transistor layout.
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We now consider how to measure path delay in a FPGA device. Typically, the total signal
path delay in an FPGA device is divided into two components: intra-cluster delay and inter-cluster
delay [38], which correspond to the delay due to logic blocks and the routing delay from Interconnect
network, respectively. Furthermore, we define average net delay for a placed and routed design as
the geometric average of all its pin-to-pin net delays, not including LB delay. As in [14], we first use
RC models for the interconnect segments and more delay to optimize the connection and switch box
device sizes as well as the number and sizes of the buffers for the HEX-3 and HEX-6 segments for a
given FPGA array size in each technology node. We then use a modified version of the VPR delay
calculation function to compute net delays.

The delay across a typical stochastic-based logic block, as shown in Figure 14, can be divided
into five segments. Table 1 presents our measurements for all these delay segments. The intra-cluster
delay contains delay from A→ C, which is delay from local buffer and routing muxes, and random
sample generation module. In the Table 2, the delay of local buffer and routing muxes is calculated
with cluster size N = 4, and LUT size (m, n) = (5, 2). By increasing cluster size of N or LUT size (m, n),
the total delay due to muxes will increase because more output muxes are needed. However, this delay
increase is completely negligible when compared with the delay due to random sample processing.
This is because that the stochastic Taylor expansion utilizes random bit streams, the processing delay
of A → C strongly depends on and grows almost linearly with the number of random bits in each
stream. The stochastic multiplication is implemented by fully parallel AND gates, thus, the delay of
AND gate C→ D(ps) is added. The large fan-in addition employs large input muxes. The of muxes
D→ E(ps) is also determined by the number cluster size N and LUT size K. The delay of the analog
integrator is also examined using a high speed module in SPICE. The results are shown in Table 2.

Figure 14. Delay breakdown of proposed stochastic-based logic block.

Table 1. Delay of proposed new stochastic FPGA architecture. The CMOS device is using 0.18 µs process.

A → B(ps) B → C(ps) C → D(ps) D → E(ps) E → F(ps)

301.3 305.1 250.2 522.4 478.1
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Table 2. Delay of SPGA architecture with 45 nm CMOS technology node.

STT-MRAM Proposed

transistor count 154 MOS + 32 MTJ 6 MOS + 32 MTJ
active power (µW) 13.4 3.22

standby power (µW) 0 0

We now compare the performance of our SPGA against three of other FPGA architectures
using the 45 nm CMOS technology node and the Perpentidular Magnetic Anistrophy (PMA) MTJ
Compact model [22]. In total, we consider three performance metrics: delay, energy consumption,
and transistor count or chip area. The first FPGA is a typical 2D island-style architecture implemented
with 45 nm CMOS technology. The second work [39] utilizes MTJ device to replace SRAM for
constructing LUT. The third architecture is based on the work in [10,40], where a nano crossbar
architecture is used to replace the conventional NVFM for high density and lower power consumption.
The fourth FPGA is a 3D rFPGA first presented in [41] that utilizes high-density resistive memory
(RRAM) to build FPGA components. Different from the existing CMOS-nano hybrid circuits that use
crossbars, the proposed rFPGA structures consist of mainly 1T1R structures (1 CMOS transistor is
integrated with a two-terminal resistive nanojunction) that can be fabricated using a CMOS-compatible
process. Our software tool chain is mostly based on the well-know VPR package from University of
Toronto and a modified version of ABC from UC Berkeley. In particular, our power analysis is carried
out through the power evaluator, fpgaEvaLP2 [42].

Twelve benchmark circuits from MCNC are used for all measurements and all results are listed in
Table 3. Not surprisingly, the conventional FPGA based threshold logic in the 45 nm device technology
consumes the highest power mainly because of the routing interconnects and programmable switches.
Secondly, the relatively low utilization rate (∼12%) of conventional FPGA logic fabric significantly
reduces its efficiency. In comparison, the second architecture [39] MTJ-based SPGA implementation
can significantly save power because of using low power MTJ devices for both memory bits and
logic computation. However, replacement of SRAM cell by MTJ cell still remain on high usage
of routing resource. The third and fourth architecture employ 3D layout to minimize routing
resource. Our proposed stochastic-based SPGA achieves the highest energy efficiency. There are
several contributing factors. First, our proposed Taylor series approximation method fundamentally
reduces the quantity of connections in system level. Second, MTJ devices can be constructed in
a 3D metallic structure, therefore drastically reducing the interconnection energy dissipation. Third,
MTJ devices can be operated with ultra-low currents for reading and writing procedure (few µAs).
Moreover, static power dissipation almost vanishes due to its non-volatile character. Fourth, the analog
comparison circuit with the help of ultra-low power MTJ operations can result in very high energy and
area efficiency. Fifth, its latch-free architecture does not require any CMOS latch to improve its delay
performance. In fact, its delay is mostly determined by the MTJ switching speed and the sample size.
Finally, the proposed high output number SLB can drastically reduce the nodes number and delay.
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Table 3. Benchmark circuit synthesis using propose Look-Up table architecture with large input and output number.

