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Abstract: We propose a fully on-chip CMOS temperature sensor in which a sub-threshold (sub-VT)
proportional-to-absolute-temperature (PTAT) current element starves a current-controlled oscillator
(CCO). Sub-VT design enables ultra-low-power operation of this temperature sensor. However, such
circuits are highly sensitive to process variations, thereby causing varying circuit currents from
die to die. We propose a bit-weighted current mirror (BWCM) architecture to resist the effect of
process-induced variation in the PTAT current. The analog core constituting the PTAT, the CCO, and
the BWCM is operational down to 0.2 V supply voltage. A digital block operational at 0.5 V converts
the temperature information into a digital code that can be processed and used by other components
in a system-on-chip (SoC). The proposed temperature sensor system also supports resolution-power
trade-off for Internet-of-things (IoT) applications with different sampling rates and energy needs.
The system power consumption is 23 nW and the maximum temperature inaccuracy is +1.5/´1.7 ˝C
from 0 ˝C to 100 ˝C with a two-point calibration. The temperature sensor system was designed in a
130 nm CMOS technology and its total area is 250 ˆ 250 µm2.

Keywords: proportional-to-absolute-temperature; process variation immunity; sub-threshold design;
temperature sensor

1. Introduction

The Internet-of-things (IoT) is a rapidly evolving space in the semiconductor industry. IoT devices
focus on a wide range of applications, ranging from personal electronics to sensors for monitoring
environmental, physiological, industrial, structural signals, etc. For such IoT devices that are
untethered and unobtrusively placed, battery replacement or recharging is a very expensive task.
Therefore, battery-less self-powered technology is increasingly gaining attention for maintenance-free
operation of IoT devices. Recently, harvesting energy from ambient sources with output voltages as
low as 10 mV is possible using boost converters such as [1]. In the presence of harvested energy, the
circuits are required to consume ultra-low-power (ULP) and operate from the lowest voltage possible
to enable longer device lifetimes.

Voltage scaling is an important knob to enable ULP circuit design. The sub-threshold (sub-VT)
region of operation, in which circuits are operated at a supply voltage (VDD) less than the transistor
threshold voltage (VT), is becoming an attractive option for ULP operation of sensor nodes in which
speed is not the primary concern. In digital circuits, dramatic energy reductions can be achieved
due to a quadratic dependence of active energy on VDD. In analog circuits, high VDD is traditionally
used for greater headroom requirements. However, recently in ULP systems, analog circuits are
now being operated at a lower VDD for power savings and also to directly power the circuits using
energy-harvesting methodologies, such as thermoelectric, solar etc. For example, in [2] a 2.4 GHz
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RF receiver was designed to operate at 300 mV VDD. In [3], it was demonstrated that lowering the
amplitude of oscillation reduces the power consumption of a crystal (XTAL) oscillator, and it was
designed to operate at voltages as low as 300 mV. Energy-harvesting IoT nodes such as [4] would
benefit from such sub-VT analog designs. In this paper, we propose a temperature sensor core that is
operational in the sub-VT region.

Ambient temperature is an important sensing modality in recent ULP IoT sensor systems.
Various types of temperature sensors based on both bipolar junction transistors (BJTs) and
metal–oxide–semiconductor field-effect transistors (MOSFETs) have been recently designed
for this purpose. Conventionally, BJT-based temperature sensors take advantage of the
complementary-to-absolute temperature (CTAT) property of the base-emitter voltage (VBE) and the
proportional-to-absolute temperature (PTAT) property of the difference between two VBE voltages
in vertical PNP transistors. However, BJT-based temperature sensors, such as [5], have power
consumptions in the µW range, which is not suitable for devices operating from harvested energy.
BJT-based temperature sensor architectures also require a higher power supply (1.5 V to 2 V in [5]) that
limits the minimum supply voltage in IoT devices.

