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Abstract: The scaled charge trapping (CT) type silicon on insulator (SOI) FinFET flash 

memories with different blocking layer materials of Al2O3 and SiO2 have successfully been 

fabricated, and their electrical characteristics including short-channel effect (SCE) 

immunity, threshold voltage (Vt) variability, and the memory characteristics have been 

comparatively investigated. It was experimentally found that the better SCE immunity and 

a larger memory window are obtained by introducing a high-k Al2O3 blocking layer instead 

of a SiO2 blocking layer. It was also confirmed that the variability of Vt before and after 

one program/erase (P/E) cycle is almost independent of the blocking layer materials. 
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1. Introduction 

Device scaling is very effective for the fabrication of high-density and low-cost flash memories. 

However, further scaling of conventional bulk planar MOSFET type flash memories becomes very 

difficult because of the increased short-channel effect (SCE) and the lowered source-drain (SD) 

breakdown voltage (BVDS) with scaling down device size [1–3]. Especially, in the NOR-type flash 

memory, further scaling of device size faces the theoretical limit of BVDS which corresponds to the 

silicon (Si) and silicon dioxide (SiO2) conduction band difference (3.2 eV). This indicates that channel 

hot electron (CHE) programming cannot be guaranteed in the scaled NOR-type flash memories with 

gate length (Lg) smaller than 100 nm [2,3]. On the other hand, three-dimensional (3D) channel devices, 

such as fin-type double-gate (DG) MOSFET (FinFET) and fin-channel tri-gate (TG) device, provide 

excellent SCE immunity owing to the strong controllability of channel potential by the multiple  

gates [4–13]. Moreover, threshold voltage (Vt) variability in the FinFETs and TG devices is much 

smaller than that in the conventional bulk planar MOSFETs because the random dopant fluctuation 

(RDF) induced Vt variation is negligible in the FinFETs and TG devices due to the undoped  

fin-channels [14–22]. Therefore, the scaled charge trapping (CT) type fin-channel flash memories 

using silicon on insulator (SOI)-based fin-channels and body-tied bulk Si fin-channels have actively 

been developed [23–32]. However, a high-k blocking layer is strongly required in the ultimately scaled 

CT type flash memory fabrication to overcome the gate coupling area decrease with scaling down the 

device size [33]. As a high-k blocking layer, an Al2O3 layer has been used in the planar MOSFET type 

and body-tied bulk FinFET type flash memories [28,34]. By introducing such a high-k blocking layer, 

the gate injection current is effectively suppressed during program/erase (P/E) operations because the 

electric field across the blocking layer is proportionally reduced owing to its high dielectric constant, 

which is useful for the enlarging of memory window. However, the blocking layer material effect on 

the electrical characteristics of SOI-FinFET flash memories has not been studied sufficiently. Very 

recently, we have demonstrated floating gate (FG) type split-gate fin-channel flash memories with a 

highly suppressed over erase, and experimentally confirmed that nanosize triangular cross-section 

tunnel areas are useful for the fabrication of the low operating voltage flash memories owing to the 

enhanced local electric field at the tips of triangular tunnel areas [35–38]. We have also fabricated and 

investigated FG type crystalline and polycrystalline Si fin-channel flash memories with DG and TG 

structures, and confirmed that TG structured flash memory shows the better SCE immunity and a 

larger memory window than the DG structured one owing to the additional top gate and recessed 

buried oxide (BOX) region [39–41]. Moreover, we have also investigated the gate material effect on 

the electrical characteristics of the CT type SOI-FinFET flash memories by introducing different gate 

materials of physical vapor deposited (PVD) titanium nitride (TiN) and n+-poly-Si [42]. It was 

experimentally found that a larger memory window is obtained in the PVD-TiN metal gate flash memories 
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than the n+-poly-Si gate ones owing to the higher work function of PVD-TiN metal gate, which is 

efficient to suppress electron back tunneling during erase operation [28,34].  

As a further study, in this work, we fabricate CT type SOI-FinFET flash memories with different 

blocking layer materials of atomic layer deposited (ALD) Al2O3 and chemical vapor deposited (CVD) 

SiO2, and comparatively investigate their electrical characteristics including SCE immunity, Vt 

variability and memory characteristics [43]. 

2. Device Fabrication 

In order to investigate the blocking layer material effect on the electrical characteristics and 

memory properties of the CT type SOI-FinFET flash memories, we fabricated MANOS (PVD-TiN 

Metal-Al2O3-Nitride-Oxide-Silicon) type and MONOS (PVD-TiN Metal-Oxide-Nitride-Oxide-Silicon) 

type TG structured SOI-FinFET flash memories. Figure 1 shows the schematic three-dimensional (3D) 

device structure for the CT type SOI-FinFET flash memory. Except for the deposition of blocking 

layer materials, the same process was used in the fabrication for both types of devices. To fabricate an 

ideal rectangular cross-section Si-fin-channel by using the orientation-dependent wet etching, we used 

lightly doped p-type (110)-oriented SOI wafers as the starting material [7,8]. The initial thicknesses of 

the top silicon and BOX layers were 70 and 145 nm, respectively.  

