
J. Low Power Electron. Appl. 2013, 3, 300-336; doi:10.3390/jlpea3040300

Journal of
Low Power Electronics

and Applications
ISSN 2079-9268

www.mdpi.com/journal/jlpea

Article

Multi-Threshold Dual-Spacer Dual-Rail Delay-Insensitive Logic
(MTD3L): A Low Overhead Secure IC Design Methodology

Michael Linder 1, Jia Di 1 and Scott C. Smith 2,*

1 Department of Computer Science and Computer Engineering, University of Arkansas; Fayetteville,

AR 72701, USA; E-Mails: mlinder@uark.edu (M.L.); jdi@uark.edu (J.D.)
2 Department of Electrical and Computer Engineering, North Dakota State University; Fargo, ND

58108, USA

* Author to whom correspondence should be addressed; E-Mail: scott.smith.1@ndsu.edu;

Tel.: +1-701-231-7608; Fax: +1-701-231-8677.

Received: 6 August 2013; in revised form: 20 September 2013 / Accepted: 12 October 2013 /

Published: 25 October 2013

Abstract: As portable devices become more ubiquitous, data security in these devices is

becoming increasingly important. Traditional circuit design techniques leave otherwise

secure systems vulnerable due to the characteristics of the hardware implementation, rather

than weaknesses in the security algorithms. These characteristics, called side-channels, are

exploitable because they can be measured and correlated with processed data, potentially

giving an attacker insight into the device’s secret data. Alternative design techniques such

as dual-rail asynchronous designs are capable of minimizing these potential side-channels

by decoupling them from the data being processed. However, these techniques are either

expensive to implement compared to standard designs or leave exploitable imbalances in

the dual-rail implementation itself. Multi-Threshold Dual-Spacer Dual-Rail Delay-Insensitive

Logic (MTD3L) offers security by balancing side-channels both in general and between the

dual-rail signals themselves, as well as reduction in circuit overhead compared to previous

secure design techniques. Results show that the Advanced Encryption Standard (AES)

cores designed using MTD3L exhibit similar security to previous secure techniques with

substantially less area and energy overhead.

Keywords: secure hardware; side-channel; asynchronous; Advanced Encryption

Standard (AES)

OPEN ACCESS

J. Low Power Electron. Appl. 2013, 3 301

1. Introduction

As technology advances, more and more electronic devices store secret information such as bank

accounts, identification numbers, passwords, and other private data that need to be secured from

unauthorized access. Although originally considered safe and secure, hardware, just as software, is

prone to attacks that force the targeted system to reveal sensitive data. Cryptographic algorithms are

commonly used to protect such data. However, despite the mathematical robustness of these

algorithms, their physical implementations are known to be susceptible to attacks. Non-invasive

attacks on such devices take advantage of side-channel information leaked from the system, instead of

trying to reverse engineer it. Such side-channel information can be power, timing, electromagnetism,

and any other information that might be measured from the device during computation.

Most electronic devices running cryptographic algorithms are implemented in CMOS technology,

where transistors act as voltage-controlled switches. While a circuit node is switching, electrons flow

across the corresponding transistors to charge/discharge its load capacitance, thereby consuming

power. Due to the fact that different transistors will be turned on/off while processing different data,

causing different power consumption, power-based side-channel attacks can be implemented using the

IC’s transient power data. These types of power-based attacks include Differential Power Analysis

(DPA) [1], and Correlation Power Analysis (CPA) [2] (which uses the Pearson product-moment

correlation coefficient to guess a key). In general, these attacks acquire transient power data while the

target IC performs encryption/decryption on different texts, and then use statistical algorithms to

derive the key. Power-based attacks are the most powerful and prevalently implemented side-channel

attacks [3], and have been successfully implemented to crack almost all cryptographic algorithms on

different platforms [4–12]. A number of methods have been proposed for mitigating power-based

attacks by decoupling transient power consumption from the data being processed. Techniques based

on balancing power fluctuation include new CMOS logic gates, which go through a full

charge/discharge cycle for each data processed [13–18]. Other power balancing methods include

modifying the algorithm execution [19], compensating current at the power supply node [20], and using

sub-threshold operation [21]. Additionally, many techniques for randomizing power data have been

proposed [22–27].

The principle of timing-based attacks [28] is very similar to power-based ones except these attacks

rely on timing fluctuations of the target circuit while processing different data patterns. Depending on

the load capacitance and driving strength, the charge/discharge process during the switching activities

at an internal circuit node will take different amounts of time to finish, which in turn causes different

timing delays. Existing countermeasures include inserting dummy operations [29], using redundant

representation [30], and unifying the multiplication operands [31].

Asynchronous circuits, especially dual-rail asynchronous circuits, possess unique characteristics

that could help mitigate such attacks [32–37]. Dual-rail asynchronous circuits, such as NULL

Convention Logic (NCL) [38], use two wires to represent one signal. The DATA-spacer alternation

protocol ensures the number of switching of each signal to be independent from the input; instead, it is

only determined by the number of data processed [39], making power variation significantly smaller

than synchronous designs [40]. Nonetheless, switching activity remains unbalanced between the two

rails of each signal, which most likely drive different capacitive loads; thus, DPA, High-Order DPA,

J. Low Power Electron. Appl. 2013, 3 302

or CPA can still succeed. Moreover, such dual-rail logic circuits are even more vulnerable to

timing-based attacks due to their strong data-timing dependency.

To alleviate these issues, Dual-Spacer Dual-Rail Delay-Insensitive Logic (D3L) was developed in [41]

as an extension of NCL, which was capable of mitigating both power- and timing-based side-channel

attacks. However, this increased security was gained at the cost of more than four times the area of the

base synchronous circuit and almost twice the area of the NCL version. This paper details the design,

implementation, and analysis of MTD3L, developed by combining the D3L paradigm with

Multi-Threshold NULL Convention Logic (MTNCL) [42,43], resulting in a circuit design

methodology that is just as secure as D3L, while requiring slightly more than half the area and energy

compared to D3L.

The remainder of this paper is organized as follows. Section 2 presents an overview of the pertinent

previous work, including NCL, MTNCL, and D3L. Section 3 details the MTD3L circuit design method.

Section 4 presents AES core implementations using MTD3L, as well as versions implemented using

D3L, NCL, and the standard synchronous technique. Section 5 details the simulation setups for

determining resistance against side-channel attacks, and presents and analyzes the simulation results.

Section 6 draws conclusions and provides direction for future work.

2. Previous Work

2.1. NULL Convention Logic (NCL)

NCL [38] is a commonly used delay-insensitive (DI) asynchronous logic design style, which utilizes

a multi-rail one-hot scheme, such as dual-rail, to encode data. A dual-rail signal, D, consists of two

wires or rails, D0 and D1, which may assume any value from the set {DATA0, DATA1, NULL}, as

depicted in Table 1. The DATA0 state corresponds to a Boolean logic 0, the DATA1 state corresponds

to a Boolean logic 1, and the NULL state corresponds to the empty set (meaning that the value of D is

not yet available). The two rails are mutually exclusive, such that both rails can never be asserted

simultaneously; this state is defined as an illegal state.

Table 1. Dual-rail signal.

State D0 D1

NULL 0 0
DATA0 1 0
DATA1 0 1
Illegal 1 1

NCL circuits are comprised of 27 fundamental gates, which constitute the set of all functions

consisting of four or fewer variables [43]. Since each rail of an NCL signal is considered a separate

variable, a four variable function is not the same as a function of four literals, which would consist of

eight variables for dual-rail logic (e.g., a literal includes both a variable and its complement, F and F’,

whereas NCL rails are never complemented, such that a dual-rail NCL signal, F, consists of two

variables, F1 and F0, where F0 is equivalent to F’). The primary type of threshold gate, shown in

Figure 1, is the THmn gate, where 1 m n. THmn gates have n inputs. At least m of the n inputs

J. Low Power Electron. Appl. 2013, 3 303

must be asserted before the output will become asserted. In a THmn gate, each of the n inputs is

connected to the rounded portion of the gate; the output emanates from the pointed end of the gate; and

the gate’s threshold value, m, is written inside of the gate.

Figure 1. THmn threshold gate.

