
Article

An Open-Source Tool Set Enabling
Analog-Digital-Software Co-Design

Michelle Collins, Jennifer Hasler * and Suma George

Electrical and Computer Engineering (ECE), Georgia Institute of Technology, Atlanta, GA 30332-250, USA
* Correspondence: jennifer.hasler@ece.gatech.edu; Tel.: +404-894-2944; Fax: +404-894-4641

Academic Editor: David Bol
Received: 5 October 2015; Accepted: 14 January 2016; Published: 4 February 2016

Abstract: This paper presents an analog-digital hardware-software co-design environment for
simulating and programming reconfigurable systems. The tool simulates, designs, as well as
enables experimental measurements after compiling to configurable systems in the same integrated
design tool framework. High level software in Scilab/Xcos (open-source programs similar to
MATLAB/Simulink) that converts the high-level block description by the user to blif format
(sci2blif), which acts as an input to the modified VPR tool, including the code vpr2swcs, encoding
the specific platform through specific architecture files, resulting in a targetable switch list
on the resulting configurable analog–digital system. The resulting tool uses an analog and
mixed-signal library of components, enabling users and future researchers access to the basic analog
operations/computations that are possible.

Keywords: FPAA; x2c; Scilab

1. Motivation for a Design Tool for Configurable Analog–Digital Platforms

The emergence of large-scale mixed-mode configurable systems, such as the system on chip (SoC)
large-scale field programmable analog arrays (FPAA) [1], shows the need for tools that enable designers
to effectively and efficiently design through the large number of open questions in this analog–digital
co-design space. This paper presents a unified tool framework for analog–digital hardware-software
co-design, enabling the user to manipulate design choices (i.e., power, area) involving mixed-signal
computation and signal processing. This tool set provides a starting point for the analog–digital
software co-design discussion to further development through an open-source platform, as larger
future mixed-mode configurable systems will be developed.

Digital-only hardware-software co-design is an established, although unsolved and currently
researched, discipline (e.g., [2]); incorporating analog computation and signal processing adds a new
dimension to co-design. Well-established Field Programmable Gate Array (FPGA) design tools, such
as Simulink [3], are developed to work with Xlinix [4] and Altera FPGA [5,6] devices. Simulink, and to
a lesser extent, some open source tools (e.g., [7]), provides the framework to input into Xlinix/Altera
compilation tools, completely abstracting away the details from the user, by allowing both standard
Simulink blocks to compile to Verilog blocks to targetable hardware, as well as support for specific
blocks on that hardware platform. Current research in hardware-software co-design focuses entirely
on digital hardware-software (e.g., processor) co-design (for example, [8–10]).

The wide demonstration of programmable and configurable analog signal processing and
computation [1,11] opens up an additional range of design choices, but requires user-friendly design
tools to enable system design without requiring an understanding of analog circuit components.
Occasionally, analog automation tools are discussed [12,13]; usually, these treatments are theoretical
in nature, because of the lack of available experimental hardware, and not enabling the momentum

J. Low Power Electron. Appl. 2016, 6, 3; doi:10.3390/jlpea6010003 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
http://www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2016, 6, 3 2 of 15

required to develop working systems, including research lab or classroom demonstrations. This tool
set expands the graphical design for analog–digital computational systems in an open-source platform.

The tool integrates a high-level design environment built in Scilab/Xcos (open-source programs
similar to MATLAB/Simulink), with a compilation tool, x2c , Xcos to compiled object code, creating a
design environment to instantiate configurable and programmable hardware. Figure 1 illustrates using
the Xcos tool framework compiled down to the system through x2c, providing a time-efficient method
of solution, enabling system designers to integrate useful systems, while still enabling circuit experts
to continue to develop creative and reusable designs within the same tool flow. This open-source tool
platform integrates existing open-source VPR [14] with software developed to build an integrated
environment to simulate and experimentally test designs on the FPAA SoCs.

ASP ASP

Software

SoftwareDigital

Digital

Digital

Application

???
x2c

Platform of Programmable Analog and Digital Hardware / Software

Figure 1. The translation from an application to a heterogeneous set of digital hardware + software
resources is a known field of study; The translation from an application to a heterogeneous set of analog
and digital hardware + software resources is a question that is barely even considered. The focus of
this paper is to describe a set of software tools to encapsulate a range of potential application solutions,
written in SciLab/Xcos, that enable a range of system design choices to be investigated by the designer.
These tools enable high-level simulation, as well as enable compilation to physical hardware through a
tool, x2c. The tool set will be publicly available upon publication of this paper.

J. Low Power Electron. Appl. 2016, 6, 3 3 of 15

Section 2 overviews the analog–digital design tool. Section 3 describes tool integration with
an experimental FPAA platform. Section 4 describes the methodology for implementing the tool
set, including macromodel system simulation corresponding to measurements and translating from
the Xcos description to net list descriptions for hardware compilation. Section 5 describes some
larger FPAA system examples. Section 6 summarizes this paper, as well as discusses strategies for
analog–digital co-design. The tool set will be publicly available upon publication of this paper.

2. Analog–Digital Design Tool Overview

Figure 2 shows the tool set translating from an application to a heterogeneous set of analog and
digital hardware + software resources, such as the representative case in Figure 2a, as well as the
specific FPAA integrated circuit. in Figure 2b.

ANALOG

blif (netlist)

DIGITAL

blif /verilog

ASSEMBLY

.asm

Program IC

High Level

Graphical

Circuit

Compile to

switches
Compile to

Hex code

(a)

(b)

x2c tool for FPAAs

Integrate digital

and analog blif

VPR

vpr2swcs

.blif

.swcs

Technology

 File for

different

ICs

.xml

sci2blifSRAM

Program: 16k x 16

Data: 16k x 16

MSP430

Open Core

Processor

Memory

Mapped

Registers
1
6
, 7

b
it sig

n
al

 D
A

C
s

P
ro

g
 D

A
C

s

(6
, 6

 to
 7

b
it)

GP I/O

Prog: I V

Ramp ADC

SPI

Ports

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

ASP ASP

Software

SoftwareDigital

Digital

Digital

Platform of Programmable Analog and Digital Hardware / Software

Can switch to differ-

ent IC specifications/

configuration modes.