Design
Conv. 2D Arch. RRAM FPGA [39] 3D CMOS FPGA [10,40] 3D rFPGA [41] Proposed SPGA Arch.

# of Area Delay Power # of Area Delay Power # of Area Delay Power # of Area Delay Power # of Area Delay Power
LUTs (105 µm2) (ns) (mW) LUTs (105 µm2) (ns) (mW) LUTs (105 µm2) (ns) (mW) LUTs (105 µm2) (ns) (mW) LUTs (105 µm2) (ns) (mW)

alu4 512 1.37 7.13 62 512 0.87 17.5 54 512 6.88 3.64 56.2 512 5.86 3.64 46.6 63 1.44 4.13 10.78
apex2 706 1.66 8.6 67 706 0.88 18.77 55 706 8.3 4.38 62.1 706 6.18 4.38 53.1 109 2.11 4.34 11.22
apex4 618 4.14 7.3 42 618 2.01 17.6 37 618 20.73 3.74 40.3 618 11.54 3.74 29.8 131 3.18 4.22 12.2
mise3 500 4.62 7.42 51.3 500 2.88 17.42 47.02 500 6.2 3.37 49.9 500 4.76 3.37 38.4 97 1.98 4.11 10.98
diffeq 526 3.91 5.56 24 526 2.05 15.77 19 526 5.01 3.24 25.2 526 4.38 3.24 23.2 139 3.19 4.23 12.36
elliptic 133 2.30 10.7 69 133 1.65 21 58 133 10.68 5.96 70.2 133 7.19 5.96 58.7 158 3.58 5.37 20.6
ex1010 612 1.24 14.6 113 612 0.75 25.6 105 612 19.56 5.94 116 612 11.32 5.94 97.9 113 2.38 4.85 11.31

frisc 1905 1.6 13.3 62.7 1905 0.8 24.5 56.5 1905 11.5 6.95 67.2 1905 8.54 6.95 68.3 176 4.33 4.58 30.83
seq 739 2.64 8.4 65 739 1.82 19.5 55 739 7.5 3.74 62 739 5.5 3.74 50.2 118 2.41 4.15 11.86
spla 449 1.37 13.3 87 449 16.3 5.67 95.4 449 0.74 24.3 78 449 9.03 5.67 55.7 116 2.39 4.51 11.45
pdc 276 4.38 16.8 101 276 2.77 18.8 96 276 18.4 7.69 107 276 10.76 7.69 77.5 141 3.22 5.75 15.81

tseng 539 1.66 6.96 29 539 0.83 3.48 25 539 3.92 3.54 30.1 539 3.89 3.54 29.8 108 2.05 3.88 11.12



J. Low Power Electron. Appl. 2016, 6, 15 19 of 23

7. Error Analysis

In this section we analysis the robustness of the proposed design, which comes from two major
sources: (1) random bit generation through stochastic switching is much more reliable for MTJ
devices; and (2) when information is encoded with random bit streams, complicated operations can be
converted into much simpler operation that are typically not only cheaper to implement but also much
more error-resilient.

In the following, we provide an intuitive explanation of the robustness of our proposed
implementation. In our proposed architecture, each signal X is represented as a stochastic bit stream
with its expected value E[X] = pX . As in a conventional deterministic-based neural network, the value
of signal X in our design will also be distorted with errors manifested by flip errors of its random
bit stream. Let e denote the bit error vector with an expected value pe, the stochastic signal X thus
becomes X∗ = X

⊕
e. Mathematically, the expected value of the signal X with its bit flipping errors

can be defined as
pX∗ = E[X] = pX + pe(1− 2px) (4)

With the standard definition of mean square error (MSE), the difference between the estimated
value p̃X∗ and the exact value pX can be written as

EX∗ = E[( p̃X∗ − pX)
2] (5)

In our S-ANN, we assume the estimated value p̃X∗ to be the average of n independent random
samples of X∗, which is equal to p̃X∗ = 1/n ∑n

i=1 = X∗i . Therefore, the expected value of X∗ can be
written as

EX∗ = E[( p̃2
X∗ − p2

X − 2pX p̃X∗)]

= (pX∗ − pX)
2 +

pX∗(1− pX∗)

n

(6)

Combing Equations (4) and (6) leads to

EX∗ = p2
e (1− 2pX)

2 +
1
n
[pX(1− pX)

+pe(1− pe(1− 4pX(1− pX)))]
(7)

This clearly shows that the MSE error of X depends on both bit stream probability pX and bit flip
error rate pe. With the increasing of bit stream size n, EX∗ monotonically decreases. Given a sufficiently
large n, EX∗ quickly converges. Also, Equation (7) also reveals that the bit stream probability of
pX = 1/2 has better error resilience. Guided with the above analysis, we have conducted extensive
Monte Carlo simulations with 32 as the bit switch.