On the other hand, MOSFET-based temperature sensors [6–9] are growing in popularity these
days for ULP systems. These temperature sensors consume less power in the range of tens to hundreds
of nWs as compared to the BJT-based sensors at the expense of accuracy. In [6], a temperature sensor
operational from 0.85 V VDD was implemented using dynamic threshold MOS transistors (DTMOSTs)
as temperature-sensing devices and an inverter-based zoom ADC to enable a power consumption
of 600 nW. In [7], the MOSFET-based temperature sensor consumes only 220 nW while operating
continuously. The work in [7] demonstrates techniques to lower power consumption such as sub-VT

design, use of frequency-to-digital conversion instead of ADC, an on-chip time reference, etc., which
makes this implementation suitable for embedded passive RFID application space. In [8], a CMOS
temperature sensor employs a serially-connected sub-VT MOS as a sensing element that is operational
from 0.5 V VDD, thereby enabling a power consumption of only 119 nW. In [9], a new temperature
sensor topology and changes to conventional voltage-to-current converter and current mirror structures
were proposed to achieve a power consumption of 71 nW.

In this paper, we propose to further lower the power consumption of a temperature sensor system
with the use of a sub-VT sensor core that consumes very low power and energy and is operational
down to 0.2 V VDD [10]. A simplified block diagram of the proposed temperature sensor is shown in
Figure 1. A current proportional to ambient temperature is generated using a sub-VT temperature
to current converter. The current is subsequently translated to frequency using a current-controlled
oscillator and then into a representative digital code using a digital block, which is usable by any
system-on-chip (SoC). Modifications to the conventional current mirror structure enables reduced
power consumption in cases such as fast process corners in which power consumption is usually
higher than desired. A detailed description of these components is presented in this work.
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Figure 1. A simplified block diagram of the proposed temperature sensor system.
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The total power consumption of the temperature sensor system is 23 nW, and the maximum
temperature inaccuracy is +1.5/´1.7 ˝C from 0 ˝C to 100 ˝C with a two-point calibration. This paper
is structured as follows. Section 2 introduces the temperature sensor architecture and describes the
components and the low-power design techniques used. Section 3 presents the simulation results,
Section 4 provides a comparison of the proposed system with the state-of-the-art temperature sensors,
and finally, Section 5 concludes the work.

2. Components of the Temperature Sensor System

In this paper, we describe the components of the proposed fully on-chip temperature sensor
system. A component-level system diagram is shown in Figure 2. The proposed temperature
sensor core consists of (a) a sub-VT proportional-to-absolute-temperature (PTAT) current element that
generates a current proportional to temperature; (b) a bit-weighted current mirror (BWCM) that mirrors
the PTAT current to starve a ring oscillator. Process variations can cause a large amount of variations
in the sub-VT PTAT current output. A BWCM consisting of eight current mirror arms can be enabled
or disabled to control the PTAT current that is mirrored to the subsequent stages (1ˆ implies same
current mirrored, 1/2ˆ implies half the current mirrored, etc.); and (c) a current-controlled oscillator
(CCO) that generates a clock frequency proportional to the mirrored PTAT current. The sensor core
constituting the above components is operational at 0.2 V VDD.
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Figure 2. Temperature sensor system [10]: it consists of a sub-VT PTAT current source, a bit-weighted
current mirror, a current controlled oscillator and a digital block. (Based on “A 23 nW CMOS Ultra-Low
Power Temperature Sensor Operational from 0.2 V”, by Divya Akella Kamakshi, Aatmesh Shrivastava,
and Benton H. Calhoun, which appeared in SOI-3D-Subthreshold Microelectronics Technology Unified
Conference (S3S), 2015 IEEE, Rohnert Park, CA, USA, 2015, pp. 1–3. © (2015) IEEE.).

Additionally, a digital block converts the CCO oscillation frequency to a digital code for processing
by any SoC component. The digital block operates at 0.5 V VDD, a higher voltage rail that is typically
available for digital processing on SoCs such as [4]. The 0.2 V analog supply can be generated from the
0.5 V supply using a switched-capacitor DC–DC regulator or low drop-out (LDO) regulator. The above
components are described in detail in this section.

2.1. Sub-Threshold PTAT Current Element

Figure 3 shows the PTAT current source using a single resistor designed to operate at 0.2 V VDD.
A PTAT current element generates current that increases linearly with temperature. The transistors M1
to M4 are operated in the sub-VT saturation region.
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Figure 3. Sub-VT PTAT current source operational at 0.2 V VDD [10]: the transistors M1 to M4 are
operated in the sub-VT saturation region using thin-oxide standard-VT (SVT) devices. (Based on
“A 23 nW CMOS Ultra-Low Power Temperature Sensor Operational from 0.2 V”, by Divya Akella
Kamakshi, Aatmesh Shrivastava, and Benton H. Calhoun, which appeared in SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), 2015 IEEE, Rohnert Park, CA, USA, 2015,
pp. 1–3. © (2015) IEEE.).