.net, .route, .place

(c)

Figure 2. Tool design overview to handle programming a mixed platform of programmable analog and
digital hardware and software, such as the block in (a); (b) a recent large-scale SoC field programmable
analog array (FPAA) provides the specific target device [1]. A particular FPAA system is defined by
its different technology files, chosen by the user, encompassing a combination of components with
analog (i.e., computational analog block (CAB)) or digital components (i.e., computational logic block
(CLB)) that are connected through a switch matrix, as well as a range of I/O components and special
additional components. (c) Top-down design tool flow. The graphical high-level tool uses a palette
for available blocks that compile down to a combination of digital and analog hardware blocks, as
well as software (processor) blocks. The tool x2c converts Xcos design to switches to program the SoC,
combining open-source software like Scilab, Xcos, VPR and custom software sci2blif and vpr2swcs as
a software suite to program and test FPAA SoCs.

Figure 2c shows the resulting tool flow block diagram, enabling IC experimental results, as well as
system/circuit simulation. The Xcos system is built to enable macro-model simulation of the resulting
physical system. x2c converts an Xcos design to switches to program the hardware system, made
up of sci2blif that converts Xcos to modified blif (Berkeley Logic Interface Format) and vpr2swcs
that converts blif to a programmable switch list as code around the modified open-source Virtual
Place and Route (VPR) tool [14], a tool originally designed for basic FPGA place and route algorithms.

J. Low Power Electron. Appl. 2016, 6, 3 4 of 15

The particular system to be targeted, an FPAA IC, is defined by its resulting technology file for x2c
tool use. A detailed discussion of vpr2swcs place and route tools will be published elsewhere, as it is
beyond the scope and length of this paper.

Figure 3 shows a full tool example of the graphical interface and results for a first-order low-pass
filter (LPF) system, showing both simulation results and experimental results. The tool is encapsulated
in a single, open-source Ubuntu Virtual Machine, with a single desktop button to launch the entire
Scilab tool framework. Xcos gives the user the ability to create, model and simulate analog and digital
designs. The Xcos editor has standard blocks that are compartmentalized into classes or palettes
that range from mathematical operations to digital signal processing. The editor allows the internal
simulator to utilize the functionality of each block to compute the final answer. The tool structure took
advantage of user-defined blocks and palettes that can interact with Scilab inherent blocks.

(b)

(a) 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (ms)

V
o

lt
ag

e
F

G
 O

T
A

 (
V

)

Initial Cond Settling

In4

(1V)

In3

(0.75V)

Out4

Out3

Out2

Out1

Out2,3,4

In2

(0.5V)

In1

(0.25V)

(c)

Experimental results

0 10 20 30 40 50 60 70 80 90
Time (ms)

1.2

1.3

1.4

1.5

V
o

lt
ag

e
(V

)

Input

Output

(d)

Figure 3. An example of the entire tool flow for a low-pass filter (LPF) computation. (a) The user
chooses basic design options through the FPAA Tools GUI, which starts running when the Scilab tools
are started in the distributed Ubuntu Virtual Machine (VM); (b) snapshot of the Xcos palette for FPAA
blocks. There are four sections, namely the analog, digital, input/output and complex blocks; the
analog, digital and I/O blocks consist of basic elements in different tiles of a chip. Complex blocks
are pre-defined circuit blocks made of more than one basic element. (c) Simulation results for four
input and output computation. Lines, and resulting blocks, allow for vectorized, as well as scalar
inputs. Inset shows the Xcos diagram; the user sets parameters for simulation or for compiling into an
integrated circuit. (d) Experimental results for a one input and output computation.

J. Low Power Electron. Appl. 2016, 6, 3 5 of 15

The Xcos [7] tool uses user-defined blocks and libraries. When the user opens the Xcos editor, a
palette browser is displayed, as shown in Figure 3b. The browser lists Scilab’s collection of palettes,
as well as user-defined palettes. One selects from a palette of available blocks to build the resulting
system, which can be composed of a mixture of analog (blif), digital (Verilog) and software (assembly
language) components. The Palette for FPAA Tools contains sub-palettes for blocks that are classified
as analog, digital, inputs/outputs and complex blocks. The input/output palette contains typical
circuits, like DACs, arbitrary waveform generator, IO pads and voltage measurement (ADC). The
digital palette contains typical circuits, like a digital flip-flop and a clock divider. A few examples of
complex blocks are a low-pass filter (LPF), a sigma-delta ADC and a vector matrix multiplier (VMM)
connected to a winner-take-all (WTA) block as a classifier structure.

The blocks and their information are stored in a Scilab data structure that can be accessed in
two different files, a block interfacing function and a block computational function. The interfacing
function sets up the fields of the dialog box associated with each block to retrieve user parameters and
set default values, as well as defines the size of the block and the number of inputs and outputs. There
are consistency checks to let the user know if the values they entered into the dialog box are a valid
implementation.

Each block has two specific files that dictate its appearance and its performance within
Xcos. The computational function encourages model customization, while the interfacing function
supports built-in data checking, variable inputs/outputs and default parameters. The interfacing and
computational functions are heavily coupled by the Scilab structure for a block. Thus, the parameters
retrieved from a dialog box displayed to users are accessible to compute the output of blocks during
simulation.

This discussion follows a previous representation [15] of analog blocks into Level 1 and Level 2
blocks. Level 1 blocks abstract away intricacies for system designers, such as the inputs and outputs
being vectorized, voltage-mode signals (as seen in Figure 3c towards the bus of four signals). Figure 3d
shows experimental results for a single line (bus of one signal). Level 2 blocks allow for general circuit
design, typically as a representation of computational analog block (CAB) elements. Example CAB
elements include Transistors, Floating-Gate (FG) Transistors, Transconductance Amplifiers (TA), and
digital transmission gates (Tgate). The TA output current is proportional to the applied voltages for
one operating region. Tgate emulates a rail-to-rail switch element in a CMOS process. Each block
uses vector signals and resulting vector-based block computation, where each block may represent
potentially N virtual blocks (or more) to either be compiled to silicon or simulated. The lines/links that
connect the blocks together are essentially layered buses. Each link, and resulting block element, allows
for vectorized signals, as seen by the example in Figure 3c (four signals on one line for simulation),
consistent with the Level 1 definition [15], empowering the user to develop systems with just the
necessary number of blocks.