Figure 1. Schematic three-dimensional (3D) device structure for the CT type SOI-FinFET 

flash memory with different blocking layer materials of Al2O3 and SiO2. 
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The schematic device fabrication process flow for the CT type SOI-FinFET flash memory is shown in 

Figure 2. First, the lightly doped p-type (110)-SOI wafers were thermally oxidized to form a 30-nm-thick 

SiO2 layer as shown in Figure 2a, and fin-patterns were delineated in parallel to the <112> direction by 

using electron-beam (EB) lithography as shown in Figure 2b. The trimming of EB-resist was 

performed using oxygen plasma to reduce the fin width. The fin-patterns were then transferred to the 

SiO2 layer on the (110)-SOI wafers by reactive ion etching (RIE). After removing the EB-resist, 

further narrowing of the width of SiO2 hard-mask was carried out with dilute hydrofluoric acid (DHF) 

solution. By using these techniques, the width of SiO2 hard-mask was controlled to around 20 nm. 
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Figure 2. Schematic device fabrication process flow for the CT type SOI-FinFET flash 

memory. (a) Thermal oxidation; (b) fin-pattern formation by electron-beam (EB) 

lithography; (c) fin-channel formation by the orientation-dependent wet etching; (d) SiO2 

hard-mask removing by RIE; (e) tunnel oxide (Tox) formation by thermal oxidation;  

(f) nitride (Si3N4) layer deposition by LPCVD; (g) blocking layer (Al2O3 for MANOS and 

SiO2 for MONOS) deposition; (h) PVD-TiN deposition; (i) n+-poly-Si deposition. 
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Through the SiO2 hard-masks, fin-channels were fabricated by the orientation-dependent wet 

etching with a 2.38% tetramethylammonium hydroxide (TMAH) solution at 50 °C for 30 s, as shown 

in Figure 2c. Since the sidewalls of the fin-channels have a (111)-oriented plane with an extremely low 

etching rate in TMAH compared with other planes, very narrow and straight fin-channels can easily be 

fabricated. It was experimentally confirmed that the etching rates for (100)-, (110)-, and (111)-oriented 

Si wafers were 214, 359, and 9 nm/min, respectively [44]. This indicates that the (111) plane is 

successfully retained in the etching process. To fabricate TG structure, the SiO2 hard-mask layer was 

removed by RIE as show in Figure 2d, which results in a slight reduction of fin-height. A recessed 

BOX region was also formed in this RIE process, which is useful for the suppression of SCE [39–41]. 

After the fin-channel formation, a 4.3-nm-thick tunnel oxide (Tox) layer was formed by thermal 

oxidation at 850 °C as shown in Figure 2e, followed by the deposition of a 10-nm-thick Si3N4 layer as 

the charge trapping layer by low-pressure chemical vapor deposition (LPCVD) at 790 °C as shown in 

Figure 2f. As the blocking layer, a 9-nm-thick tetraethylorthosilicate (TEOS)-SiO2 layer was deposited 

for MONOS type devices by plasma CVD at 350 °C, and a 10-nm-thick Al2O3 layer was deposited for 
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MANOS type device by atomic layer deposition (ALD) at 300 °C as shown in Figure 2g. In the ALD 

deposition, we used trimetylaluminum (TMA) and water gas at pressure of 14 hPa. As the same gate 

material, a combination of a 20-nm-thick PVD-TiN layer and a 100-nm-thick n+-poly-Si layer, was 

deposited on all wafers as shown in Figure 2h,i. The gate electrodes were also patterned by EB 

lithography and fabricated by using combination of inductively coupled plasma (ICP) RIE for n+-poly-Si 

and wet etching for PVD-TiN. In the PVD-TiN wet etching, we used an ammonium hydroxide 

(NH4OH):hydrogen peroxide (H2O2):deionized water (H2O) = 1:2:5 (APM) solution at 60 °C, which 

provides a high etching selectivity of PVD-TiN to SiO2 [45,46]. 