The PTAT output current and its proportionality to temperature is derived in this section.
The drain current of transistors in sub-VT is given by:

IDSUB “ IoexpppVGS´VTq{nφtqp1´ expp´VDSq{φtq (1)

where Io is drain current when gate-source voltage (VGS) equals VT (Io = µoCox(W/L)(n ´ 1) φt
2), µo

is the carrier mobility, Cox is the gate oxide capacitance, W and L are the channel width and length,
and n is the sub-VT slope factor. When drain to source voltage VDS > 3φt, the term exp(´VDS)/φt in
Equation (1) starts becoming negligible and Equation (1) can be approximated as:

IDSUB “ IoexpppVGS´VTq{nφtq (2)

The transistors in the circuit are sized so that their drain-source voltages (VDS) are greater than
3φt (φt = kT/q). This is called the sub-VT MOSFET saturation region, in which the drain current
becomes independent of VDS. To overcome low headroom at 0.2 V, thin-oxide standard-VT (SVT)
devices with typical threshold voltages (VT) of ~0.2 V are used. Long channel lengths are used to
reduce short-channel effects. To obtain the equation for PTAT current, Kirchoff’s voltage law is applied
to transistors M1, M2, and resistor RS. VGS1 and VGS2 are the gate to source voltages and IDSUB1 and
IDSUB2 are the drain currents of transistors M1 and M2, respectively.

VGS1 “ VGS2 ` IDSUB2RS (3)

Substituting Equation (2) for IDSUB in Equation (3):

nφtlogepIDSUB1{Ioq ` VT1 “ nφtlogepIDSUB2{KIoq ` VT2 ` IOUTRS (4)

Since IDSUB1 = IDSUB2 = IOUT and assuming VT1 = VT2 in Equation (4):

IOUT “ nφtlogeK{RS (5)

The direct temperature dependence of IOUT on φt (=kT/q) gives a proportional to absolute
temperature current. Due to the small values of IOUT current, a smaller resistor as compared to prior
PTAT designs can be used. A 400 K poly-silicon resistor with low temperature dependence and
operating the PTAT transistors at sub-VT voltages enables generation of currents in the nanoampere
range. Such low currents contribute to the low power consumption of the temperature sensor system.
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However, sub-VT circuits are highly sensitive to process variations. Process variations can cause
output current variations in the sub-VT PTAT. Figure 4 shows a plot of the PTAT current at 27 ˝C in
100-point Monte Carlo simulations. At higher temperatures, the PTAT current consumption will be
higher as it is proportional to temperature. However, the current variation will still exist because of
process variation. In the Monte Carlo simulations, both process (inter-die) and mismatch (intra-die)
variations were considered. Therefore, it covers the whole range of process variation including typical,
slow, and fast corners. We observe that the mean PTAT current is 39 nA, and the 3σ variation of
25 nA is very high. The PTAT current is mirrored into the subsequent current controlled oscillator
stage. Therefore, higher PTAT current may cause higher total power dissipation than desired. In the
next section, a bit-weighted current mirror (BWCM) is described to decrease such process-induced
power dissipation.
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2.2. Bit-Weighted Current Mirror

The PTAT current is mirrored using a BWCM to starve the transistors of a CCO as shown in
Figure 5, which generates frequencies proportional to temperature.
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The BWCM is shown in Figure 6. The BWCM consists of eight current mirror arms, each of them
mirroring different fractions of PTAT current to the CCO. For instance, 1x implies that PTAT current is
entirely mirrored, 1/2ˆ implies that 50% of the PTAT current is mirrored, and so on. The entire PTAT
current is not required to mirror the PTAT linearity information to the CCO, but only a fraction of it
that is still linear is sufficient. Furthermore, if the PTAT current is higher than desired due to a strong
process, a lower bit setting scales down the BWCM current starving the CCO, thereby enabling power
savings. The current mirror arms can be enabled or disabled by bits B<7:0> in the switches. They are
not one-hot bits but are binary bits, which implies that different combinations scale the current in
different fractions.
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Figure 6. Bit-weighted current mirror circuit (BWCM). (Based on “A 23 nW CMOS Ultra-Low Power
Temperature Sensor Operational from 0.2 V”, by Divya Akella Kamakshi, Aatmesh Shrivastava, and
Benton H. Calhoun, which appeared in SOI-3D-Subthreshold Microelectronics Technology Unified
Conference (S3S), 2015 IEEE, Rohnert Park, CA, USA, 2015, pp. 1–3. © (2015) IEEE.).