3. Integrating the Analog–Digital Design Tool with an FPAA Platform

The test platform is a full system IC requiring only simple interfacing to the outside world
through USB ports, appearing to be a standard peripheral to a typical device. Figure 2b shows the
block diagram of the SoC FPAA used in this paper for experimental measurements. This SoC FPAA
enables nonvolatile digital and analog programmability through floating-gate (FG) devices, both in
the routing fabric, as well as in CAB block parameters (i.e., bias current for an OTA). The blocks with
simply digital (D) components are called computational logic blocks (CLB), and the blocks with analog
(A) and digital components are called computational analog blocks (CAB). Further, the use of FG
devices for switches effectively embeds analog components into the routing fabric, as well as enabling
connections on the resulting lines [16], often allowing far more computation in just the routing fabric
compared to the CAB or CLB elements. Any tool development for these FPAA SoC must be able to
handle these opportunities; almost all configurable systems have some similar opportunities that must
be encoded in the system’s technology file. Other FPAA devices fit into this general framework [17–22].

J. Low Power Electron. Appl. 2016, 6, 3 6 of 15

Figure 4 shows descriptions of component blocks in the library (all level = 1 block) and their
resulting circuit schematics, including filters, counters and detectors. Although a circuit expert
gains tremendous insight into the particular circuit being compiled and used on the IC, most system
designers are satisfied with getting the desired functional behavior, with minimal non-idealities from
the circuit. The result is a rich set of analog and digital blocks, similar to FPGAs when using graphical
design tools (i.e., [3]), that can be expanded and grown as needed. The DC voltage block in Figures 7
and 8 is an FG programmed transconductance amplifier to provide a programmed, low-impedance
DC voltage output directly from the voltage set in Scilab.

D Q

CS

D Q

CS

D Q

CS

CLK

16-bit Shift Register

Vref

GND

C1

Vout

C2

Cw
CL

GND

Vin

 C4 Bandpass Filter Circuit

Vdd

GND

G
N

D

V
d

d

V

C

GND

Vbias

Vin

out

Minimum Amplitude Detector

G
N

D

V
d

d

C

GND

Vout
Vin

Low Pass Filter COMPLEX CIRCUIT MODEL MACROBLOCK

GND Vdd

Output Lines

Input Lines

CAB

GND Vdd

Output Lines

Input Lines

CAB

Macro

Block

Circuit

(2in, 1out)

Figure 4. An example of a range of low-level circuit components and their block diagram, as well as
some of their testing circuits, which include analog and digital components. We show a LPF (as seen in
the previous example), a minimum amplitude detector, a capacitively coupled current conveyer (C4)
band-pass filter, and a digital shift-register block. The result allows us to draw in block diagrams for
mixed-mode computation; in each of these cases, the inputs could be a scalar or a vector; In each case,
one often wants to encapsulate the knowledge of the designer as much as possible in the resulting
design. For example, the original analog designer might want a group of circuits all in a single CAB;
a macroblock encapsulates a single block in a CAB that is built from basic elements in the analog and
digital tiles, using separate black boxes in VPR to keep all elements in the same tile.

Figure 4 also shows typical CAB components and typical routing infrastructure of input and
output port lines to the rest of the Manhattan geometry routing fabric, including the detailed routing
to compile the C4 bandpass filter circuit. A macroblock encapsulates complex circuits using elements
inside a single tile to create a single block, enabling more efficient high-level routing where the
connections within the CAB are pre-optimized, requiring the tool only to handle placement and global
routing. Macroblocking encapsulates much of the objectives of the circuit designer, often started at a
Level 2 block, as it becomes a full level = 1 block.

4. Methodology for Implementing the Tool Set

This section dives deeper into the key aspects of the high-level tool infrastructure. Figure 3
shows the same Xcos block diagram structure used for both macromodel simulating and compiling
to hardware. This section follows the level = 1 definition [15], as defined elsewhere and first fully
implemented in this work.

For level = 2 cases, the compilation to blif/Verilog from Xcos follows the same path as level =
1, but the simulation environment requires a far more complex simulation environment. Simulation
in level = 2 requires compiling the net list into a SPICE model, direct measurement after compilation

J. Low Power Electron. Appl. 2016, 6, 3 7 of 15

or developing a simulation framework using Modelica with Scilab; this last topic will be the topic of
future discussions.

The following sections address, in turn, the aspects required for level = 1 macromodeled
simulation, led simulation and, then, the aspects required for sci2blif, which converts the Scilab
structure into a format ready for place and route compilation.

4.1. Macromodel Simulation

A typical design flow includes simulating a design’s functionally, analyzing the results and
iterating to a good solution before proceeding to hardware synthesis, often because of the constraints
of accessing such a hardware system. At first, one might ask if physical hardware is directly
available (and portable), why not always go directly to circuit measurement, getting precise results
in real time. Even in cases where hardware is available, it is often useful to have one simulation
case, say for DC values and a reference simulation, to compare with experimental measurements.
The amount of simulation one might do before compiling a circuit will depend on compile time
(longer compile time, more simulation), accessibility to FPAA hardware, whether in person or remote,
user inexperience (more inexperienced, longer simulation time), as well as the number of potential
debugging points required.

The simulation focuses on an as fast as possible simulation model that gives accurate results, unlike
generalized SPICE models require, including every possible transistor configuration and situation.
A given macromodel has precisely one specific case related to a particular hardware device, greatly
simplifying the resulting computations. The resulting simulation results and experimental results
should be reasonably close (i.e., within 1%–5%), while at just enough computational complexity.
Scilab, like MATLAB, optimizes for vector operations; vectorization of blocks preserves this
functionality, as well as results in the fastest numerical simulation possible.