Another type of threshold gate is referred to as a weighted threshold gate, denoted as THmn w, w1,
w2, …, wR. Weighted threshold gates have an integer value, m wR > 1, applied to input R. Here,

1 R < n; where n is the number of inputs; m is the gate’s threshold; and w1, w2, …, wR, each >1, are

the integer weights of input1, input2, …, inputR, respectively. For example, consider the TH34W2

gate, whose n = 4 inputs are labeled A, B, C, and D, shown in Figure 2. The weight of input A, W(A), is

therefore 2. Since the gate’s threshold, m, is 3, this implies that in order for the output to be asserted,

either inputs B, C, and D must all be asserted, or input A must be asserted along with any other input,

B, C, or D.

Figure 2. TH34w2 threshold gate: Z = AB + AC + AD + BCD.

NCL threshold gates are designed with hysteresis state-holding capability, such that after the output

is asserted, all inputs must be deasserted before the output will be deasserted. Hysteresis ensures a

complete transition of inputs back to NULL before asserting the output associated with the next

wavefront of input data. Therefore, a THnn gate is equivalent to an n-input C-element (i.e., when all

inputs are asserted the output is asserted; the output then remains asserted until all inputs are

deasserted, at which time the output becomes deasserted) [44]; and a TH1n gate is equivalent to an

n-input OR gate. NCL threshold gates may also include a reset input to initialize the output. Circuit

diagrams designate resettable gates by either a d or an n appearing inside the gate, along with the

gate’s threshold. d denotes the gate as being reset to logic 1; n, to logic 0. These resettable gates are

used in the design of DI registers.

To achieve hysteresis state-holding capability, NCL gates have both set and hold equations, where

the set equation determines when the gate will become asserted and the hold equation determines when

the gate will remain asserted once it has been asserted. The set equation determines the gate’s

m

input 1
input 2

input n

output

J. Low Power Electron. Appl. 2013, 3 304

functionality as one of the 27 NCL gates [43], whereas the hold1 equation is simply all inputs ORed

together. The general equation for an NCL gate with output Z is: Z = set + (Z- × hold1), where Z- is the

previous output value and Z is the new value.

To implement an NCL gate using CMOS technology, an equation for the complement of Z is also

required, which in general form is: Z’ = reset + (Z-’ × hold0), where reset is the complement of hold1

(i.e., the complement of each input, ANDed together) and hold0 is the complement of set, such that the

gate output is deasserted when all inputs are deasserted, and then remains deasserted while the gate’s

set condition is false. The new output value, Z, depends on the previous output value, Z-, which

requires internal gate feedback, as shown in Figure 3, for a static implementation [43].

Figure 3. (a) Static NULL Convention Logic (NCL) gate structure; (b) Static NCL

TH23 implementation.

(a) (b)

The framework for NCL systems consist of DI combinational logic sandwiched between DI

registers, as shown in Figure 4, which is very similar to synchronous systems. NCL systems contain at

least two DI registers, one at both the input and at the output. Two adjacent register stages interact

through their request and acknowledge signals, Ki and Ko, respectively, to prevent the current DATA

wavefront from overwriting the previous DATA wavefront, by ensuring that the two DATA

wavefronts are always separated by a NULL wavefront. The acknowledge signals are combined in the

Completion Detection circuitry [43] to produce the request signal(s) to the previous register stage.

NCL registration is realized through cascaded arrangements of single-bit dual-rail registers, shown in

Figure 5, which pass a DATA value at the input only when Ki is request for data (rfd) (i.e., logic 1) and

likewise pass NULL only when Ki is request for null (rfn) (i.e., logic 0). They also contain a NOR gate

to generate Ko, which is rfn when the register output is DATA and rfd when the register output

is NULL.

reset

set

hold0

hold1

Z

C

B

A

Z

A

B C

C

B

A
A B

C

J. Low Power Electron. Appl. 2013, 3 305

Figure 4. NCL system framework: input wavefronts are controlled by local handshaking

signals and Completion Detection instead of by a global clock signal. Feedback requires at

least three DI registers in the feedback loop to prevent deadlock.

Figure 5. Single-bit dual-rail register.

The NCL dual-rail encoding style decouples the relationship between the data being processed and

the side-channel characteristics of the circuit, particularly power consumption, giving NCL circuits

increased resistance to power related side-channel attacks over synchronous circuits. However, while

the overall switching activity of a data bit may be balanced regardless of data, the individual encoding

rails are not balanced, as illustrated in Figure 6. Furthermore, if the two rails are driving different

capacitance, which is always the case in a large circuit, then attackers may be able to distinguish

between the rails, allowing attackers to determine a relationship between the processed data and the

circuit’s side-channels.

Figure 6. NCL switching activity for passing consecutive DATA1s.

2n

2n

I0

I1

O0

O1

1Ko

Ki
Reset

J. Low Power Electron. Appl. 2013, 3 306

2.2. Multi-Threshold NULL Convention Logic (MTNCL)

MTNCL circuits utilize a sleep signal to simultaneously force all circuit elements to NULL instead

of propagating a NULL input through the circuit, as described in [42]. This allows for the MTNCL

gates to no longer require state-holding hysteresis logic and for the MTNCL combinational logic

circuits to no longer need to be input-complete and observable, both of which significantly reduce area

and power/energy, while increasing speed. The Static MTNCL (SMTNCL) gate and the Slept Early

Completion and Registration Input-Incomplete (SECRII) architecture are shown in Figures 7 and 8,

respectively, and are both detailed in [42].

Figure 7. (a) SMTNCL gate structure; (b) SMTNCL TH23 implementation.

(a) (b)

Figure 8. SECRII architecture with completion logic and registration slept.

2.3. Dual-Spacer Dual-Rail Delay-Insensitive Logic (D3L)

D3L is an extension of the NCL logic style that utilizes a dual-spacer protocol, as opposed to NCL’s

single spacer protocol [41]. The motivation for this is the elimination of imbalanced switching activity

on the two encoding wires of a data bit. By balancing this switching activity, data is further decoupled

from the power consumption of the circuit, providing increased robustness against power

analysis attacks.

Slept DI
Register MTNCL

Logic

Slept DI
Register

Slept Early
Completion

MTNCL
Logic

Slept DI
Register

Slept Early
Completion

Sleep

Sleep

Slept Early
Completion

Sleep

J. Low Power Electron. Appl. 2013, 3 307

Table 2 shows the D3L encoding scheme. Like NCL, the DATA and NULL states remain the same.

However, the NULL state is now called the All-Zero Spacer (AZS); and the former illegal state, where

both rails are asserted, is now the All-One Spacer (AOS). The AZS and AOS are alternated between

spacer cycles, implementing a dual-spacer protocol. As a result, the switching activity over a complete

set of data/spacer cycles is balanced on both rails, as shown in Figure 9.

Table 2. D3L encoding scheme.

State D0 D1

All-Zero Spacer (AZS) 0 0
Data0 1 0
Data1 0 1

All-One Spacer (AOS) 1 1

Figure 9. D3L switching activity for passing consecutive DATA1s.

The D3L threshold gates are modified versions of the NCL threshold gates. As such, the complete

set of 27 NCL functions is implemented in D3L. While NCL gates use hysteresis, D3L gates are unable

to do so to accommodate the dual-spacer protocol. As such, D3L threshold gates are smaller than NCL

threshold gates due to the omission of the hysteresis transistors. The removal of hysteresis, however,

means that D3L gates are unable to guarantee input completeness. Instead, the NCL_X technique [45]

is used to provide input-completeness. This technique adds additional logic to D3L functions that check

the inputs and outputs of each function to create a completion signal. Since the spacer cycles in D3L

occur when data rails are the same, an XNOR gate can be used to detect them. The outputs from these

XNOR gates are input to the completion component, along with the usual handshaking signals, to

ensure that the logic is ready for the next wavefront. A downside to this technique, however, is the

overhead incurred by adding large amounts of XNOR and threshold gates to the design to ensure

input-completeness. An input-complete D3L AND function is shown in Figure 10.

J. Low Power Electron. Appl. 2013, 3 308

Figure 10. D3L input-complete AND function.

The basic D3L Register, shown in Figure 11, is a modified NCL register. It consists of two TH22

gates which are resettable to the desired value. An XNOR gate facilitates Ko generation by checking

the relative values of the register’s outputs. As mentioned previously, the XNOR gate is required to

detect both AZS and AOS.

Figure 11. D3L register.

