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Abstract: In this paper, we demonstrate how a network of dendrites earsed to build the
state decoding block of a wordspotter similar to a HiddenkdaiModel (HMM) classifier
structure. We present simulation and experimental data fingle line dendrite and also
experimental results for a dendrite-based classifier strecThis work builds on previously
demonstrated building blocks of a neural network: the ckinsynapses and dendrites
using CMOS circuits. These structures can be used for spaedipattern recognition.
The computational efficiency of such a system-i0 MMACs/uW as compared to Digital
Systems which perform0 MMACs/mW.
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1. Dendrites for Wordspotting

Dendrites are highly branched tree like structures thaheonneuron’s synapses to the soma. They
were previously believed to act just like wires and havéeliit no computational value. However, studies
show that dendrites are computational subunits that parémme inherent processing that contributes to
overall neural computatiorif6]. It is thus interesting to explore computational modek ttan be built
using dendrites as a unit. It has been shown that dendritgsezréorm computations similar to an HMM
branch B,7] which can be used for wordspotting. Wordspotting is theed&gbn of small set of words in
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unconstrained speec8][ The interlink between Neuroscience, CMOS transistotstalMs is shown
in Figurela.

Figure 1. (a) The Venn Diagram depicts the interlinks between the fiefdsearobiology,
HMM structures and CMOS transistors. We have demonstratdgbe past how we can
build reconfigurable dendrites using programmable anaolgrtiques. We have also shown
how such a dendritic network can be used to build an HMM d@ssivhich is typically
used for speech recognition systems), Block Diagram for a Speech/Pattern Recognition
system with respect to biology. In a typical speech recogmgystem, we have an auditory
front-end processing block, a signal to symbol conversionkband a state decoding block
for classification. We have implemented the state decodimcklusing dendritic branches,
WTA and supporting circuitry for wordspotting. It is the sHfication stage before which
symbols have been generated for a word.
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A typical Wordspotting system has at least three stagesufeegeneration, Probability Generation
(Signal to symbol conversion) and the State Decoding (leaBon) stage, which determines the word
detected. Figuréb shows the general block diagram for a classification sysketime specific example
of speech recognizer, the sensor would be a microphone. stagsfirst stage has interface circuitry to
acquire the signal from the microphone as well as initiahalgorocessing. This processing may include
signal conditioning and filtering, frequency decomposit@s well as signal enhancement.

Figure 2 shows the FPAA as a prototyping device for audio signal msiog applications. Our
approach to audio processing includes a range of signaépsoty algorithms, that fit into the pathway
between speech production (source) and perception (huaranigese algorithms are implemented by
non-linear processing of sub-banded speech signals féicappns such as noise suppression or hearing
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compensation, by proper choice of the non-linearity. Initaial the outputs of the non-linear processor
can be taken at each sub-band, for speech detection insteadoonbining to generate a perceptible
signal for the human ear. Using this general framework, &waof non-linear processing can result
in applications in speech classifiers and hearing aid bloddsre, we focus on the application of
speech enhancement by noise-suppression, targeting sosgdnition in noisy environments. Detailed
experimental results for a noise suppression applicatediacussed ird], where the speech-enhanced
sub-band signals are recombined together. For a speechnizeqg we use the enhanced sub-band
signals directly to extract basic auditory features.

Figure 2. High level overview: The FPAA can be used for a variety of augiiocessing