However, simple PMOS or NMOS switches cannot be used to enable or disable the current mirror
arms at 0.2 V VDD due to effects of high leakage current that interferes with the PTAT current thereby
altering its linear characteristics. Figure 7 shows the architecture of the BWCM switches used to turn
on and off each bit-weighted current mirror arm. To enable an arm, the corresponding transmission
gate switch is enabled by one bit of B<7:0>. This creates a path between the PTAT and the enabled
current mirror branch. To disable an arm, the output of the switch, and therefore the gate of the PMOS
of the corresponding current mirror branch, is pulled high to turn it off.

However, when a branch is disabled by pulling the PMOS gate to only 0.2 V VDD, the leakage of
the off PMOS transistor is high, thereby causing the effective BWCM current to be non-linear, as shown
in Figure 8a. To overcome the leakage, the PMOS of the branch to be disabled is turned off by tying its
gate to 0.5 V VDDH (available for digital operation [4]). This negative VGS in the PMOS transistor of
the disabled current mirror branch reduces its leakage, thereby keeping the effective BWCM current
linear as shown in Figure 8b. The linearity is denoted by R2, a measure of goodness of fit in linear
regression. The value of R2 lies between 0 and 1. A value closer to 1 indicates higher linearity. The R2

value without leakage control is 0.9753 and with leakage control it improves to 0.9997 for fast process
corners and better for other process corners, such as typical or weak.
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effectively turned off and its leakage contributes to the BWCM current causing non-linearity in the
BWCM current vs. temperature curve (R2 = 0.9753) [10]; and (b) the disabled BWCM current mirror
branch is turned off by tying the PMOS gate to 0.5 V VDDH. This reduces the PMOS leakage and
enables a highly linear BWCM current vs. temperature performance (R2 = 0.9997) [10]. (Based on
“A 23 nW CMOS Ultra-Low Power Temperature Sensor Operational from 0.2 V”, by Divya Akella
Kamakshi, Aatmesh Shrivastava, and Benton H. Calhoun, which appeared in SOI-3D-Subthreshold
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2.3. Current-Controlled Oscillator

A current controlled oscillator (CCO), shown in Figure 9, is starved by the current from the
BWCM (IBWCM). It is also possible to mirror the PTAT current to an intermediate BWCM stage and
then subsequently starve each CCO stage using simple current mirrors. However, an intermediate
mirror stage involves additional current consumption. Therefore, the CCO stages are directly starved
using the BWCMs, keeping in mind lower power consumption. Due to a low headroom availability
of 0.2 V, an NMOS-only CCO was implemented. The CCO output frequency is dependent on
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IBWCM and CL. IBWCM is linearly proportional to temperature as described in Section 2.2 and CL

is a metal-insulator-metal capacitor of very small temperature variation. Therefore, the effective CCO
frequency is primarily determined by current IBWCM.
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Figure 9. NMOS-only CCO in which the frequency is determined by IBWCM and capacitors
CL [10]. (Based on “A 23 nW CMOS Ultra-Low Power Temperature Sensor Operational from 0.2 V”,
by Divya Akella Kamakshi, Aatmesh Shrivastava, and Benton H. Calhoun, which appeared in
SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2015 IEEE, Rohnert Park,
CA, USA, 2015, pp. 1–3. © (2015) IEEE.).