Additional logic is required to facilitate the dual-spacer protocol. NCL registers require a NULL

input before they are able to accept new data. They will not recognize an all-one spacer. To fix this,

extra logic capable of recognizing the all-one spacer is used to control the register’s Ki input. This Ki

Generator has four inputs: the early completion Ki, ps (previous spacer), and the two dual-rail outputs

of the register. The value of ps is generated by a resettable TH22 gate. This value is logic 0 for an AZS

and logic 1 for an AOS. The ps gate and the register must be reset to the same value. If the register is

reset to DATA then the ps gate is reset to logic 0. The Ki Generator’s output follows the Boolean
equation Ki_gen = 	Ki	ps	 Z0 Z1 	Ki	ps	 Z0 Z1 	Z0	Z1	Ki Z0	Z1	Ki resulting from the

truth table shown in Table 3, yielding the transistor level implementation shown in Figure 12. If an

AOS is needed then the value of Ki_gen will be changed to logic 1 allowing the register to latch it.

Once the next data value arrives, Ki_gen will switch to logic 0. As a result, one of the register’s TH22

J. Low Power Electron. Appl. 2013, 3 309

gates will have two low inputs which will change its output to logic 0, latching the data. A complete

D3L register is shown in Figure 13.

Table 3. Ki Generator (KiGen) truth table.

Row Z0 Z1 Ki ps Ki_gen

1 0 0 0 0 0

2 0 0 0 1 0

3 0 0 1 0 1

4 0 0 1 1 1

5 0 1 0 0 1

6 0 1 0 1 0

7 0 1 1 0 0

8 0 1 1 1 1

9 1 0 0 0 1

10 1 0 0 1 0

11 1 0 1 0 0

12 1 0 1 1 1

13 1 1 0 0 1

14 1 1 0 1 1

15 1 1 1 0 0

16 1 1 1 1 0

Figure 12. KiGen transistor diagram.

J. Low Power Electron. Appl. 2013, 3 310

Figure 13. Complete D3L register.

While the D3L register is capable of handling the dual-spacer protocol, it is insufficient to

implement ring register configurations. This is because a basic D3L register is incapable of generating

alternating spacers. Instead, the same spacer would pass through the ring twice causing deadlock. To

solve this, a D3L filter register is required for generating alternating spacers, which consists of a basic

D3L register with a spacer filter operating on the register’s inputs. The spacer filter monitors the

dual-rail input, the previous spacer, and the Ko from the register to ensure that spacers are alternated as

they pass through. In a typical ring register configuration, the first two registers would be normal D3L

registers reset to NULL and a filter register reset to DATA0 or DATA1. When the filter register

receives an AZS or AOS it outputs the alternate spacer. This ensures that the same spacer does not pass

through the ring twice. Figure 14 shows the D3L filter register diagram, while Figure 15 shows the

transistor level schematic of the spacer filter, whose outputs are based on the following equations:

D0_filter = D0	D1 Ko	ps	D0 Ko	ps	D0 Ko	ps	D1 Ko	ps	D1

D1_filter D0	D1 Ko	ps	D1 Ko	ps	D1 Ko	ps	D0 Ko	ps	D0

Figure 14. D3L filter register.

J. Low Power Electron. Appl. 2013, 3 311

Figure 15. Spacer filter transistor level diagram.

The PS signal delay component used in the spacer filter, shown in Figure 16, prevents ps from

changing unless the register’s Ko is logic 1, i.e., requesting DATA. This ensures that the value of ps is

only changed once the register receives the spacer.

Figure 16. PS signal delay component.

Ko_not

ps

rst_not

z

Ko

z

z

Ko_notKo

ps

J. Low Power Electron. Appl. 2013, 3 312

In situations where a component needs many cycles to output data but does not have input provided

for each cycle, the component will not be able to receive the spacers it needs as input. Instead, a spacer

generator register is used to generate these spacers for the component. A spacer generator register is a

basic D3L register with a spacer generator sitting between it and its inputs. The spacer generator keeps

track of the previous spacer and generates the alternate spacer when requested regardless of the

dual-rail input it receives. For example, if the previous spacer was an AZS and the register requests a

spacer, the spacer generator will generate an AOS. The next time a spacer is requested, it generates an

AZS. Figure 17 shows the D3L spacer generator register; and Figure 18 shows the circuit diagram for the

spacer generator component. The outputs of the spacer generator are given by the following equations:

D0_gen = Ko	ps	 D0 D1 	Ko	ps	 D0 D1 	Ko	D0	D1

D1_gen = Ko	ps	 D0 D1 	Ko	ps	 D0 D1 	Ko	D0	D1

Figure 17. D3L spacer generator register.

Figure 18. Spacer generator circuit diagram.

J. Low Power Electron. Appl. 2013, 3 313

3. Multi-Threshold Dual-Spacer Dual-Rail Delay-Insensitive Logic (MTD3L)

3.1. Motivation

Although the D3L scheme successfully implements the dual-spacer protocol, it suffers from high

overhead compared to equivalent NCL designs. This overhead comes from two sources. The first is the

required NCL-X style completion logic in the form of several XNOR gates attached to each logic

function. The second is the more complex registration. To eliminate the first source of overhead, the

MTNCL technique can be combined with D3L, to form the new secure hardware paradigm presented

in this paper, MTD3L.

Because D3L gates do not use hysteresis, an external source is required for input completion

detection. Rather than using XNOR and threshold gates, the early completion technique used in

MTNCL can be utilized to ensure that requests for a spacer will only be generated when all circuit

inputs are that spacer and the following stage is requesting a spacer. At this point, the combinational

logic can be slept to the proper value, ensuring input-completeness. Thus, the need for extra

completion checking logic is eliminated.

3.2. MTD3L Gates

The addition of sleep logic to a D3L gate is simple. No modification to the D3L logic is required

because it already matches the form of the modified NCL gates used in the MTNCL technique—a

hold0 block and a set block. The only modification required is the addition of the sleep transistors. The

sleep-to-0 transistors can be used in the same way as in SMTNCL. These transistors are responsible for

the AZS transition. A similar set of transistors can be used for the AOS transition.

The sleep transistors are controlled by a pair of sleep signals, sleep-to-0 (s0) and sleep-to-1 (s1),

and their complements, as shown in Table 4. These signals should not be asserted at the same time.

Instead, if either of the inputs is asserted, the circuit will be slept to the appropriate value. Figure 19

shows the MTD3L gate design. When s0 is asserted, the circuit is slept to the all-zero state. In this case,

the NMOS transistor parallel to the output inverter is turned on, the NMOS transistor gating the main

circuit to ground is turned off, and the PMOS transistor gating the output circuit to VDD is turned off.

Additionally, since s1 is off, the NMOS transistor controlled by ns1 is turned on, completing the path

from the output to ground, forcing the output to logic 0. The PMOS transistor controlled by s1 is also

turned on, allowing the main circuit to pass an output of 1 to the output inverter, preventing glitches

from occurring when s0 is later asserted. When this happens, the output inverter will have logic 1 on

its input, so it will continue to output logic 0 until new data has arrived. Similarly, when s1 is asserted,

the circuit is slept to the AOS. The path to VDD for the main circuit is turned off while the path to

ground remains on, allowing a 0 to eventually reach the output inverter. The output inverter’s path to

ground is cut off and a direct path to VDD is formed, forcing the output to be logic 1. When the

sleep-to-1 state ends, the output inverter will have logic 0 on its input so the output will remain at

logic 1, preventing a glitch. If neither sleep signal is asserted, the circuit operates as it would normally.

All four power- and ground-gating transistors are turned on, allowing normal access to power and

ground for the circuit and output inverter. The two parallel output transistors are turned off, so the

output is only controlled by the output inverter. If both sleep signals happen to be asserted at once, the

J. Low Power Electron. Appl. 2013, 3 314

four power- and ground-gating transistors will be turned off, leaving the circuit in a floating state;

however, this will never occur in a properly operating circuit.

Table 4. MTD3L sleep signals.

s0 s1 Output

0 0 Normal
0 1 All-One Spacer
1 0 All-Zero Spacer
1 1 Invalid

Figure 19. (a) MTD3L version 1 gate structure; (b) MTD3L23 version 1 implementation.

(a) (b)

One of the drawbacks of the version 1 design is the potential for very large fanouts on the sleep

signals. If the design is coarsely pipelined or the combinational logic happens to be very large, a single

set of sleep signals may have to drive thousands of gates, requiring these signals to be heavily

buffered. Not only must s0 and s1 be buffered but their complements will require buffering as well. To

mitigate this issue and reduce the number of inputs to these gates in general, a modified design may be

used to eliminate the need for the complemented sleep signals, as shown in Figure 20. This design

removes the power- and ground-gating transistors from the main circuit, leaving only the four

transistors on the output inverter. These four transistors are controlled by s0 and the complement of s1,

allowing for the removal of s0’s complement and s1 itself. Thus, only two signals must be buffered

instead of four. The drawback to this technique is that the main circuit is directly exposed to power and

ground, eliminating the ability to gate the circuit with high-Vt transistors.