applications using the signal framework described. Thet fitage is a frequency
decomposition stage followed by a non-linear processingkl The non-linear circuit can
be used to implement the SNR estimator and a soft-threstith sets the gain in each
sub-band. The gain control is implemented using a multiplieransient results from a
MATLAB simulation of a 4 channel system is plotted. The nosgpeech is gray, while the
processed speech is in black.
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The second stage of the speech classifier consists of thalplibpgeneration stage that detects basic
auditory features and supplies input probabilities to théesdecoding stage. These enhanced sub-band
signals undergo first-level information refinement in thetyability generation stage, resulting in a sparse
“symbol” or “event” representation. This stage maybe impdated as an Artificial Neural network
(ANN), Gaussian Mixture model (GMM) or a Vector Matrix Myptier (VMM) + WTA classifier. A
typical 2-layer NN has synaptic inputs represented by the VMM and ipea@id modeling the soma
of a point-neuron. Alternatively, we can have synaptic catapon followed by a competitive network
modeled by the WTA.
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We show in [LQ] that a single-stage VMM + WTA classifier can be used as a usal@approximator,
in contrast to an ANN implementation which requires two Igy® implement a non-linear decision
boundary. Figur@ shows the comparison in circuit complexity of a two-layerMiEnd a VMM + WTA
classifier. Al-layer NN requires the computation of a Vector-Matrix Mplyi (VMM) + neuron. The
addition of various weighted inputs is achieved throughcKivoff's Current Law (KCL) at the soma
node, adding all currents. The computation at the neurovemed by the choice of complexity in
the model. Usually, for moderate size of the network, theapyic computation dominates the neuron
computation. The sigmoidal threshold block for the somdinearity in a NN can be implemented in
voltage mode by converting the current output from the VMNbimoltage and using a voltage-mode
threshold block, or in current mode with ancsinh(.) block. Either of these implementations require
more transistors per neuron compared to a WTA, which regaisdew ag transistors per neuron.

Figure 3. Basic auditory feature extraction and probability generastage: The speech
input undergoes frequency decomposition or enhancemsurtire in sub-band signals. The
probability generation block can be implemented using aNAGMM or the VMM + WTA
classifier. The circuit complexity is halved by using a VMM +TW classifier.
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The VMM + WTA classifier topology has the advantage of beirghhy dense and low power. Each
multiply is performed by one single transistor that stotes weight as well, and each WTA unit has
only 2 transistors, providing very high circuit density. <fam analog VMMs have been shown to be
1000x more power efficient than commercial digital implementasidll]. The non-volatile weights
for the multiplier can be programmed allowing flexibilityh& transistors performing multiplication are
biased in deep sub-threshold regime of operation, reguitimigh computing efficiency. We combine
these advantages of VMMs with the reconfigurability offeldFPAA platforms to develop simple
classifier structures.

In this paper, we demonstrate the state decoding stage ai@esiy ES/NO wordspotter. We have
implemented an HMM classifier using bio-physically based@3/dendrites for state decoding. For all
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experimental results in this paper, it is assumed that we Hav outputs of the feature and probability
generation stages.

We shall describe an HMM classifier model and its programm&blimplementation using CMOS
dendrites. The first part of this paper describes the siityilbletween a single dendritic branch and
HMM branch, in addition to exemplifying its usage to compatenetric for classification. An HMM
classifier is modeled comprising of these dendritic brasch&Vinner-Take-All (WTA) circuit and other
supporting circuitry. Subsequently, the computationfitieincy of this implementation in comparison
to biological and digital systems is discussed. Intriglynthis research substantiates the propensity
of computational power that biological dendrites encomspallowing speculation of several interesting
possibilities and impacts on neuroscience. It is in somesveayirtual visit into the dendritic tree as
was suggested by Segewal. [12]. This paper further explores the interlinks between nbigiogy,
Hidden Markov Models and CMOS transistors based on whichavepostulate that a large group of
cortical cells function in a similar fashion as an HMM netw4,7]. Section Il describes the similarities
between a dendrite branch and an HMM branch. We discussttliasties between a simulated HMM
branch and experimental results using a CMOS dendrite bralmcSection Ill, we discuss the single
CMOS dendrite in detail. We will present experimental restdr the line for different parameters. We
also discuss the simulation model that we have developethasmilar results seen. In section IV, we
discuss the Analog HMM classifier implementation. We disdhe experimental results for a YES/NO
wordspotter for different sequences. In section V, we disdhe tools that made the implementation
of this classifier structure possible. In section VI, we wiicuss the computational efficiency of the
system as compared to digital and biological systems. Ifinlaésection we will summarize the results
and discuss the future possibilities.