However, the CCO is also affected by process variations. At faster process corners, the leakage
current in the NMOS devices constitutes a significant portion of IBWCM leading to non-linear
relationship between CCO frequency and IBWCM. At slow process corners, the NMOS drive strength
can be insufficient to translate IBWCM to frequencies. At slow process corners, scaling the PTAT current
to a lower value using the BWCM can be helpful when the CCO drive strength is low. However, from
Monte Carlo simulations, it was found to be an insufficient solution when the drive strength is much
lower, even for scaled BWCM currents. This may happen due to intra-die process variations between
the current mirror and CCO transistors. On the other hand in fast process corners, even though
the BWCM current is scaled to save power, the CCO NMOS devices when sized for typical process
conditions have a leakage component that can contribute significantly to the non-linearity in the
CCO frequency vs. temperature curve. Therefore, the drive strength of the NMOS devices is also
required to be controlled using process trimming bits in addition to extending the BWCM current
range. The CCO elements for different process corners are switched using CCO switches as shown
in Figure 10. Process-trimming bits P<3:0> are used to enable different drive strengths of the CCO
NMOS element ((W/L)1 through (W/L)4). A smaller (W/L) ratio provides sufficient drive current in a
faster corner, whereas, a larger (W/L) ratio is required in slower process corners to provide sufficient
drive strength of the CCO. From Monte Carlo simulations and trimming data points, it was chosen
to have four CCO branches controlled by bits P<3:0>. Having many CCO parallel branches will not
increase accuracy, because a higher number of “off” CCO branches increases the leakage current and
affects the linearity. In case of BWCM bits (B<7:0>), multiple branches can be “on” at the same time
and that happens when set automatically using the locking circuit. However, only one of the four CCO
branches are set to be “on” at a time for different drive strengths; therefore, P<3:0> is a one-hot code.

The CCO switches are shown in Figure 11. When P0 is 1, the corresponding CCO branch is
enabled. The top device CCO1 is sized to allow the entire current IBWCM to the corresponding CCO
elements. When P0 is 0, the corresponding CCO branch is disabled. The bottom device CCO2 pulls
down the VDS and VGS to ground to effectively turn off the CCO NMOS element. When a branch
is disabled, there is leakage current through these devices, but it is sufficiently low to maintain the
linearity of the mirrored BWCM current.
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Figure 11. CCO switch architecture.

Figure 12 shows the effect of process trimming of CCO elements. It is to be noted that for this
experiment, 100% of the PTAT current is mirrored (B<7:0> = 1000 0000) without accounting for power
savings. For typical case of process variations, the linearity is high (R2 = 0.99955) with the default
CCO device strength (P0 = 0). We demonstrate the effect for a slower case of process variations, in
which the CCO element needs to be trimmed to improve the drive strength. With process trimming,
an improvement in R2 value (from R2 = 0.99014 to R2 = 0.9993) is observed as shown in Figure 12.
Process bits can, therefore, be used to trim the devices in different process corners.

The BWCM bits B<7:0> and process bits P<3:0> are set during the initial calibration phase.
The process bits are first manually configured by setting B<7:0> to 1000 0000 to mirror 100% of the
PTAT current. The final BWCM scaling is performed after process trimming. This is because, when the
CCO NMOS strength is sufficient for 100% PTAT current, it will be sufficient for the scaled current as
well. In simulations, the PTAT current gives an idea of the process and P<3:0> was set accordingly.
In real chip implementations, on-chip process monitors give the idea of the process.

Secondly, the BWCM bits may be manually or otherwise automatically set using a locking
circuit [11] as shown in Figure 13. The CCO output frequency is representative of the amount of IBWCM

that is starving the CCO NMOS devices. This information can be used as a feedback to control the
current that is mirrored from the PTAT to the CCO stages during calibration. The locking circuit shown
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in Figure 13 can be used to lock the CCO frequency to a reference clock, which may be derived directly
from the system clock or it can be a fraction of the system clock. The BWCM bits B<7:0> are then set by
the locking circuit to automatically control the power consumption of the temperature sensor system.
The locking circuit is operational using the digital logic supply voltage of 0.5 V.
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Figure 13. Locking circuit [11] to automatically set BWCM bits B<7:0>.

Figure 14 shows the locking mechanism. In this example, the reference clock is assumed to be
derived from the system crystal oscillator clock and its frequency is set to be approximately that of a
crystal at 33 kHz. The bits B<7:0> are set one after the other by the SAR logic in the locking circuit to
lock the CCO to a frequency comparable to the reference frequency at 39 kHz. The locked frequency
does not closely match the reference frequency with high accuracy, unlike the clock source in which
the locking circuit was used [11], because the granularity of the current sources in this design is not
sufficient to achieve small delays for high accuracy locking. However, this level of proximity to the
reference frequency is sufficient for our purpose of power reduction in a temperature sensor. The value
of B<7:0> for the lock shown in Figure 14 is 0001 1100. The optimal reference frequency range for
different process corners is to be carefully chosen because choosing a higher frequency does not achieve
power savings, whereas choosing too low a frequency lowers the BWCM current drastically to affect
its linearity as leakage currents become dominant.
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2.4. Digital Block