J. Low Power Electron. Appl. 2013, 3 315

Figure 20. (a) MTD3L version 2 gate structure; (b) MTD3L23 version 2 implementation.

(a) (b)

3.3. MTD3L Registration

The basic MTD3L register, shown in Figure 21, is a modified NCL register. It consists of two TH22

gates which are resettable to the desired value. An XNOR gate facilitates early completion by checking

the relative values of the register’s inputs. If both input rails have the same value then the register has

received a spacer and will request data. If the values are different, then DATA has been received so the

register will request the next spacer.

Figure 21. MTD3L register.

Additional logic is required to facilitate the dual-spacer protocol and early completion checking.

The early completion component consists of resettable TH22 gates whose inputs are the register’s Ko

J. Low Power Electron. Appl. 2013, 3 316

and the next stage’s inverted Ko. The reset state of the early completion component is logic 1 if the

register’s reset state is NULL and logic 0 if the register’s reset state is DATA. In order to ensure

input-completeness, the early completion Ko is inverted before being passed back as the register’s Ki

input. This prevents a partial spacer wavefront from passing through the register by ensuring that all of

the register’s inputs are an AOS or AZS before the spacer wavefront is allowed to pass through the

register. In order to facilitate the dual-spacer protocol, the same Ki Generator used in D3L registration,

shown in Figure 12, is used for MTD3L.

If the register needs to supply sleep signals then sleep signal logic is used here as well, as shown in

Figure 22. This logic generates two sleep signals, s0 and s1. The values of the sleep signals are shown

in Table 5. If the register’s Ki is 0 then a spacer is being requested. To determine which spacer is being

requested, Ki_gen’s value is used. If Ki_gen is logic 0 then an AZS is being requested; if it is logic 1

then an AOS is being requested. To avoid incorrect sleep states, a buffer is used as a delay element to

ensure that the change in Ki_gen’s value is evaluated first. For example, if the desired change was

from the no sleep state of row 2 to the sleep-to-1 state of row 3, then both Ki_gen and Ki will switch. If

Ki switches first, a sleep-to-0 will be issued erroneously. However, if Ki_gen switches first then the no

sleep state will be maintained until Ki changes as well, resulting in the correct sleep-to-1 state.

Figure 22. Complete MTD3L register.

J. Low Power Electron. Appl. 2013, 3 317

Table 5. MTD3L sleep signal switching sequence.

Ki_gen Ki s0 s1

0 0 1 0
0 1 0 0
1 0 0 1
1 1 0 0

MTD3L spacer filter and spacer generator registers, shown in Figures 23 and 24, respectively, are

used in the same manner as they are used in D3L circuits. The filter register is used as the final register

in a register ring, shown in Figure 25. It is reset to DATA and filters the spacer that passes through the

ring, alternating it so that the dual-spacer protocol is enforced. The spacer generator generates the

appropriate spacer as needed regardless of the values of its inputs. Typically, these registers are the

ones that generate sleep signals as they are usually the registers that are facing combinational logic as

shown in Figure 25. The actual spacer filter and spacer generator components are unmodified from

their D3L counterparts, shown in Figures 15 and 18, respectively.

Figure 23. MTD3L spacer filter register.

Figure 24. MTD3L spacer generator register.

J. Low Power Electron. Appl. 2013, 3 318

Figure 25. MTD3L ring register.

4. AES Core Implementations

4.1. MTD3L Implementation

The implementation of the 128-bit AES core [46] in each design follows the same architecture. The

AES transform and key expansion functions are computed in parallel. A Control block synchronizes

the two functions and ensures that the correct sub-key is sent to the Transform block at the correct

time. From outside, this circuit behaves as a register in terms of handshaking, so it can be easily placed

into an asynchronous system. The AES core accepts an input and produces an output with one external

DATA/spacer cycle. However, the AES circuit actually produces several internal DATA/spacer cycles

for processing each plaintext, which are hidden from the outside. Each round of the AES algorithm

consists of one of these internal cycles.

As shown in Figure 26, each design consists of five blocks: the FirstRound block, the Control block,

the AESTransform block, the KeyExpansion block, and the LastRound block. The FirstRound block is

a set of input registers that latch in new data and provide it to the AESTransform and KeyExpansion

blocks. The AESTransform block performs the ciphertext calculation for each round of the algorithm.

The KeyExpansion block calculates the subkey used in the AESTransform block. The Control block

creates the control signals as well as generating the RCon constant which is used in the KeyExpansion

block. The LastRound block performs the final round of calculations and also has a set of output

registers to hold the final ciphertext.

J. Low Power Electron. Appl. 2013, 3 319

Figure 26. Advanced Encryption Standard (AES) top level diagram.

The communication between blocks, shown in Figure 27, consists of three handshaking signals:

Ki1, Ki2, and Ki3. These signals are generated by a set of threshold gates in the top level circuit. The

inputs of these threshold gates are the KO values from registers throughout the design. The

AESTransform, KeyExpansion, and Control blocks all have a three-ring register to save processed

data. Each ring register’s Ko is used as inputs to the top-level handshaking. Additionally, an extra KO

from the registers in the FirstRound and LastRound blocks is used as well. The resulting Ki1, Ki2, and

Ki3 signals are used as the Ki inputs to the ring-registers mentioned previously.

Figure 27. Top level handshaking diagram.

The sleep signal generation mechanism consists of two types of sleep signals: a global sleep and

local sleeps. The global sleep, which is a circuit input, is meant to sleep the entire circuit between

J. Low Power Electron. Appl. 2013, 3 320

encryption stages, ensuring that everything is reset properly. This sleep is only asserted after the

ciphertext is latched out and external handshaking is requesting a spacer cycle. The internal sleep

signals are generated locally within each block by the ring-registers. These sleeps are asserted between

calculation stages. The LastRound block, lacking registration between it and the previous

AESTransform block, uses the local sleep signals generated by the AESTransform block.

The FirstRound block, shown in Figure 28, consists of a set of 128-bit registers for both the input

plaintext and input keys. These are regular, non-slept generating registers. The Ki to these registers is

the master Ki input for the circuit. The Kos are used to generate a reset signal for the rest of the blocks,

preparing them for a fresh encryption process. This reset signal also acts as the circuit’s Ko output. The

data outputs of these registers go to a set of spacer-generator registers. These registers use the Ki1

signal as their Ki, synchronizing these registers with the first stage of the ring-registers throughout the

design. Their Kos are not used. Next, an AddRound block calculates the initial addition of the plaintext

and key, passing this data to the AESTransform block. The initial key is also passed to the

AESTransform and KeyExpansion blocks. The sleep signals for the AddRound block are generated by

the data processing spacer-generator register.

Figure 28. FirstRound block diagram.

The AES Transform block, shown in Figure 29, handles the primary calculation of the ciphertext. It

consists of the main AES components: AddRound, SubByte, MixColumns, and Shiftrows. A three-ring

register is used to save data between each round of calculation. To control whether the input data is

taken from the FirstRound or from the circuit feedback loop, a 2-to-1 multiplexer is used. The control

signal of the multiplexer is supplied by the Control block. The output of the multiplexer serves as both

the output of the circuit and the feedback loop to the first register in the ring. The first and second

registers are normal registers while the third is a filter register. This filter register generates the sleep

signals to be used by this block as well as the subsequent LastRound block.

J. Low Power Electron. Appl. 2013, 3 321

Figure 29. AES transform block diagram.

The KeyExpansion block, shown in Figure 30, is very similar to the AES Transform block. It

consists of the KeyExpansion logic, a three-ring register, and a 2-to-1 multiplexer. The register and

multiplexer act in the same manner as they do in the AES Transform block. The sleep signals for the

KeyExpansion logic are generated by the third register in the ring, which is a filter register. The

KeyExpansion logic takes the 128-bit key and transforms it into a new subkey, which is sent to the

AES Transform and LastRound blocks.

Figure 30. KeyExpansion block diagram.