After etching the top ONA and ONO layers on the fin extension and SD electrode regions by RIE, 

arsenic (As) ion implantation (I/I) was performed for SD-extension with a dose (D) of 4 × 1014 cm−2 

and a tilting angle (θ) of 60° at a fixed implant energy of 5 keV [47]. Then, an 80-nm-thick gate 

sidewall spacer was formed by deposition of TEOS-SiO2 and RIE. For the SD-region I/I, phosphorus 

ion (P+) was used with D = 1.5 × 1015 cm−2 and θ = 7°, which was followed by the deposition of a  

100-nm-thick TEOS-SiO2 layer on all wafers. To activate the implanted impurities, rapid thermal 

annealing (RTA) was performed at 830 °C for 2 s. Finally, contact holes and aluminum electrodes 

were formed, and all wafers were sintered in forming gas ambient at 450 °C for 30 min.  

3. Results and Discussion 

The scanning electron microscopy (SEM) images of the fabricated MANOS type SOI-FinFET flash 

memory after fin-channel formation and gate formation are shown in Figure 3a,b, respectively. Note 

that a straight 22-nm-thick Si-fin channel is successfully fabricated thanks to the orientation-dependent 

wet etching. Moreover, a scaled 26-nm gate is also clearly confirmed. 

Figure 3. SEM images of the fabricated CT type SOI-FinFET flash memory (a) after  

fin-channel formation by the orientation-dependent wet etching and (b) after gate formation. 
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Figure 4a,b show the cross-sectional scanning transmission electron microscopy (STEM) images of 

the fabricated MANOS and MONOS type SOI-FinFET flash memories, respectively. Note that 

ultrathin and ideal rectangular cross-sectional Si fin-channels are fabricated uniformly. It should be 

mentioned that the fin-width and fin-height were slightly narrowed and lowered during wafer cleaning 

and tunnel oxide formation. Moreover, it is clearly confirmed that a uniform tunnel oxide layer is 

formed on top and sidewalls of the fin-channels without a thick SiO2 hard-mask on top of Si  
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fin-channel. This indicates that TG structure is fabricated successfully. Furthermore, it can be seen 

from STEM images that the charge trapping ONA and ONO layers are not only formed around the top 

and sidewalls of the fin-channels but also extended to the recessed BOX region. Such a gate all around 

(GAA) like structure is useful to the suppression of SCE as mentioned before. The observed a thin 

SiO2 blocking layer (<9 nm) in Figure 4b probably depends on the pick-up position of STEM sample 

owing to the poor uniformity of TEOS-SiO2 layer thickness on a wafer although a 9-nm-thick  

TEOS-SiO2 layer was confirmed on a dummy wafer as mentioned before. 

Figure 4. Cross-sectional STEM images of the fabricated (a) MANOS type SOI-FinFET 

flash memory with an Al2O3 blocking layer; and (b) MONOS type SOI-FinFET flash 

memory with a SiO2 blocking layer. 
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At first, we evaluated the Vt variability and SCE immunity for the fabricated MANOS and MONOS 

type SOI-FinFET flash memories with different gate length (Lg) values from 26 to 103 nm. Figure 5a,b 

show the measured initial Id-Vg characteristics of the fabricated MANOS type flash memories with 

different Lg values of 26 and 38 nm, respectively. In this measurement, we used 40 cell transistors for 

each type to investigate statistical Vt variations. Note that an excellent S-slope of 105-mV/decade is 

obtained even Lg is scaled down to 26 nm due to the GAA like structure. However, the uniformity of 

Id-Vg curve is slightly deteriorated with scaling down Lg from 38 to 26 nm. 

To evaluate Vt variations quantitatively, we measured the initial Vt values at a constant drain 

current of Id = 1 μA for all devices with different Lg values from 26 to 103 nm. Figure 6 shows the 

measured standard deviations of Vt (σVt) and S-slope (σS) as a function of Lg for the fabricated 

MANOS and MONOS type SOI-FinFET flash memories. It is clear that almost the same σVt and σS 

are obtained for both types of devices although they increase slightly with scaling down Lg. This result 

indicates that the variations of Vt and S-slope are almost independent of the blocking layer materials. 

The measured average Vt (<Vt>) and S-slope (<S>) values are summarized as a function of Lg as 

shown in Figure 7. Note that the smaller Vt roll-off and the better S-slope are obtained in the MANOS 

devices than the MONOS ones at whole range of Lg due to the high-k effect of Al2O3 in MANOS  

type devices.  
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Figure 5. Initial Id-Vg characteristics of the fabricated MANOS type SOI-FinFET flash 

memories with different Lg values of (a) Lg = 26 nm and (b) Lg = 38 nm. 
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Figure 6. σVt and σS as a function of Lg for the fabricated MANOS and MONOS type 