2. Dendritic Computation and the HMM Branch

For a typical HMM used for speech recognition, the update izijiven by:

¢iln] = bi[n]((1 — a;)giln — 1] + a;1¢i-1[n — 1]) (1)

The probability distributionb;[n], represents the estimate of a symbol (short segment of
speech/phoneme) produced by a state framen. ¢;[n| represents the likelihood that a particular
state, was the end-state in a path of states that modelsghesignals 13] as shown in Equatiorl). a;
is the transition probability from one state to another. by@cal speech recognition model, the states
would be phonemes/words and the output would representutii® aignal produced by the subject.
The features of the audio signal tend to vary for differerjects. The goal of this classifier model
is to correctly classify a sequence of symbols with someraolee. For an HMM state machine for
speech recognition using CMOS dendrites, the inpgits can be modeled as Gaussian inputs as shown
in Figure4a, which is typical forb;[n| for speech signals with an exponential rise-time and falket
In Figure 4b, the likelihood outputs for each state shows a very a shagaydand has a very high
dynamic range.



J. Low Power Electron. Appl. 2013 3 78

Figure 4. Simulation results for an HMM state machine based on a Madhieal HMM
model built using MATLAB @) Input probability distribution of different symbols vang
with time; (b) Likelihood outputs of all the states on a logarithmic sc#t Normalized
likelihood outputs of all the states. The outputs were ndized by multiplying them with
an exponential function of the foraxp(n /7).
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Figure 5. CMOS implementation for a dendritic branch and experimengsults.
(a) Dendrite with increasing diameter as typically seen inapyidal cells. We refer this
increasing diameter as “taperh)(Co-relation between basic left-to-right HMM branch and
a CMOS dendrite branch with “taperg)(Resulting IC implementation using programmable
analog floating-gate pFETs. For the CMOS dendrite the “taigamodeled by increasing
the axial conductance from left-to-righty)(Experimental results showing the outputs from
each tap of the CMOS dendrite. These outputs are equivaldéiketihood outputs from the
HMM states. The output doesn’t decay completely but attainew dc level. Note that we
did not do normalization explicitly for the outputs of thendieite as the decay is not as sharp
as seen in HMMs. All taps are set initially to have the same brame voltagé/,,,..,..
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To limit this range, we normalize this output with an expadierfunction. It can be observed that
the normalized likelihood is similar to an EPSP signal withasymmetric rise and fall time. For a
singlen-stage dendritic line with “taper”, if we applied sequehE&®SP inputs at subsequent nodes, the
output observed at the end of the line is as shown in Figdré\ “taper” signifies the changing diameter
through the length of a dendrite. It represents the normdliikelihood outputs of an HMM classifier.
The Gaussian inputs for the HMM model can be modeled usingmiscurrents for a dendrite which
is also typical for biological system$(¢) is thus represented as the synaptic current into each node.
The output voltage of each tap of the dendrite representgkignood ¢,(¢) of an HMM state. This can
be linearly-encoded or log-encoded depending on the regfioperation. For the dendritic system, no
normalization is done as the decay is not as sharp as seenltMM branch for a wide dynamic range.

For a continuous-time version of Equatidl),(the update rule is given by,

¢i(t) = i) ((1 = @)@t = 7) + ai1¢ia(t — 7)) @)

where,b;(t) is the input probability of symbol in state and ¢;(¢) is the likelihood of a stateé at time

t; 7 is the time index between two consecutive time indexesaaiglthe transition probability between
adjacent states. Even though the state sequence is imptiedzannot assume a definitive observation
of transition between the states. This is the reason whyatled Hidden Markov Model although
the state sequence has a Markovian structidg [Continuous-time HMMs can be represented as a
continuous-time wave-propagating PDE as given in Equg8pfi5|.