The analog system modeling requires using ordinary differential equations (ODE), potentially
in combination with algebraic equations, that capture the continuous-time circuit nonlinearities.
Scilab also enables discrete time modeling, as well as modeling for clocked systems in a similar manner.
In the SoC FPAA, every connection point will have some capacitance, resulting in dynamics where the
resulting capacitor voltages would often be the state variables. The required form for Xcos/Scilab for
ODE simulation is the standard form of:

dV
dt
“ fpV, Vinq (1)

where V is the vector of state variables (i.e., voltages) and Vin is the vector of system inputs.
The resulting ODE definition is put into the computation function code using this functional form.

Figure 5 shows an example to formulate a physically realistic model for a C4 BandPass Filter
(BPF). A particular system will require reformatting these vectors from typical circuit analysis. Then,
the example C4 bandpass filter is modeled at the circuit function, not just the linear transfer function
shown elsewhere. Nonlinearities are modeled accurately (as seen by the tanhpq function) to enable
a system designer to minimize the effect where needed, as well as to empower a designer to utilize
nonlinearities when desired. Figure 5 shows three mathematical iterations required to transform
typically written circuit equations into their proper Xcos simulation form, as well as Xcos simulation
data from this model; the simulation data corresponds closely to the experimental data.

J. Low Power Electron. Appl. 2016, 6, 3 8 of 15Version December 18, 2015 submitted to J. Low Power Electron. Appl. 9 of 21

Gm1

Vin

Gm4

C2

C1

Cw
Vref

Vout

CL

V2

(a)

Modify ODEs of the form
dV
dt

= f(V,Vin,
dVin

dt
)

Modify ODEs to have
no input derivatives
dV
dt

= f(V,Vin)
400 20 60 80 100

2

1

0.5

1.5

Time (µs)

O
ut

pu
t V

ol
ta

ge
 (V

)

(b)

(C1 + C2 + Cw)dV1

dt
=

C1
dVin

dt
+ C2

dVout

dt

+Ibias2 tanh
(

Vout−V 1
VL

)

(CL + C2)
dVout

dt
= C2

dV1

dt
+

Ibias1 tanh
(
− κV1

2UT

)

(c)

Ceq
dV1

dt
= C1

CL+C2

C2

dVin

dt

+CL+C2

C2
I2 + I1

Ceq
dVout

dt
= C1

dVin

dt
C1+C2+Cw

C2
I1 + I2

I2 = Ibias2 tanh
(

Vout−V 1
VL

)

I1 = Ibias1 tanh
(
− κV1

2UT

)

(d)

Ceq
dV1

dt
=

CL+C2

C2
I2 + I1

Ceq
dVout

dt
= I2 + C1+C2+Cw

C2
I1

I2 = Ibias2 tanh
(

Vouta−V 2+(β−α)Vin

VL

)

I1 = Ibias1 tanh
(
−κ(V2+αVin)

2UT

)

(e)

Figure 5. Approach to building a level=1 macro model for the C4 filter that corresponds
closely to measured experimental data. (a) Circuit diagram for a C4 bandpass filter. (b)
Simulation of a step response for the C4 bandpass filter. (c) Starting equations from the
circuit in (a). (d) Modification of the equations into the 1st form. (e) Modification of the
equations into the final Xcos ODE formulation.

such a hardware system. At first, one might ask if physical hardware is directly available (and portable),146

why not always go directly to circuit measurement, getting precise results in real time. Even in cases147

where hardware is available, it is often useful to have one simulation case, say for DC values and a148

reference simulation, to compare with experimental measurements. The amount of simulation one might149

do before compiling a circuit will depend on compile time (longer compile time, more simulation),150

accessibility to FPAA hardware, whether in person or remote, user inexperience (more inexperienced,151

longer simulation time), as well as number of potential debugging points required.152

The simulation focuses on as fast a simulation model as possible that gives accurate results, unlike153

generalized SPICE models require including every possible transistor configuration and situation. A154

given macro model has precisely one specific case related to a particular hardware device, greatly155

simplifying the resulting computations. The resulting simulation results and experimental results should156

be reasonably close (i.e. within 1-5%), while at just enough computational complexity. Scilab, like157

MATLAB, optimizes for vector operations; vectorization of blocks preserves this functionality, as well158

as results in the fastest numerical simulation possible.159

The analog system modeling requires using Ordinary Differential Equations (ODE), potentially in
combination with algebraic equations, that capture the continuous-time circuit nonlinearities. Scilab
also enables discrete time modeling. as well as modeling for clocked systems in a similar manner. In
the SoC FPAA, every connection point will have some capacitance, resulting in dynamics where the

Figure 5. Approach to building a level = 1 macromodel for the C4 filter that corresponds closely to
measured experimental data. (a) Circuit diagram for a C4 bandpass filter; (b) simulation of a step
response for the C4 bandpass filter; (c) starting equations from the circuit in (a); (d) modification of the
equations into the 1st form; (e) modification of the equations into the final Xcos ODE formulation.

4.2. sci2blif : Xcos Ñ VPR

When the user presses Compile Design on the graphical interface, Scilab calls up sci2blif, which
uses the Xcos representation to create a circuit format in blif/Verilog for the place and route tools to
create a switch list, as well as gathers the resulting assembly language modules. Analog blocks are
converted through sci2blif into a blif format. Digital blocks use VTR to convert from Verilog into a blif
format. The switch list represents the low-level hardware description (i.e., switches to be programmed).

Figure 6 illustrates converting from Xcos visual representation to blif files for the analog
components; the digital procedures are similar, although typically simpler. Scilab saves the graph as a
data structure, shown in Figure 6a, that describes the Xcos file contents. The block objects are listed
first, followed by the link objects, and then, they are listed by link numbers.

The high-level Xcos file is converted into three passes over the data structure. The first pass parses
data over the blocks portion to determine the number of blocks that are compiled to CAB/CLB, input
blocks and output blocks. The input and output block object numbers are saved in two separate vectors
(a and b, respectively). B is the number of blocks; I is the number of inputs; and O as the number of
outputs. Finally, the data object is represented as a matrix, G, of size [(B + I + O) ˆ B], that contains the
net numbers corresponding to each of the blocks to be compiled.