SOI-FinFET flash memories. 
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Figure 7. Average Vt (<Vt>) and S-slope (<S>) values as a function of Lg for the 

fabricated MANOS and MONOS type SOI-FinFET flash memories. 
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Before evaluation of memory characteristics, gate breakdown voltage was measured for the 

fabricated MANOS and MONOS type SOI-FinFET flash memory cell transistors. It was found that the 

gate breakdown voltage is around 17 V. According to this experimental result, P/E bias conditions 

were determined as Vg = 16 V, pulse-time (t) = 50 μs for programming, Vg = −16 V, t = 20 ms for 

erasing. In order to evaluate the dependence of the memory characteristics on the blocking layer 

materials, including Vt variability and memory window, the Id-Vg characteristics of the fabricated 

MANOS and MONOS type devices with different Lg values were systematically investigated after one 

P/E cycle. Figure 8a,b show the measured Id-Vg characteristics of the fabricated MANOS type flash 

memory cell transistors with different Lg values of 26 and 38 nm after one P/E cycle, respectively. In 

this measurement, we used 40 cell transistors for each type. It is clear that a larger memory window is 

reasonably obtained in the long channel devices as compared to the short channel devices. A similar 

behavior was also observed in the MONOS type devices. 

To compare the Vt variations between MANOS and MONOS type devices, Vt values for all 

fabricated devices were also evaluated at a constant drain current of Id = 1 μA. As an example,  

Figure 9 shows the measured cumulative probability of Vt and σVt values for the MANOS and 

MONOS type devices with the same Lg of 38 nm after one P/E cycle. Note that a larger memory 

window is obtained in the MANOS type devices than the MONOS type ones due to the high-k effect 

of Al2O3 blocking layer in MANOS type devices. However, it is clear that σVt values for both devices 

are almost the same although slightly smaller σVt values are observed in the MONOS type device than 

MANOS type one. Such comparison was also carried out for all fabricated MANOS and MONOS type 

devices with different Lg values, and it was confirmed that actually a larger memory window is 

obtained in the MANOS type devices than the MONOS type ones at whole range of Lg as shown in 

Figure 10. The deep erase in MANOS type devices should be resulted from the high-k effect of an Al2O3 

(k ~ 9) blocking layer, which is efficient to enhance the electric field across the tunnel oxide and to 

reduce the electric field across the layer its self. Therefore, the electron back tunneling is effectively 

suppressed during erase operation which contributes to the deep erase in MANOS type devices [28,34]. 

Figure 8. Id-Vg characteristics of the fabricated MANOS type SOI-FinFET flash memory 

cell transistors (40 cells) with different Lg values of (a) Lg = 26 nm and (b) Lg = 38 nm. 

P/E conditions: Vg = 16 V, t = 50 μs for program, and Vg = −16 V, t = 20 ms for erase. 
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Figure 9. (a) Cumulative probability of Vt and (b) σVt of the fabricated MANOS and 

MONOS type SOI-FinFET flash memories with the same Lg of 38 nm after one P/E cycle. 

P/E conditions: Vg = 16 V, t = 50 μs for program, and Vg = −16 V, t = 20 ms for erase.  
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Figure 10. Average Vt (<Vt>) values as a function of Lg for the fabricated MANOS and 

MONOS type SOI-FinFET flash memory cell transistors after one P/E cycle. P/E 

conditions: Vg = 16 V, t = 50 μs for program, and Vg = −16 V, t = 20 ms for erase.  
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Figure 11a shows the measured P/E characteristics of the fabricated MANOS type device with Lg of 

93 nm at different |Vg| values, and the program-time dependence of the Id-Vg characteristics at Vg of  

14 V is shown in Figure 11b. It is clear that a large memory window of 5.6 V is obtained keeping an 

excellent S-slope of 100-mV/decade due to the GAA like structure. Figure 12a,b show the measured 

endurance characteristics of the fabricated MANOS and MONOS type devices, respectively. Note that 

these two kinds of device can operate over 100 k cycles although somewhat remarkable degradation is 

observed in the MONOS type device after 10 k cycles probably due to the insufficient uniformity of 

CVD-SiO2 blocking layer. Moreover, the better data retention is obtained in the MANOS type device 

than MONOS type one due to the uniform ALD-Al2O3 blocking layer as shown in Figure 13. 
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Figure 11. (a) P/E characteristics and (b) program-time dependence of the Id-Vg 

characteristics of the fabricated MANOS type SOI-FinFET flash memory with Lg = 93 nm.  
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4. Conclusions  

We have comparatively investigated the electrical characteristics and memory properties of the 

fabricated charge trapping type SOI-FinFET flash memories with different blocking layer materials of 

Al2O3 and SiO2. It was experimentally found that introducing a high-k Al2O3 blocking layer instead of 

a SiO2 one is very efficient for the enlarging of memory window owing to the high-k effect of Al2O3. It 

was also confirmed that Vt variability before and after one P/E cycle is almost independent of blocking 

layer materials. 
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