The Control block, shown in Figure 31, synchronizes all other blocks to ensure proper operation. It

generates the control signals for the multiplexers throughout the design, the RCon constant used in the

D Q

Ko

Ki

Rst

Basic MTD3L Register
128-bit

D Q

Ko
Ki

Rst

D Q

Ko

Ki

Rst

Basic MTD3L Register
128-bit

MTD3L Filter Register
128-bit

Ki_1 Ki_2

Ki_3

Z

128

Rst

Ko_1

Ko_2 Ko_3

128

2to1 Mux

128

A

B

Z

128
To AESTransform

Select

Rst

From FirstRound

From Control

Sleep

128128

Sleep

TH12

Global Sleep

KeyExpansion Block

D Z

Sleep

J. Low Power Electron. Appl. 2013, 3 322

KeyExpansion calculations, and the control signal that activates the LastRound block. The LastRound

block will only latch data to the output register when this signal is received. The input to the Control

block is the reset signal generated by the Ko of the FirstRound block. This signal resets the Control

block’s state, preparing it for a new encryption set.

The Control block is a state machine consisting of four components: a 5-bit three-ring register, the

control signal logic, the increment logic, and the LastRound logic. The ring-register saves the state of

the Control block. The filter register in this ring also generates the sleep signals for the block. The

control signal logic generates the RCon signal and the multiplexer control signals. The increment logic

is a counter, keeping count of the number of encryption rounds executed. When the counter reaches the

round limit, the stop signal is activated.

The initial state of the Control block needs to be an AZS. However, the filter register in the

ring-register is reset to data. Thus, extra logic is required to generate the initial AZS. A set of TH22n

gates is used to do this. Each TH22n gate is tied to one of the signals, which is connected to both

inputs of the gate. At reset, each of these gates will output a zero, giving the required spacer. Once the

reset is finished, these gates will act as C-elements. Since each gate has the same signal on both inputs,

its output will follow the value of the input.

Figure 31. Control block diagram.

The LastRound block, shown in Figure 32, consists of the final SubByte, Shiftrows, and AddRound

operations on the ciphertext as well as the final output register. The MixColumns block is not used in

the final round. The inputs to this block are the last transformed ciphertext from the AESTransform

block and the final subkey from the KeyExpansion block. The sleep signals are the same ones

generated in the AESTransform block. The register will only latch data once the stop signal is received

from the Control block, which acts as the Ki to the register. This final register is a filter register,

ensuring that the output from the AES circuit is capable of generating the correct spacer and sleep

signals for the following circuit block.

J. Low Power Electron. Appl. 2013, 3 323

Figure 32. LastRound block diagram.

4.2. AES Implementation using D3L

The D3L implementation is very similar to the MTD3L implementation. The same five blocks are

used and their configurations are essentially the same. There are two primary differences between the

two designs. First, since the D3L design lacks sleep signals, a global reset is used to reset the

spacer-generator registers in the FirstRound between encryptions. This reset is required for the circuit

to reset properly. The second major difference is the usage of completion signals. Each combinational

block has a completion signal which is used to ensure input-completeness. The completion signals

(ccheck) of the FirstRound and LastRound blocks are added to the Ki1 calculation. In the AES

Transform block, the Ko1 output consists of the combination of the Ko from the first register as well as

the ccheck signals from the multiplexer and AES logic. This is also done in the KeyExpansion and

Control blocks. The ccheck signals themselves are generated with completion checking logic inside

each combinational logic block.

4.3. AES Implementation using NCL

Being extensions of the NCL style, the D3L and MTD3L designs are very similar to the NCL design

as well. Additionally, the NCL design served as the base of the D3L design, which was created by

taking the original NCL design and replacing the gates and signals. Because of this, the structure of the

blocks themselves and the combinational logic are very similar. The primary differences in the designs

are found in registration, spacer generation, and input-completeness logic. Figure 33 shows the NCL

AES Transform block.

NCL threshold gate logic supports input-completeness by design, so there is no need for extra

input-completeness logic. Additionally, only a single register type is needed, which can be reset to the

desired values. Finally, the FirstRound block, shown in Figure 34, only needs to generate NULL

spacers when needed, so the spacer-generator registers are replaced with NULL generators.

J. Low Power Electron. Appl. 2013, 3 324

Figure 33. NCL AES Transform block diagram.

Figure 34. NCL FirstRound block diagram.

4.4. AES Implementation using Synchronous Logic

The asynchronous designs are all based off the synchronous design, which was created first.

Because of this, there are several similarities between the synchronous and asynchronous designs. The

synchronous design, like the other designs, consists of five logic blocks. The FirstRound block is

replaced with a single AddRound block. The initial register stage is instead found in the KeyExpansion

and AES Transform blocks. Registers are found in the AESTransform, KeyExpansion, and Control

blocks, much like the other designs. The LastRound block contains the output register which is

activated with a stop signal generated by the Control block. Two designs can be used, a single clock

design and a double clock design. The single clock design was used in the power and timing

simulations since it is faster. The double clock design isolates the SubByte block of the AES

J. Low Power Electron. Appl. 2013, 3 325

Transform circuit in facilitating the implementation of the CPA attack. Figure 35 shows the

synchronous AES Transform block.

Figure 35. Synchronous AES Transform block diagram.

4.5. Delay Element Design

In the D3L and MTD3L designs, a delay element was designed to help mask the relationship

between the circuit delay and the data being processed. The designed delay element is a buffer chain

appended to the output of the targeted Sbox that can either operate at a high speed or a low speed. The

inverters that make up this chain are n-volt controlled. A second NMOS transistor is added to the

pull-down network of the inverter. An example buffer is shown in Figure 36. This transistor is

controlled by an external voltage. To operate at high speed, the voltage given is the same as the

designated supply voltage. To operate at a slow speed, the voltage is reduced as much as possible

without deforming the inverter’s output.

Figure 36. N-Volt controlled buffer.

128-bit Register

A Z

Multiplexer

A

B

Ctrl Z

From Control

From FirstRound

AESTransform

From KeyExpansion

Clock

To LastRound

J. Low Power Electron. Appl. 2013, 3 326

To apply different voltages levels to these inverters, a control signal is generated externally. The

method of generating this control signal is not important so long as the result is sufficiently random.

This control signal is used to control a pair of PMOS transistors. The source of these transistors is

either a high voltage source or a low voltage source. Depending on the value of the control signal, only

one of these transistors will be turned on at a time, which will supply its voltage to the delay inverters.

Figure 37 shows the control logic.

Figure 37. Buffer chain with voltage control.

5. Results and Analysis

5.1. Simulation Environment and Data Collection

Each AES design presented in Section 4 was implemented at the transistor level using Cadence and

the IBM 8RF-DM 130 nm process to evaluate and compare energy consumption, speed, area, and

side-channel attack resistance. The full AES designs were used for the collection of energy, speed, and

area data. All simulations were done using the Cadence UltraSim simulator. Each design was

simulated using the input key 0x2b7e151628aed2a6abf7158809cf4f3c.

Because a complete evaluation of the D3L and MTD3L designs requires two spacer cycles, each

simulation covered two complete encryptions. For the synchronous design, the simulation begins with

the circuit in its reset state. Next, the key and plaintext are given and the circuit operation continues

until the ciphertext is received. On the next clock cycle, a second plaintext is entered and the second

encryption cycle completes. The energy and speed of the design is calculated from the reset state until

the time of completion for the second encryption. The synchronous design is controlled using vector

files. The NCL, D3L, and MTD3L designs, being asynchronous, are more difficult to simulate using

vector files, due to the difficulties in anticipating when the handshaking signals should be changed.

Thus, the asynchronous designs are simulated using controllers defined with VerilogA, which monitors

the outputs of the design and makes adjustments to the design’s inputs accordingly. The NCL

simulation begins in a NULL state. The first plaintext is passed followed by another NULL state. Once

this cycle completes, a second plaintext is given followed by the third NULL state. The energy and

speed data is calculated from the initial state through the end of the second DATA-NULL pair. The

D3L and MTD3L simulations are similar, following the pattern of AZS-DATA-AOS-DATA-AZS.

Vlow Vdd

CtrlnCtrl

Buffer Chain
Vn

In In
Out Out

J. Low Power Electron. Appl. 2013, 3 327

The circuit area for each design was determined by laying out each design and measuring its

dimensions. First, the cell layouts were completed using the Virtuoso tool in Cadence. The full designs

were placed and routed according to their respective Verilog netlists using Synopsys Astro. From

there, the designs’ area could be measured. The speed of each design was simply the time it took for

two encryptions to be completed and any extra time needed until a third encryption is ready to begin.

The synchronous design was tested to determine its maximum clock speed. The energy consumption of

each design was determined by measuring the charge of each design of the duration of the simulation

period and multiplying this by the supply voltage, which was the same for each design.