The second pass parses data to determine which block’s input or output port is connected to
another block’s input or output port. Each link is represented by two values: the source and destination
in data. The information provided is the block number, port number (ports on blocks are numbered
top-down for inputs and outputs) and if the port is an input or output. The net number is placed
in the matrix mentioned above. The third pass parses data to generate resulting blif statements for
compilation. The input and output vectors and the matrix are used to put the nets of inputs and
outputs at the beginning of the blif file. Then, for each case, the command for each block is identified,
where the net numbers are retrieved from the matrix using the block number. Figure 6c shows when
users connect an output of a block to at least two inputs, an extra small block is inserted into the Xcos
internal representation, increasing the number of blocks and links that is removed before generating
blif file.

J. Low Power Electron. Appl. 2016, 6, 3 9 of 15

B3

B1

B4

B2

Block
Port1

Inputs Outputs

Port2

Port3

Port1

Port2

Port3

link1

(net1)

link3

(net3)

link2

(net2)

1

2

3

4

5

6

7

object #

Block

info

Link

info

name

location

size

user parameters

source block #

destination block #

InputOutput port #

maximum # inputs

maximum

outputs

Find System Input & Output Blocks,

 and create vector of those blocks

Input B3 B4

Output B2
Block # Port 1 Port 1Port 2

1

2

3

4

Routing Block Matrix

link1

link3

link2link1 link3

link2

Blif Output

.inputs net1 net3

.output net2

.subckt dev1 in[0]=net1 in[1]=net3 out[0]=net2

.end

(a)

link2

S1

split

block

link3

link2

link3

link5

link4

link2

B1

B2

B3

B1

B2

B3

(b)

Figure 6. sci2bliff fundamentals: Xcos model to blif/Verilog net list to put into VPR. (a) The data
structure for a single set of blocks is an array with the block information, as well as link information.
Blocks are enumerated by when they are created in Xcos; links are enumerated by where they are
located on the block. This data structure transforms to blif representation for VPR. (b) The resulting
data structure of the Xcos network only allows for a single input and output for a particular link;
therefore requiring additional blocks included to handle when converting a single output going to
multiple inputs.

4.3. Integrating the µP Toolflow

This FPAA IC presents the opportunity of integrating µP code with the configurable analog
and digital fabric, creating the challenge of design partitioning, as well as integrating assembly code
blocks into the macromodeling simulation and implemented system. For example, the arbitrary
waveform generation block in Figures 3, 7 and 8 is an example of a block with high assembly language
code content. The voltage output goes through one of multiple signal DACs on the resulting IC.
From the vector defined in Scilab, the processor memory space is allocated for this operation; assembly
code is generated and integrated into the resulting FPAA programming flow. A similar block is
used for recording data through one of multiple ADCs that are available either directly on-chip or
compiled on-chip.

One builds assembly blocks similar to analog or digital FPAA fabric blocks. The designer
would write and test the resulting assembly code block and abstract its function. The resulting

J. Low Power Electron. Appl. 2016, 6, 3 10 of 15

digital blocks are Level 1, with macromodel simulation as Scilab code written by the block designer.
These simulations typically utilize the discrete-time simulation modeling available.

GND Vdd

Input Lines

CAB

Output Lines

 CAB

Block

GND GND GND GND

GND GND GND GND

GND GND GND GND

V1 V1 Vm Vm
+ - + -

Figure 7. A key feature to these tools is the ability to build useful computation out of routing resources;
for example, the synthesis, place and routing of circuits containing vector-matrix multiplication (VMM)
built out of routing (i.e., floating-gate) switches. From left to right, block diagram and parameters for a
VMM block, VMM built from a crossbar switch matrix and local interconnect routing resources inside
an analog tile.

XCOS Macromodel Simulation Results

1

1.2

1.4

1.6

1.8

2

2.2

2.1

2.3

In
p

u
ts

 (
V

)

A & B

A & BBA

AB

W
T

A
 O

u
tp

u
t

(V
)

Experimental Results from IC
A

B

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (ms)

0

0.5

1

0

0.5

1

0

0.5

1

0

1

In
1

(V
)

0

1In
2

(V
)

XOR Output

0.4ms

Initial Cond Settling

O
u
t1

(V
)

O
u
t2

(V
)

O
u
t3

(V
)

Time (ms)
0 0.5 1 1.5 2 2.5 3 3.5

Figure 8. A system example showing a basic circuit classifier built from a three-input ˆ three-output
VMM + winner-take-all (WTA) to represent a classifier function. The Xcos circuit diagram, with its
vectorized connections, can be simulated through Xcos Macromodel simulation, as well as compiled
and measured experimentally on an FPAA IC. The three input vectorized system, with a 3 ˆ 3 VMM, is
configured as a two-input XOR gate (one input fixed). The functional and dynamic behavior agrees
well; although the signals have different DC offsets.

The challenge in general in developing a general set of digital blocks is developing a nano-size
operating system (100–300 bytes) on the processor. Minimizing the reliance on large on-chip memory
size is critical, as the microprocessor is eight times smaller than 16 k (16-bit word) memory (measured
and designed across processes from 350 nm–40 nm). One sees that large memory space is highly
expensive and power hungry for embedded applications. This design tool interface provides
developer-friendly system design without requiring a large embedded system memory; the primary
reason for larger operating systems is for the ease of developer design. The resulting tool also requires

J. Low Power Electron. Appl. 2016, 6, 3 11 of 15

being able to estimate the resulting memory required for all blocks and making that information
available to the user.

5. Simulation and Experimental Data from the Compilation Tool Example

This section shows the compilation of a system example, particularly using the routing
components as computational elements. The work in [1] shows a number of further examples compiled
using this FPAA tool set; these two examples illustrate the resulting tool set approach, not to show
the capability of the particular FPAA device. Currently, we have tested the particular SoC device to
operate on a 1-MHz frequency and where macromodeling simulation, unsurprisingly, reaches similar
levels without any further issues.