The digital block has a programmable fixed and a variable counter synthesized using low leakage
high-VT logic as shown in Figure 15. The fixed counter asserts a Done signal after counting a preset
number of reference clock (e.g., system clock) cycles. This gives a fixed time window for temperature
sampling and conversion into digital code. The variable counter counts the CCO cycles until Done
is asserted high and outputs a code that is representative of the CCO frequency and, therefore, the
ambient temperature. Prior to the next temperature fetch, both of the counters are reset.J. Low Power Electron. Appl. 2016, 6, 10 11 of 15 
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Figure 15. Digital block consisting of two counters to convert temperature to digital code.

3. Simulation Results

3.1. PTAT Output Current vs. Temperature

Figure 16 shows a 100-point Monte Carlo simulation plot of PTAT current IOUT vs. temperature
from 0 ˝C to 100 ˝C. We observe that the PTAT current is linear across different iterations. The linearity
of PTAT current is denoted by R2 (measure of goodness of fit in linear regressions). The linearity
histogram for a 100-point Monte Carlo simulation is shown in Figure 17. The mean R2 of the PTAT
current is 0.9993 and the 3σ variation is 0.0024, which indicates high linearity.
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Figure 17. Linearity histogram of PTAT current: mean R2 value = 0.9993; 3σ R2 = 0.0024 [10]. (Based on
“A 23 nW CMOS Ultra-Low Power Temperature Sensor Operational from 0.2 V”, by Divya Akella
Kamakshi, Aatmesh Shrivastava, and Benton H. Calhoun, which appeared in SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), 2015 IEEE, Rohnert Park, CA, USA, 2015,
pp. 1–3. © (2015) IEEE.).

3.2. Bit-Weighted Current Mirror Configuration

The PTAT current is mirrored to starve the CCO using a BWCM. Figure 18 demonstrates the
advantage of using a BWCM. In fast process corners, such as FF, the PTAT current is higher than
desired and, when mirrored to subsequent CCO stages, this causes higher power consumption than
desired. Figure 18 shows the cases when 100% of the PTAT current is mirrored. For fast process corners,
only a fraction of the PTAT current is required to be mirrored to control the power consumption
of the temperature sensor system. Figure 18 also shows the scaled BWCM current (50% and 25%
PTAT) for different bit-configurations of B<7:0> for fast process corners. When the scaled current is
mirrored to the subsequent CCO stages, it enables control of the power consumption of the temperature
sensor system.
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Figure 18. Different fractions of BWCM current in faster process corners saves power.

3.3. CCO Frequency (Untrimmed) vs. Temperature

The frequency vs. temperature curves for a 100-point Monte Carlo run without process trimming
of the CCO NMOS devices are shown in Figure 19. We observe non-linearity in some of the curves
because they belong to slower process corners where the drive strength of the CCO is insufficient or to
faster process corners in which the non-linear leakage current becomes a comparable component in
the starving current. The actual inaccuracies are determined in the following section in which the CCO
is process trimmed according the process corner.
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Figure 19. Frequency vs. temperature curves (100 points) without process trimming [10]. Based on
“A 23 nW CMOS Ultra-Low Power Temperature Sensor Operational from 0.2 V”, by Divya Akella
Kamakshi, Aatmesh Shrivastava, and Benton H. Calhoun, which appeared in SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), 2015 IEEE, Rohnert Park, CA, USA, 2015,
pp. 1–3. © (2015) IEEE.