dp (z,t) 1 dp (,t)
—1 t A—"2 =0 3
AV AR ®)
~ d wave
z%sgent decay propagation

term

where A is the distance between two state nodes. This can be compardlog diffuser circuits. Also,
an HMM branch and a dendrite branch have similar looking lmgies and similar wave-propagating
properties. The HMM state machine used, as shown in Figares a left-to-right model. Studies have
shown that a biological dendrite also does not have a condiameter 16]. Its diameter at the distal
end is smaller as compared to the proximal end as shown imd%gub [L7]. Thus, for a similar CMOS
dendritic line that is uni-directional, we would expect theéal conductances of the line to increase from
left-to-right as shown in FigurBc. This is the case of a dendrite with “taper”. Such a topolegsyures
that the current flow is uni-directional. This also favorsncidence detection in the dendrite. We can
compare the continuous-time HMM to an RC delay line with &&pFor this let us analyze the behavior
of an RC delay line with and without taper.

2.1. RC Delay Line without Taper

The classical RC delay line is reviewed in Mead’s t&§][ Figure6 shows the topology. Kirchhoff’s
Current Law (KCL) can be used to derive a differential equrafor this circuit, given by Equatior,
whereG is conductance.
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Figure 6. RC delay line representing a dendrite. The Rs represenixibkrasistances, the
Gs represent the leakage conductances and C is the membpmawtance.

_ v dVi(t) [Vi(t)—Vit1(t)]
Ii(t)—ci7+%(t)Gi+Tfl @)
4 V) -Viaa (1)

Assuming the horizontal resistances are equal as given uatitn 6) allows one to simplify
Equation ) to Equation 6):
Ri=Ri1 =R, (5)
dv;
I (t) = ;%Y L v (1) G,
+ R% 2Vi (1) = Vig1 (1) = Vi1 (t)]
Assuming there are many nodes allows one to perform theAdoilpchange of notation from discrete
nodes to continuous nodes:

(6)

Vi(t) = V(z,1) (7)
Virr (1) = V(z + A, 1) (8)
Vit (1) =V (2 — Ay, t) 9)

Assuming thatA, represents a “position delta” one may use the Taylor seoedescribe the
continuous nodes in terms of,, Equations 10) and (L1).

v (z,t) N o d*V (z,1)

1
A = A — (A 1
B av(xz,t) 1 o d*V (1)

Substituting Equationsl(Q) and (1) into Equation §) and simplifying, yields Equationl@), the
generalized PDE describing the RC delay line diffusor.

A ) PV (2,1)
I (t) By = RoCi 4 RaGiVi (1) — (D) —— 57—
If one assumes no input current at the top of each npde(, then one can put the diffusor circuit

into a form similar to the continuous time HMM equation asegivn Equation 13).

(12)

av (z,t AV (x,t
R,C; (z,1) + R,G;V (x,t) — (AQC)2 7(:6’ ) =0 (13)
dt —_—— dx?
%/_/ N -~ J
feten ot i fsien

The impulse response of such a system is a Gaussian decayiagioh over time. In this case,
diffusion is the dominant behavior of the system.
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2.2. RC Delay Line with Taper

Assuming that HMM will always propagate to the next state trate is no probability that it will
remain in its current state leads to the assumption as givEquation {4) which can be substituted in
Equation B):

a(x)=1 (14)

For a dendrite circuit with taper, axial conductances arel MQual and increase towards the right.
Using this assumption, Equatiof) (simplifies to EquationX5):
dv; (t) 1 Vioi (t)
I; = Um0 i iT 5| T 1
(t)=C 7 + Vi (t) [G +RZ} R, (15)
Substituting the Taylor series expansions of Equati@0s4nd (L1) into the above we get:

L(t) = G0 4V () |G+ 7

R;
V (z,t)
’ (16)
1 dV (z,t)
R o d§ d?v
(A, Ve
Assuming that

Az < 1 (17)

we can neglect higher order terms of the Taylor series.
(A,)°~0 (18)

We can see in Equatiod ) that there is still some diffusion that can be seen in the lihis however

negligible as the wave propagation term is more dominantafRenging terms and assuming no input
current we get:

dV (x,t dV (x,t
0= RZCZ-M +V (2, t) [GiR; — 1] + Am¥ (19)
- X
———— g
state fg:gly wave )
element propagation

Tablel closely examines the similarities between a RC delay limtaanHMM PDE.