A crossbar array of these analog programmed FG switches could compute an analog vector-matrix
multiplication (VMM), common in all signal processing operations, entirely in routing fabric. The
inclusion of such capabilities requires additional sophistication at all levels of the tool flow. Figure 7
shows an Xcos vectorized block diagram to implement a VMM structure, as well as its implementation
using a local routing crossbar array, as well as circuit representation, for a VMM computation. The
SoC FPAA [1] uses FG switches to enable analog computing devices when programming a switch to
an analog value. This circuit requires a current-to-voltage conversion, in this case a transimpedance
amplifier of two OTA devices, to be consistent with level = 1 requirements. The resulting block has a
dialogue box for key parameters.

The VMM + winner-take-all (WTA) classifier both elegantly compiles into FPAA devices using the
VMM through FG routing fabric, but further, the classifier combination using a k-WTA is a universal
approximator in a single classifier layer [23]. Figure 8 shows a VMM + WTA circuit used as a classifier
circuit, where the VMM block is a single, vectorized block.

Figure 8 shows VMM + WTA macromodeled simulation data and led simulation data. The
vectorized block models this circuit as three (vectorized) key equations. These macromodel equations
start from starting sub-threshold transistor equations with realistic approximations, such as some
transistors in saturation, where experimentally verified. The VMM computation, based on FG devices,
with outputs into the cascaded WTA inputs, is modeled:

τ1
dy
dt
` y “ 2p1` a2xTxq `W sinhpaxq{N. (2)

The transistor operation, modeling the high-gain and negative feedback aspects of the WTA block,
computes with the representation:

Ak “ e∆Va,k{UT , Z “ e∆V{UT

where ∆Va,k are the input gate voltages (around a steady-state bias voltage) for a classic WTA circuit [24]
and ∆V is the common-source voltage (around a steady-state bias voltage) for the extended differential
pair structure for a classic WTA structure [24], resulting in the following (algebraic) modeling equations:

τA
da
dt
“ y. ˚ a´ Zpa´ r1q (3)

τZ
dZ
dt
“ 1Ta´ Z (4)

where the vector of ones (1) and r “ e´Va0,k{UT is a constant relating a coefficient related to biasing values
around their steady-state point. The output termination uses typical common-source/common-gate
amplifier configuration based on the value for A and Z.

Figure 8 shows experimentally-measured VMM + WTA data from the same vectorized test system.
The vectorized input, vectorized output VMM + WTA block represents a single block with the size of

J. Low Power Electron. Appl. 2016, 6, 3 12 of 15

the classifier determined by the user. A two-input classifier (one input fixed) with a 3 ˆ 3 VMM matrix
demonstrates XOR functionality; for WTA circuits, a low output voltage signifies a winner.

6. Summary and Approaches for Analog–Digital Co-Design

This paper presented an analog–digital software-hardware co-design environment and focused
examples as mixed-signal design using FPAA SoCs. The tool simulates designs, as well as enables
experimental measurements after compiling to SoCs in the same integrated design tool framework.
The tool set is an open source setup as an Ubuntu virtual machine enabling straight-forward user
setup, as well as open to contributions from third party users empowering a wider community to
do analog and digital system design. Digital co-design questions pose issues for systems of mixed
hardware (i.e., FPGA) and software (i.e., code running on processor(s)) on the particular partitioning of
the resulting computational system based on metrics of power, area, time to market, etc. The recent
including of programmable and configurable analog computation allows this community to revisit
fundamentally these tradeoffs and issues, already a vibrant field.

The need for large-scale design tools for SoC FPAA devices was the practical driver to create
our tool set, although the approach is entirely extendable to a wide range of analog–digital
programmable-configurable systems. x2c in Scilab converts high-level block description by the
user to blif format, the input to the modified VPR tool [14], utilizing vpr2swcs (scilab Ñ blif), as
well as modified architecture file. The resulting tool builds an analog, as well as mixed-signal
library of components, enabling users and future researchers to have access to the basic analog
operations/computations that are possible.

The designer has a few tools available to handle analog–digital computation that are capable
of block level simulation, particularly of a fast high level simulation tied to experimental data, as
well as compile to experimental hardware, such as the SoC FPAA IC example used in this writing.
Digital FPGA devices have tools that work with Simulink (MATLAB) [3–6], and this work provides
the first step along the journey to enable similar tools for analog–digital computing systems. The
alternative approach requires analog and mixed signal design expertise, often multiple people, for a
bottom-up design of a particular custom system using Cadence, Mentor Graphics or similar tools with
their associated costs and complexity [25,26], or starting with a tool to configure single IC of pre-built
fixed components (“proven resources”) interconnected by an optional metal layer [27].

Having devices of the complexity of the SoC FPAA IC make such tools essential, not just nice to
have, for system design. As the call for open FPGA architectures and tools grows stronger (e.g., [28]),
this effort includes and, through including analog computation, expands on this original vision. Simply
writing simulation code in MATLAB might find a way forward on simulation, but not on compiling
the actual design, or having confidence that the compiled design will work. System design is rarely
constrained by good high-level algorithm ideas, but rather resources that connect the high-level
algorithm ideas all the way through hardware; this tool set enables such a direct design, encoding the
wisdom of the hardware designers where possible in the block library.

How one handles component variability is important when typically dealing with analog
(or mixed-mode) systems. For the SoC FPAA, the FG programming allows for directly accounting for,
and solving of, the dominant source of errors, MOS transistor threshold voltage (VT0) mismatch. The
variability of devices would be a natural extension of these tools (although not solved at the time of
writing this paper), particularly using the hardware compilation to predict the parasitic components
accurately by knowledge of a particular device location and routing details, using this information for
precise current measurement. Specific known mismatches can be tabled to be used when programming
a particular component; the user could create one or multiple random cases if a particular targeted
device is unknown.