5.2. Simulation Results

As shown in Table 6, the synchronous design is the fastest. The NCL design is the slowest; and the

MTD3L and D3L designs are in the middle. The D3L design uses the most energy followed by the

MTD3L design and the NCL design. As explained in Section 2, the D3L design suffers from significant

overhead problems, which can be seen in these results, particularly with respect to energy

consumption. The purpose of the MTD3L design was to reduce this overhead to more reasonable

levels. In this respect, the MTD3L design has a 36% reduction in energy consumption over the D3L

design. However, the MTD3L design still uses nearly 300X more energy than the synchronous design,

so while some overhead reduction was achieved, more efforts are needed in order to bring the MTD3L

design down to desired overhead levels.

Table 6. Speed and energy comparison.

Design Delay (ns)
Delay overhead vs.

Synchronous design
Energy (nJ)

Energy overhead vs.
Synchronous design

Synchronous 153 0X 1.356 0X
NCL 462 302X 2.208 163X
D3L 325 212X 6.012 443X

MTD3L 330 216X 3.84 283X

Table 7 presents the area of each design after cell placement in Synopsys Astro. The MTD3L design

sees significant overhead reduction compared to the D3L design. This can be attributed to the removal

of the NCL_X style completion logic. With this overhead reduction, the MTD3L design is comparable

to the NCL design in area.

Table 7. Area comparison.

Design Width (µm) Height (µm) Total Area (mm2)

Synchronous 1227 1223 1.50
NCL 1812 1809 3.28
D3L 2503 2503 6.27

MTD3L 1835 1838 3.37

The overhead of the D3L design came from two sources. The first was the NCL_X completion

checking. The second was from increased registration overhead caused by the need of handling two

spacers. The MTD3L design solves the first problem but does not solve the second. The reduction in

J. Low Power Electron. Appl. 2013, 3 328

MTD3L energy consumption can be attributed to the reduced completion checking overhead due to the

use of early completion instead of NCL_X style checking. However, the MTD3L design still uses the

same registration scheme that the D3L design uses, so this overhead remains.

Table 8 shows a comparison of the energy consumption of different components of the NCL and

MTD3L designs. The energy cost of the MTD3L registration is roughly 700% greater than that of the

NCL design. The combinational logic and buffering of both designs is about the same, showing that

the overhead cost comes almost exclusively from the registration. Table 9 shows the differences in

transistor count and average leakage of the registration for both designs, showing that the MTD3L

version requires many more transistors. This is due to the logic required to implement the dual-spacer

protocol, such as the Ki Generator and the Spacer Filter. These components contribute significantly to

the design overhead.

Table 8. Energy comparison.

Component NCL design energy (nJ) MTD3L design energy (nJ)

Registration 0.252 1.836
Logic 1.512 1.26

Buffering 0.444 0.744
Total 2.208 3.84

Table 9. Registration comparison.

Design Transistor count Average leakage (µA)

NCL 49140 2
MTD3L 242364 180

5.3. Side-Channel Attack Implementation

Because of the long simulation times required for the full designs, data collection for the power and

timing attacks were performed with sub-circuits of each design. This is because each of these attacks

requires many different simulation samples (256 samples in this case) to be successful. This number of

simulations with the full designs would be impractical. The sub-circuits consist of the initial Addround

and Subbyte stage of each design. This is because the Subbyte operation is the major vulnerable point

to side-channel attacks. The attacks themselves focus on only one S-box of the Subbyte block, brute

forcing all 256 plaintext input combinations of that S-box and attempting to extract one byte of the

cipher key. It is assumed that if one byte of the key can be extracted then the other 15 bytes can be

obtained as well.

While UltraSim in Cadence was used for the full simulations, it was found that Synopsys Nanosim

could perform simulations in less time. Because so many simulation samples were required for the

side-channel attacks, Nanosim was used to collect this information rather than Ultrasim. The

simulation setup is similar but different for each design. For example, the synchronous design requires

a clock and registers while the asynchronous designs do not. Test vectors for each design were

generated. These vectors all use the same key as shown in Section 5.1. The plaintexts cover every

combination of inputs for the first byte. All following bytes were kept at 0x00. Thus, the plaintexts

followed the form 0xff000000000000000000000000000000. This setup helps reduce noise by

J. Low Power Electron. Appl. 2013, 3 329

attempting to isolate the attacked S-box. To help Nanosim keep track of a particular node, a small

1 ohm resistor was placed in series between the attacked S-box and its power supply.

The synchronous design consists of the Addround block and the Subbyte block with the Subbyte

block being isolated by a pair of registers, as shown in Figure 38. Initially, the registers are reset to 0.

Next, the key and plaintext are input to the Addround block. On the first clock edge, Addround’s

output is clocked into the Subbyte block via the first register. Once the Subbyte block computes the

output, the result is latched onto the second register. The second clock edge is the critical point. At this

moment, the switching activity of the attacked S-box may be observed according to the changes in the

second register.

Figure 38. Synchronous side-channel attack implementation.

As shown in Figure 39, the NCL design consists of only the Addround and Subbyte blocks. It

begins the simulation in a NULL state. Next, the key and plaintext are given as DATA. After the

computation is complete, a NULL wave front is input. Thus, the NCL simulation follows a

NULL-DATA-NULL pattern. For the timing attack, the simulation output is divided into two sets. The

first set consists of the NULL to DATA transition. The second consists of the DATA to NULL

transition. Both sets have any leading and trailing zeros removed to help align and simply the data for

the timing attack.

The D3L and MTD3L designs also consist only of Addround and Subbyte blocks. Like the NCL

simulation, these designs begin at the AZS. The plaintext and key are input as DATA. Once the circuit

is finished, an AOS is given next. The same plaintext and key are input as DATA a second time. Once

the second computation is complete, another AZS is given. Thus, these designs follow a complete

dual-spacer pattern of AZS-DATA-AOS-DATA-AZS. The same data is given twice to help simplify

the power and timing attacks. These data sets are divided into four groups for the timing attack. The

first is the transition from the AZS to DATA. The second is the transition from DATA to the AOS.

The third is from the AOS to DATA. The last is from DATA to the AZS. Each set has leading and

trailing zeros removed much like the NCL data.

J. Low Power Electron. Appl. 2013, 3 330

Figure 39. NCL, D3L, and MTD3L side-channel attack implementation.

The D3L and MTD3L designs were also tested with the random delay elements, presented in

Section 4, inserted into the targeted S-box, as shown in Figure 40. These delay elements are attached to

each of the outputs of the target S-box. They are controlled by a signal generated by the bitwise XOR

of the outputs of the Addround Z1 rail. The simulation setup is otherwise the same as the previous D3L

and MTD3L simulations.

Figure 40. D3L and MTD3L delayed side-channel attack implementation.

The power and timing attacks were carried out with a Java program. The program takes the

simulation data and a statistical model of the design as input. The format of the simulation data

depends on the type of attack being done. For the synchronous design, the only attack was a power

analysis attack. The simulation input was in the form of a set of values of the current drawn by the

power supply at a given time. The statistical model was the calculated Hamming distance given the

key guess and the given plaintext. The NCL design was attacked using an energy based model. The

simulation data began as a set of current values, similar to the synchronous data. This data was

summed over the duration of the simulation period resulting in a single value representing the energy

used in the simulation. The D3L and MTD3L designs were also attacked with an energy based model.

In addition to this attack, the D3L and MTD3L designs were also attacked with a timing model. Similar

to the energy attack, the power data was converted to a single time value by measuring the number of

time steps where the circuit was drawing power. It is assumed that the circuit only draws significant

current while it is calculating the ciphertext. The total number of discrete time steps above this

threshold represent the time it took to complete the operation. Because the asynchronous designs are

designed to balance switching activity independently of the data given, the Hamming distance model

J. Low Power Electron. Appl. 2013, 3 331

used for the synchronous attack is not sufficient for the asynchronous attacks. Instead, the expected

energy and timing of these designs was estimated by counting the expected number of transistor

switches for a given input combination. It is assumed that the energy and time delay of the circuit for a

given set of inputs is directly proportional to the number of transistors that switch as a result of those

inputs. The energy attacks were carried out over the complete simulation data. The timing attacks were

carried out over the partitioned data.