Figure 15 presents our simulation results and clearly shows that our stochastic method possesses
inherent error resilience. As such, device or circuit errors have much less effect on the expected value
of a stochastic bit stream. Specifically, even a portion of a stochastic bit stream (n bits in size) are
flipped, their negative effect to the overall expected value will be reduced by n times. More importantly,
such an error will be significantly diminished as n increases. Furthermore, bit flipping in a digital
circuit tend to be symmetrical, i.e., equal numbers of 0− to− 1 s or 1− to− 0 s. As a result, a large
portion of bit flipping within a given random bit stream will naturally cancel out, thus posing negligible
error on the overall X value [43].
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Figure 15. (a) The mean square error (MSE) simulation of stochastic bit stream with increasing of bit
flip error rate both in analytical and simulation method; (b) The MSE simulation of stochastic bit stream
with different probability both in analytical and simulation method [43].

To further validate our proposed proposed design methodology, we now quantitatively consider
various error components in our proposed architecture. MTJ Random Number Generation Error ( em)
forms the first error component of our stochastic synapse circuit. Mitigating MTJ device variations
has been the main focus of many researches. Fortunately, our method utilizes MTJ’s probabilistic
switching behavior to build up the stochastic computing scheme, therefore quite insensitive to its
device variations. A MTJ’s switching probability Psw mainly depends on critical current Ic0 and
thermal stability parameter σ, therefore the variation of these two parameters need to be considered.
Because the switching probability of a MTJ can be defined as Psw(I) = 1− exp(−τp exp(−∆(1−
I/Ic0))), the l2 norm least square error of a given switching probability can be written as as
em =

∫ n
0 |Psw − Pmeasure|2dIn, where the Pmeasure is the measured probability of switching. Using the

above error model to analyze the impact of variation of electrical parameter on MTJ device, as shown
in Figure 16a, the matching between the model simulation and theoretical results is very high.
The paper [26] proposed similar architecture of true random number generator fabricated on the
chip. The results experimentally demonstrates true random number generator based on the stochastic
switching behavior of MTJ device. The true random number generator based on the stochastic
switching behavior of MTJ device enhance the reliability, speed and power consumption to generate
the true bit stream.
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Figure 16. (a) Simulation of theoretical and simulated results; (b) Random bit stream error with
different bit length.

The random bit fluctuation error (er) is due to the bit flips in a stream. In this paper, since the
number of ones in the bit stream will be used to compute the value of stochastic FPGA, the error of
bit fluctuations will affect the stochastic FPGA. The bit stream Bi with i = 1, 2, · · · , n has L length
bit stream. The number of ones in a bit stream is converted to a deterministic value T through the
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integrated circuit. Because T = 1
L ∑L

i=0 Bi, the expected value is Te. However, due to the random
fluctuation error, the exact output T value is different from the excepted value Te. The random

fluctuation er can therefore be written as er = |T − Te| ≈
√

Te(1−Te)
L . In this paper, the expected value

Te is calculated from the measurements of the output bit stream. The relationship between different
probability and different length of random samples is shown in Figure 16b.

Finally, we consider the error due to DW integration. The DW integration determines the number
of ones in a given bit stream. According to the experimental work reported in [44], the reliability of
a typical domain wall device is excellent. For example, a Co/Ni wire can achieve a 10-year retention
time at 150 degrees and 1× 1014 times write. In addition, the experiments in [44] have also shown that
the domain wall velocity and critical current are not sensitive to external magnetic field or temperature.

8. Conclusions

With the spintronic device technology surging into the mainstream, how to rethink and redesign
the existing FPGA architecture is a fascinating yet challenging research problem. This paper
is a first step towards capitalizing on the spintronic device technology natively for direct logic
computations. Our stochastic-based Spin Programmable Gate Array (SPGA) architecture deviates from
the conventional FPGA architecture by directly utilizing the stochastic switching behavior of emerging
device technology for Boolean logic computing, while going beyond simply utilizing spintronic devices
as an alternative memory technology.
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