This open-source tool set explicitly enables a wider user community for mixed-signal
configurable designs. A single Ubuntu 12.04 Virtual Machine (VM) encapsulates the entire
tool flow, from Scilab/Xcos, device library files, through sci2blif, vpr2swcs and modified

J. Low Power Electron. Appl. 2016, 6, 3 13 of 15

VPR tools, simply requiring pressing one button to bring up the entire graphical working
tool set. Openly distributing this tool set as an open-source virtual machine (available at
http://users.ece.gatech.edu/phasler/FPAAtool/index.html) for classroom use, research groups, as
well as interested users encourages a user community around these tools, as well further improving
the tool set. The move to this open source Scilab/Xcos environment from the earlier proto-tools
developed in Simulink [15] enables easy integration with the UNIX-based modified VPR tool, including
modifications to enable Manhattan geometries and on-chip microprocessor, as well as fully implement
the proposed level = 1,2 concepts previously described. Further, the research group is working to
make some FPAA devices, like the SoC FPAA device, available to the larger community, as well as
developing systems to enable remote use of existing FPAA devices.

At this point, how comprehensive are the current and envisioned library of tool components is
not entirely known. The field of analog computation is still working on understanding its fundamental
blocks, a process enabled by building this tool and the resulting user components. The current size
of the analog and digital library is relatively small, generated by a handful of people currently, but
expected to continue to expand, as the core tool framework is integrated into collaborative research
projects, classroom exercises and others using this open-source framework. The blocks currently are
composed of the representative VMM block, VMM + WTA (classifier) block, filter bank (particularly
BPF , but also LPF), amplitude detect blocks, programmable arbitrary waveform blocks, shift registers,
counters, multiple digital logic blocks, DAC block and ADC block, that include analog + digital + µP
components, such as ramp and sigma-delta approaches, as well as processor blocks for data handling
and ADC control that include compiled signals to interrupts. We expect future publications will
report a number of new spatio-temporal processing blocks and will make their resulting blocks also
openly available.

A remaining question is understanding the conceptual framework to guide the designer in
these analog–digital co-design problems; the following discussion summarizes some of these issues.
Current implementations perform all computation in programmable digital hardware, and typically,
one wants to minimize the amount of analog processing. Figure 9 shows designs with a single FPAA
IC, with multiple ICs, with a rack of boards, as well as with a set of other components that have some
programmability. The high-level graphical tools enables a user to be able to try different algorithms to
optimize the system performance, allowing consideration of tradeoffs of power, system utilization,
time to market, etc.

FPAA1

µP

FPAA2

µP

FPAA3

µP

FPAA4

µP

FPAA3

µP

FPAA3

µP

(a) (b) (c)

µP1

A
D

C
s

D
A

C
s

Memory Block

µP2 µP3 µP4

Sensors

Switch Block

USB

Sensors

FPAA

µP

SRAM

(costly)

Digital

Components

Digital

Interfacing

Buffer

memory

Bookkeeping

tasks

Software

(Processor)

FPGA

Fabric
FPAA

Fabric

S
en

so
rs / A

ctu
ato

rs

µP

Analog

Computation

Timing, counters,

 digital filtering

Control flow

State Machines

ADCs/DACs

Classifiers

ODE computation

Filters

(spatial / temporal)

VMM

(d)

Figure 9. Possible implementation targets for mixed-mode computing systems. Implementation could
be a (a) single FPAA device, (b) a board of FPAA devices or even (c) a board with no FPAA devices,
but with programmable parameters and topology for a resulting board encoded in the resulting
technology file; (d) a heuristical guide in the analog–digital hardware–software system co-design for
such computing systems.

J. Low Power Electron. Appl. 2016, 6, 3 14 of 15

Figure 9d illustrates initial starting guidelines for the problem partition. In particular, one will
typically want the heavy computation as physical computation blocks near the sensor where the data
originates or transmits; ideally data flow architectures minimize the amount of short-term storage
elements (power and area issues). Moving heavy processing to analog computation tends to have less
impact on signal line and substrate coupling to neighboring elements compared to digital systems,
an issue often affecting the integration of analog components with mostly digital computing systems.
Often the line between digital and analog computation is blurred, for example for data converters or
their more general concepts, analog classifier blocks that typically have digital outputs. The digital
processor will be invaluable for bookkeeping functions, including interfacing, memory buffering and
related computations, as well as serial computations that are just better understood at the time of a
particular design.

The algorithm tradeoff between analog and digital computation directly leads to the tradeoff
between high-precision with poor numerics of digital computation versus the good numerics with lower
precision of analog computation. Digital computation focuses on problems with a limited number
of iterations that can embody high precision (e.g., 64-bit double precision), like LU decomposition
(and matrix inversion). Classical digital numerical analysis courses begin with LU decomposition
and move to significantly harder computations in optimization, ODE solutions and PDE solutions;
many engineering problems try to move computation towards matrix inversion and away from
ODE solutions.

Analog computation focuses on problems tolerant of lower starting precision for computation,
such as ODEs and PDEs. Simple operations, like VMM, are fairly similar in tradeoffs between analog
and digital approaches, particularly when using real-world sensor data starting off with lower precision
(e.g., acoustic microphones at 60 dB, CMOS imaging at 50–60 dB, etc.). Many ODE and PDE systems
have many correlates in other physical systems found in nature that are the focus of high performance
computing. The resulting time/area efficiencies for analog computation, directly being a model
physical system, are valuable for low-latency signal processing and control loops. One would want to
avoid analog LU decomposition where possible, while one wants to avoid solving a large number of
ODEs and/or a couple PDEs by digital methods. Developing a parallel discipline for analog numerical
analysis remains an open question, although potentially reachable question in the near term.

Acknowledgments:The authors would also like to thank Sihwan Kim, Sahil Shah, Farhan Adil and Andrew
Freedman for their help while testing this tool flow.

Author Contributions: Michelle Collins wrote the scilab + Xcos code, and utilized these tools with resulting
hardware for multiple workshop and classroom experiences. Jennifer Hasler developed the original concept,
circuit abstraction, wrote the paper, made the figures, and utilized these tools with resulting hardware for multiple
workshop and classroom experiences. Suma George developed the lower-level tools aspect of x2c as well as
heavily involved in testing and coordinating testing of other researchers and student’s code.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. George, S.; Kim, S.; Shah, S.; Hasler, J.; Collins, M.; Adil, F.; Wunderlich, R.; Nease, S.; Ramakrishnan, S.
A Programmable and Configurable Mixed-Mode FPAA SoC. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
2016, doi:10.1109/TVLSI.2015.2504119.