5.4. Side-Channel Attack Results

Table 10 shows the results of the power- and energy-based attacks. The highest correlation out of

the set of key guesses is shown for each design as if the highest correlation guess was generated by the

correct key value. For the timing attacks against the asynchronous designs, which were each

partitioned into several parts, only the part that resulted in the highest correlation is given. For

example, the MTD3L timing attack had the highest result for the first data to AOS transition, so only

that result is given. All other MTD3L transitions resulted in lower correlations. The synchronous attack

was successful while the NCL, D3L and MTD3L attacks were not. The synchronous design, having no

defense against power analysis, resulted in the highest correlation coefficient. This means that the key

guess for this design has the most confidence. The NCL, D3L, and MTD3L designs each resulted in a

lower coefficient and failure to guess the correct key. The D3L and MTD3L coefficients were very

similar. This is expected because the changes from the D3L design to the MTD3L design should not

have impacted the MTD3L design’s side-channel defenses. The NCL coefficient was unexpectedly the

lowest, in disagreement with the results from [41], where the key was correctly guessed for the NCL

circuit implemented using the IBM 0.5 μm process. This could be due to a number of reasons, such as

a weakness in the statistical model, lack of resolution in the simulation data, or the unbalanced load

effect in NCL being somewhat amplified in the large non-digital 0.5 μm process.

Table 10. Power/energy attack results.

Design Attack type Correlation coefficient Correct key guess success/failure

Synchronous Power 0.872 Success
NCL Energy 0.207 Failure
D3L Energy 0.376 Failure

MTD3L Energy 0.353 Failure

Table 11 shows the results of the time based attacks. The synchronous design was not attacked in

this way, since it is already known to be susceptible, while the NCL design, also known to be

susceptible, was attacked to show that the attack algorithm being used for the asynchronous designs

could correctly guess the key. Since the energy attack on the NCL circuit in [41] was successful,

adding random delay elements to protect it from timing attacks was moot, so this was not done. For the

D3L and MTD3L circuits, only a minimal number of random delay elements were added to reduce the

correlation coefficient, since reducing area without compromising susceptibility is the main objective.

None of the attacks against the D3L or MTD3L designs were successful; the correlations for these

designs were very similar and quite low, showing weak correlation between the statistical models and

the actual behavior of the designs. Adding random delay elements is not necessary to further protect

J. Low Power Electron. Appl. 2013, 3 332

the D3L and MTD3L circuits against timing attacks, since this had minimal impact on reducing their

correlation coefficients. Again, the MTD3L design performed very similarly to the D3L design. These

results as well as the results given in Section 5.2 show that the MTD3L design offers similar security to

the D3L design while having much less overhead with regard to area and power consumption.

Table 11. Timing attack results.

Design Correlation coefficient Correct key guess success/failure

NCL 0.400 Success
D3L 0.337 Failure

MTD3L 0.366 Failure
Delayed D3L 0.326 Failure

Delayed MTD3L 0.367 Failure

6. Conclusions and Future Work

This paper develops MTD3L, an enhancement to the D3L technique presented in [41], by combining

D3L with MTNCL. Because the D3L technique suffered significant overhead with respect to area and

power consumption, a method of reducing overhead to make D3L more reasonable was necessary. The

resulting MTD3L method shows significant reductions in power consumption and area overhead, and

demonstrated the same strength as the D3L technique against power and timing analysis attacks. The

end result is that the MTD3L technique is a substantial improvement over the original D3L technique,

and is applicable for designs where security is much more important than power consumption or area,

since MTD3L still has significant overhead compared to the original synchronous design. Hence, more

work is required to reduce the overhead even further.

The majority of the overhead is from the increased complexity of the registration stage. This

complexity was also present in the original D3L technique. The overhead required to implement the

dual-spacer protocol, particularly in the filter registers, makes D3L and MTD3L registers much larger

and consume much more power than NCL or synchronous registers. Therefore, course-grained

pipelines will have much less overhead than fine-grained ones. Future work includes investigations of

possible ways to reduce this registration overhead, bringing the MTD3L implementation cost closer to

that of the NCL design.

Note that although complete layouts of the circuits were done, including place and route, all

simulations were performed on the transistor-level circuits. This was because post-parasitic extraction

simulations consumed all of the server memory and caused the system to crash. Since both power and

timing attacks are strongly correlated to circuit parasitics, the authors have been actively applying for

funding to fabricate these circuits so that hardware measurements can be made.

Conflicts of Interest

The authors declare no conflict of interest.

J. Low Power Electron. Appl. 2013, 3 333

References

1. Jaffe, J.; Kocher, P.; Jun, B. Differential Power Analysis. In Proceedings of 19th International

Advances in Cryptology Conference, Santa Barbara, CA, USA, 16-20 August 2009; pp. 388–397.

2. Brier, E.; Clavier, C.; Olivier, F. Correlation Power Analysis with a Leakage Model. In

Proceedings of Cryptographic Hardware and Embedded Systems (CHES) 2004, Cambridge, MA,

USA, 11-13 August 2004; pp. 16–29.

3. Blake, I.; Seroussi, G.; Smart, N.; Cassels, J.W.S. Advances in Elliptic Curve Cryptography;

Cambridge University Press: New York, NY, USA, 2005.

4. Messerges, T.; Dabbish, E.; Sloan, R. Investigations of Power Analysis Attacks on Smartcards. In

Proceedings of Workshop on Smartcard Technology, McCormick Place South Chicago, IL, USA,

10-11 May 1999; p. 17.

5. Coron, J. Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In

Proceedings of 1st International Workshop on Cryptographic Hardware and Embedded Systems,

Worcester, MA, USA, 12-13 August 1999; pp. 292–302.

6. Boer, B.; Lemke, K.; Wicke, G. A DPA Attack against the Modular Reduction within a CRT

Implementation of RSA. In Proceedings of 4th International Workshop on Cryptographic

Hardware and Embedded Systems, Redwood Shores, CA, USA, 13-15 August 2002; pp. 228–243.

7. Serner, S.; Colin, W. More Detail for a Combined Timing and Power Attack against

Implementations of RSA. In Proceedings of the Institute of Mathematics and its Applications

(IMA) International Conference, Cirencester, UK, 16-18 December 2003; pp. 245–263.

8. Ors, S.; Gurkaynak, F.; Oswald, E.; Preneel, B. Power-Analysis Attack on an ASIC AES

implementation. In Proceedings of International Conference on Information Technology: Coding

and Computing, The Orleans, NV, USA, 5-7 April 2004; pp. 546–552.

9. Boracchi, G. A Study on the Efficiency of Differential Power Analysis on AES S-Box; Technical

Report, Elettronica e Informazione, Politecnico di Milano: Milano, Italy, 2007.

10. Chari, S.; Jutla, C.; Rao, J.; Rohatgi, P. A Cautionary Note Regarding Evaluation of AES

Candidates on Smart Cards. In Proceedings of 2nd Advanced Encryption Standard Candidate

Conference, Rome, Italy, 22-23 March 1999; pp. 133–147.

11. Berna, O.; Elisabeth, O.; Bart, P. Power-Analysis Attacks on an FPGA—First Experimental

Results. In Proceedings of 5th International Workshop on Cryptographic Hardware and

Embedded Systems (CHES), Cologne, Germany, 8-10 September 2003; pp. 35–50.

12. Ors, S.; Gurkaynak, F.; Oswald, E.; Preneel, B. Power-Analysis Attack on an ASIC AES

Implementation. In Proceedings of International Conference on Information Technology: Coding

and Computing, Las Vegas, Nevada, USA, 5-7 April 2004; pp. 546–552.

13. Mace, F.; Standaert, F.; Quisquater, J.; Legat, J. A Design Methodology for Secured ICs Using

Dynamic Current Mode Logic. In Proceedings of 15th International Workshop on Integrated

Circuit and System Design, Power and Timing Modeling, Optimization and Simulation

(PATMOS), Leuven, Belgium, 21-23 September 2005; pp. 550–560.

14. Verbauwhede, I.; Tiri, K.; Hwang, D.; Schaumont, P. Circuits and Design Techniques for Secure

ICs Resistant to Sidechannel Attacks. In Proceedings of IEEE International Conference on

Integrated Circuit Design and Technology (ICICDT), Padova, Italy, 24-26 May 2006.

J. Low Power Electron. Appl. 2013, 3 334

15. Aigner, M.; Mangard, S.; Menicocci, R.; Olivieri, M.; Scotti, G.; Trifiletti, A. A Novel CMOS

Logic Style with Data Independent Power Consumption. In Proceedings of International

Symposium on Circuits and Systems, Kobe, Japan, 23-26 May 2005; pp. 1066–1069.