3.4. Inaccuracy vs. Temperature, Supply Noise Sensitivity, and Power Consumption

To measure inaccuracy it is required to calibrate the CCO pull-down to control the drive strength.
The calibration was done for 15 points of the Monte Carlo simulations from Section 3.3. To measure the
inaccuracy, a two-point temperature calibration is done at 10 ˝C and 80 ˝C. A straight line joining these
calibration points gives the required frequency vs. temperature extrapolation line. The inaccuracy
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is determined from the deviation of the actual frequency vs. temperature curve from the straight
line after calibration. Figure 20 shows the histogram of the temperature sensor inaccuracy of the
15 data points taken from the 100 Monte Carlo simulation points and inaccuracy was determined after
process trimming of the CCO delay elements. The mean inaccuracy is +1.0/´1.2 ˝C and maximum
inaccuracy is +1.5/´1.7 ˝C for the 15 process trimmed data points. The frequency range of the CCO
gives a resolution of 0.008 ˝C/LSB, although the thermal noise floor limits the practical resolution.
Programmable counters enable different sampling windows for temperature conversion, making the
resolution-power trade-off possible.
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Figure 20. Inaccuracy histogram (15 points) after trimming. The mean inaccuracy is +1.0/´1.2 ˝C, the
maximum inaccuracy is +1.5/´1.7 ˝C [10]. (Based on “A 23 nW CMOS Ultra-Low Power Temperature
Sensor Operational from 0.2 V”, by Divya Akella Kamakshi, Aatmesh Shrivastava, and Benton H.
Calhoun, which appeared inSOI-3D-Subthreshold Microelectronics Technology Unified Conference
(S3S), 2015 IEEE, Rohnert Park, CA, USA, 2015, pp. 1–3. © (2015) IEEE.).

A variation of the power supply because of variation of the reference voltage due to temperature
will add additional inaccuracy in the temperature sensor. This supply noise variation was simulated
to be 0.032 ˝C/mV. It can be improved using decoupling capacitors (~20 pF of area ~50 ˆ 50 µm2).
To effectively eliminate the effect of supply noise that is 1 kHz or higher, a low-pass filter (off-chip 50 kΩ
and 10 nF) can be used. The sensor presents a low load, so it can be operated from a well-controlled
supply using an LDO too.

To measure the power consumption, the BWCM bit value for typical case was set to 1000 0000.
For faster process corners the bits were set to scale the current accordingly while maintaining high
linearity of the mirrored current. The average power consumption of the analog core at 0.2 V is 18 nW.
The total system power (including the locking circuit, level shifter [12] and digital block at 0.5 V) is
23 nW. A lower sampling rate further saves power as the digital blocks consume only 190 pW of
leakage between samples.

4. Comparison with Prior Art

Table 1 compares the proposed temperature sensor design with other recent low-power designs
of varying circuit topologies with sub-µW power consumption. This work focuses on lowering the
power consumption while maintaining a similar inaccuracy and temperature range compared to prior
art. Compared to a recent ULP temperature sensor [9], the proposed temperature sensor system has
3ˆ lower power and comparable inaccuracy.
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Table 1. Comparison with prior art.

Sensor
CMOS

Technology
(µm)

VDD
(V)

Fully
Integrated

Inaccuracy
(˝C)

Temp.
Range
(˝C)

Power
(nW)

Energy/Conversion
(nJ)

This work 0.13 0.2, 0.5 Yes 1.5/´1.7 0–100 23 0.23
[6] 0.16 0.85 No +/´0.4 (3σ) ´40–125 600 3.6
[7] 0.18 1 Yes +3/´1.6 0–100 220 22
[8] 0.18 0.5, 1 No +1/´0.8 ´10–30 120 3.6
[9] 0.18 1.2 Yes +1.5/´1.4 0–100 71 2.2

[13] 0.18 1.2 No +1/´0.8 0–100 405 0.41

Based on “A 23 nW CMOS Ultra-Low Power Temperature Sensor Operational from 0.2 V”, by Divya
Akella Kamakshi, Aatmesh Shrivastava, and Benton H. Calhoun, which appeared in SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), 2015 IEEE, Rohnert Park, CA, USA, 2015, pp. 1–3.
© (2015) IEEE.

5. Conclusions

The proposed ULP sub-VT temperature sensor core is operational down to 0.2 V. Together with
digital logic at 0.5 V, the total system power consumption is 23 nW, and the maximum inaccuracy is
+1.5/´1.7 ˝C in the temperature range of 0 ˝C to 100 ˝C with a two-point calibration. A bit-weighted
current mirror architecture resists process-induced power variations, process trimming bits in the
current-controlled oscillator control its drive strength, and a programmable digital control based on
counters supports a resolution-power trade-off for IoT applications with different sampling rate and
energy needs. The area of the analog core is 150 ˆ 100 µm2 and the total system area is 250 ˆ 250 µm2

as shown in the layout in Figure 21.
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