2. Wolf, W. Hardware-software co-design of embedded systems. Proc. IEEE 1994, 967–989.
3. Available online: http://it.mathworks.com/solutions/fpga-design/ (accessed on 10 September 2015).
4. Zynq: All Programmable SoC Architecture, 2012. Available online: http://www.xilinx.com/products/

silicon-devices/soc/index.htm (accessed on 10 September 2015).
5. SoC FPGAs: Integration to Reduce Power, Cost, and Board Size, 2012. Available online:

http://www.altera.com/devices/processor/soc-fpga/proc-soc-fpga.html (accessed on 10 September 2015).
6. Available online: http://www.altera.com/products/software/products/dsp/dsp-builder.html (accessed on

10 September 2015).

J. Low Power Electron. Appl. 2016, 6, 3 15 of 15

7. Scilab Enterprises. Scilab: Free and Open Source Software for Numerical Computation; Scilab Enterprises: Orsay,
France, 2012. Available online: http://www.scilab.org/ (accessed on 16 December 2015).

8. Rossi, D.; Mucci, C.; Pizzotti, M.; Perugini, L.; Canegallo, R.; Guerrieri, R. Multicore Signal Processing
Platform with Heterogeneous Configurable hardware accelerators. IEEE Transactions on VLSI, vol. 22, 2014,
pp. 1990–2003.

9. Zhao, Q.; Amagasaki, M.; Iida, M.; Kuga, M.; Sueyoshi, T. An Automatic FPGA Design and Implementation
Framework. In Proceedings of the 23rd International Conference on Field Programmable Logic and
Applications (FPL), Porto, Portugal, 2–4 September 2013.

10. Weinhardt, M.; Krieger, A.; Kinder, T. A Framework for PC Applications with Portable and Scalable FPGA
Accelerators. In Proceedings of the International Conference on Reconfigurable Computing and FPGAs
(ReConFig), Cancun, Mexico, 9–11 December 2013 .

11. Schlottmann, C.; Shapero, S.; Nease, S.; Hasler, P. A Digitally- Enhanced Reconfigurable Analog Platform for
Low-Power Signal Processing. IEEE J. Solid State Circuits 2012, 47, 2174–2184.

12. Ganesan, S.; Vemuri, R. Digital Partitioning for Field-ProgrammableMixed Signal Systems. ARVLSI 2001,
172–185

13. Doboli, A.; Vemuri, R. Exploration-Based High-Level Synthesis of Linear Analog Systems Operating at
Low/Medium Frequencies. IEEE Transactions on Comput. Aided Design 2003, 22, 1556–1568.

14. Luu, J.; Goeders, J.; Wainberg, M.; Somerville, A.; Yu, T.; Nasartschuk, K.; Nasr, M.; Wang, S.; Liu, T.;
Ahmed, N.; et al. VTR 7.0: Next Generation Architecture and CAD System for FPGAs. ACM Trans.
Reconfigurable Technol. Syst. 2014, 7, 6:1–6:30.

15. Schlottmann, C.R.; Hasler, J. High-Level Modeling of Analog Computational Elements for Signal Processing
Applications IEEE Trans. VLSI 2014, 22, 1945–1953 .

16. Twigg, C.; Gray, J.; Hasler, P. Programmable Floating-gate FPAA switches are not dead weight. In Proceedings
of the International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007;
pp. 169–172.

17. Becker, J.; Manoli, Y. A continuous-time field programmable analog array (FPAA) consisting of digitally
reconfigurable G M-cells. IEEE ISCAS 2004, 1, 1–1092.

18. Basu, A.; Brink, S.; Schlottmann, C.; Ramakrishnan, S.; Petre, C.; Koziol, S.; Baskaya, F.; Twigg, C.; Hasler, P.
A Floating-Gate-Based Field Programmable Analog Array. IEEE JSSC 2010, 45, 1781–1794.

19. Cowan, G.; Melville, R.; Tsividis, Y. A VLSI Analog Computer/Math Co-Processor for a Digital Computer;
Columbia University: New York, NY, USA, 2005.

20. Wunderlich, R.B.; Adil, F.; Hasler, P. Floating gate-based field programmable mixed-signal array. IEEE TVLSI
2013, 21, 1496–1505.

21. Lajevardi, P.; Chandrakasan, A.P.; Lee, H.-S. Zero-crossing detector based reconfigurable analog system.
JSSC 2011, 46, 2478–2487.

22. Rumberg, B.; Graham, D.W. Reconfiguration Costs in Analog Sensor Interfaces for Wireless Sensing
Applications. In Proceedings of the IEEE 56th International Midwest Symposium on Circuits and Systems
(MWSCAS), Columbus, OH, USA, 4–7 August 2013; pp. 321–324.

23. Ramakrishnan, S.; Hasler, J. The VMM and WTA as an analog classifier. In Proceedings of the IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 22, pp. 353-361.

24. Lazzaro, J.; Ryckebusch, S.; Mahowald, M.A.; Mead, C.A. Winner- take-all networks of O(N) complexity.
In Advances in Neural Information Processing Systems 1; Morgan Kaufmann Publishers: San Francisco, CA,
USA, 1989.

25. Available online: http://www.cadence.com/ (accessed on 16 December 2015).
26. Available online: https://www.mentor.com/tannereda/ams-ic (accessed on 16 December 2015).
27. Available online: https://www.viadesigner.com/ (accessed on 16 December 2015).
28. Liu, H.J. Archipelago-An Open Source FPGA with Toolflow Support. Master’s Thesis, Electrical Engineering

& Computer Sciences, University of California, Berkeley, CA, USA, 2013.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Motivation for a Design Tool for Configurable Analog–Digital Platforms
	Analog–Digital Design Tool Overview
	Integrating the Analog–Digital Design Tool with an FPAA Platform
	Methodology for Implementing the Tool Set
	Macromodel Simulation
	 sci2blif : Xcos VPR
	Integrating the P Toolflow

	Simulation and Experimental Data from the Compilation Tool Example
	Summary and Approaches for Analog–Digital Co-Design