16. Lin, K.; Fan, S.; Yang, S.; Lo, C. Overcoming Glitches and Dissipation Timing Skews in Design

of DPA Resistant Cryptographic Hardware. In Proceedings of Design, Automation & Test in

Europe Conference & Exhibition, Nice, France, 16-20 April 2007; pp. 1265–1270.

17. Sundaresan, V.; Rammohan, S.; Vemuri, R. Power Invariant Secure IC Design Methodology

Using Reduced Complementary Dynamic and Differential Logic. In Proceedings of IFIP

International Conference on Very Large Scale Integration and System-on-Chip (VLSI-SoC),

Atlanta, USA, 15–17 October 2007; pp. 1–6.

18. Kulikowski, K.; Venkataraman, V.; Wang, Z.; Taubin, A. Power Balanced Gates Insensitive to

Routing Capacitance Mismatch. In Proceedings of Design, Automation & Test in Europe

Conference & Exhibition, Munich, Germany, 10-14 March 2008; pp. 1280–1285.

19. Wang, Y.; Leiwo, J.; Srikanthan, T.; Jianwen, L. An Efficient Algorithm for DPA-resistant RSA.

In Proceedings of IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Singapore,

4–7 December 2006; pp. 1659–1662.

20. Mesquita, D.; Techer, J.; Torres, L.; Sassatelli, G.; Cambon, G.; Robert, M.; Moraes, F. Current

Mask Generation—A Transistor Level Security Against DPA Attacks. In Proceedings of 18th

Symposium on Integrated Circuits and Systems Design, Florianolpolis, Brazil, 4–7 September

2005; pp. 115–120.

21. Haider, S.; Nazhandali, L. Utilizing Sub-threshold Technology for the Creation of Secure

Circuits. In Proceedings of International Symposium on Circuits and Systems (ISCAS), Seattle,

WA, USA, 18–21 May 2008; pp. 3182–3185.

22. Hasan, M. Power analysis attacks and algorithmic approaches to their countermeasures for koblitz

curve cryptosystems. IEEE Trans. Comput. 2001, 50, 1071–1083.

23. Corsonello, P.; Perri, S.; Margala, M. An Integrated Countermeasure against Differential Power

Analysis for Secure Smart-Cards. In Proceedings of International Symposium on Circuits and

Systems (ISCAS), Island of Kos, Greece, 21–24 May 2006; pp. 5611–5614.

24. Yang, S.; Wolf, W.; Vijaykrishnan, N.; Serpanos, D.; Xie, Y. Power Attack Resistant

Cryptosystem Design—A Dynamic Voltage and Frequency Switching Approach. In Proceedings

of Design, Automation & Test in Europe Conference & Exhibition, Munich, Germany, 7–11

March 2005; pp. 64–69.

25. Baddam, K.; Zwolinski, M. Evaluation of Dynamic Voltage and Frequency Scaling as a

Differential Power Analysis Countermeasure. In Proceedings of 20th International Conference on

VLSI Design held jointly with 6th International Conference on Embedded Systems, Bangalore,

India, 6–10 January 2007; pp. 854–862.

26. Ambrose, J.; Ragel, R.; Parameswaran, S. RIJID—Random Code Injection to Mask Power

Analysis based Side Channel Attacks. In Proceedings of Design Automation Conference (DAC),

Yokohama, Japan, 23–26 January 2007; pp. 489–492.

27. Rivain, M.; Dottax, E.; Prouff, E. Block Ciphers Implementations Provably Secure Against

Second Order Side Channel Analysis. In Proceedings of Fast Software Encryption, Lausanne,

Switzerland, 10-13 February 2008.

J. Low Power Electron. Appl. 2013, 3 335

28. Kocher, P.C. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other

Systems. In Proceedings of 16th International Advances in Cryptology Conference, Santa

Barbara, CA, USA, 20-24 August 2006; pp. 388–397.

29. Chevallier-Mames, B.; Ciet, M.; Joye, M. Low-cost solutions for preventing simple side-channel

analysis—Side-channel atomicity. IEEE Trans. Comput. 2004, 53, 760–768.

30. Page, D.; Smart, N. Parallel cryptographic arithmetic using a redundant montgomery

representation. IEEE Trans. Comput. 2004, 53, 1474–1482.

31. Hodjat, A.; Hwang, D.; Verbauwhede, I. A Scalable and High Performance Elliptic Curve

Processor with Resistance to Timing Attacks. In Proceedings of International Conference on

Information Technology: Coding and Computing, Las Vegas, USA, 4–6 April 2005; pp. 538–543.

32. Sokolov, D.; Murphy, J.; Bystrov, A.; Yakovlev, A. Design and analysis of dual-rail circuits of

security applications. IEEE Trans. Comput. 2005, 54, 449–460.

33. Bouesse, G.; Renaudin, M.; Dumont, S.; Germain, F. DPA on Quasi Delay Insensitive

Asynchronous Circuits— Formalization and Improvement. In Proceedings of Design, Automation

& Test in Europe Conference & Exhibition, Munich, Germany, 7–11 March 2005; pp. 424–429.

34. Verbauwhede, I.; Tiri, K.; Hwang, D.; Schaumont, P. Circuits and Design Techniques for Secure

ICs Resistant to Sidechannel Attacks. In Proceedings of IEEE International Conference on

Integrated Circuit Design and Technology (ICICDT), Padova, Italy, 24-26 May 2006.

35. Shang, D.; Burns, F.; Bystrov, A.; Koelmans, A.; Sokolov, D.; Yakovlev, A. High-security

asynchronous circuit implementation of AES. IEE Proc. Comput. Digit. Tech. 2006, 153, 71–77.

36. Kulikowski, K.; Venkataraman, V.; Wang, Z.; Taubin, A.; Karpovsky, M. Asynchronous

Balanced Gates Tolerant to Interconnect Variability. In Proceedings of International Symposium

on Circuits and Systems (ISCAS), Seattle, WA, USA, 18–21 May 2008; pp. 3190–3193.

37. Baddam, K.; Zwolinski, M. Path switching: A technique to tolerate dual rail routing imbalances.

Des. Autom. Embed. Syst. 2008, 12, 207-220.

38. Fant, K.; Brandt, S. NULL Convention Logic™: A Complete and Consistent Logic for

Asynchronous Digital Circuit Synthesis. In Proceedings of Application Specific Systems,

Architectures and Processors, Chicago, IL, USA, 19-23 August 1996; pp. 261–273.

39. Di, J.; Yang, F. D3L—A Framework on Fighting Against Non-Invasive Attacks to Integrated

Circuits for Security Applications. In Proceedings of 3rd IASTED International Conference

Circuits, Signals, and Systems, Marina del Rey, CA, USA, 24–26 October 2005; pp. 73–78.

40. Wu, J.; Kim, Y.; Choi, M. Low-Power Side-Channel Attack-Resistant Asynchronous S-Box

Design for AES Cryptosystems. In Proceedings of Great Lakes Symposium on VLSI (GLSVLSI),

Providence, RI, USA, 16–18 May 2010; pp. 459–464.

41. Cilio, W.; Di, J.; Smith, S.C.; Thompson, D.R. Mitigating Power- and Timing-Based

Side-Channel Attacks Using Dual-Spacer Dual-Rail Delay-Insensitive Asynchronous Logic.

Microelectron. J. 2013; 44, 258–269.

42. Di, J.; Smith, S.C. Ultra-Low Power Multi-Threshold Asynchronous Circuit Design. U.S. Patent:

7,977,972 B2, 12 July 2011.

43. Smith, S.C.; Di, J. Designing Asynchronous Circuits Using NULL Convention Logic (NCL);

Synthesis Lectures on Digital Circuits and Systems, Morgan & Claypool: Oak View Drive San

Rafael, CA, USA, July 2009.

J. Low Power Electron. Appl. 2013, 3 336

44. Muller, D.E. Asynchronous Logics and Application to Information Processing. In Switching Theory

in Space Technology; Stanford University Press: St. Redwood, CA, USA, 1963; pp. 289–297.

45. Kondratyev, A.; Lwin, K. Design of asynchronous circuits using synchronous CAD tools. J. IEEE

Des. Test 2002, 19, 107–117.

46. National Institute of Standards and Technology, Federal Information Processing Standard 197, the

Advanced Encryption Standard (AES). Available online: http://csrc.nist.gov/publications/

fips/fips197/fips-197.pdf (accessed on 20 October 2013).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