Table 1. Comparing HMM PDE and RC Delay Line Terms w/Assumptions.

Element description HMM PDE RC delay line
Recursion variable o (x,t) V (z,t)
State element coefficient T R;C;
Decay term coefficient b(; 51 G;R; — 1
Wave propagation/diffusion term K 22z K Wied)

ox dx
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3. Single Line CMOS Dendrite

Since dendrites have computational significance, it is@sténg to explore computational models that
can be built using dendrites or a network of dendrites. O syplication is classification in speech
recognition. We have already discussed the similaritiésden an HMM branch and a dendritic branch.
To test this hypotheses, we implemented a single dendraindh with spatially temporal synaptic inputs.
We compared a single CMOS dendritic branch implemented @tanfigurable analog platform and
a MATLAB Simulink simulation model based on the device plegsof CMOS transistors. Figuré
shows a complete overview of how CMOS dendrites are modelédiso the experimental results for a
6-compartment CMOS dendrite. The inputs to the dendritesyameaptic currents. In biological systems,
synaptic inputs can be excitatory and inhibitory in naturmwever, in this paper we assume that we
have excitatory synapses as a majority of contacts on a pgahroell are excitatory in nature. As
discussed before the dendrite does not have a constanttdiaieis implies that for a CMOS dendrite,
the conductance of the dendrite increases towards the semfaom left to right [L7]. The inputs will
also decrease in amplitude as conductance increases.nguges that an input closer to the soma does
not have a larger effect than inputs farther away. This egis decreasing synaptic strengths of inputs
down the dendritic line. This has been observed previoushiological dendrites1[6]. Thus, we also
varied the synaptic strengths of inputs in our experimaMsimplemented the single dendritic line both
as a CMOS circuit model and a MATLAB Simulink simulation madé&/e found that the comparison of
our experimental and simulation results were fairly cloBas is demonstrated in FiguBe

Figure 7. System overview for a dendrite branch) Detailed diagram for a single dendritic
line which is equivalent to an HMM branchh) The representation of input voltage on the
source of the transistor representing the input synapseshé asymmetric triangular input
voltagesV,,, on the source of the transistor representing the input sgsap,,,, the input
synapse currents into each of the different nodes is propaitto V;,,,,; (d) V..., the output
of FG-OTA which has a gain of approximately; (e) V.., the output voltage at each node.
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Figure 8. Simulation Datavs. experimental data comparison. The dotted lines depict the
simulation data and the solid lines are the experimental. delte parameters for simulation
data areVc.r = 0.5V, Vi = 0.5V, k = 0.84, [y = 0.1fA, C = 1.3pF, B, = 1V,

Vg =24V,
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3.1. Inputs to the PFET Source

The input probabilitie$;(¢) are represented as log-compressed voltage signal at tlokeitéemode.
To generate EPSP input currents into each of the dendrities\onve input an asymmetric triangular
wave voltage at the source of the pFET FG-FETs. This gersetgpecal EPSP signals, which have a
faster rising time and a slower fall time. By varying the midigghe of the triangular waves we were able
to control the input current into each of the nodes of the déendThis can be seen in Figuile. The
current of a transistor is exponentially proportional gosburce voltag&s.

[Syn _ [OeH(Vs*VG)/UT (e*(VS*VD)/UT — 1) (20)

where,Vs = V. This enables us to generate EPSP-like inputs for the CM@@8rde. All input
representations shown thus are voltage inputs on the sotitice transistor, that acts as synapse at every
node of the dendrite.
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3.2. Sngle Line Dendrite Results

We implemented a single 6-compartment dendrite. Each campat consisted of 3 FG pFETS
for the axial conductance, the leakage conductance andyttaptc input respectively. We present
experimental results for the same. To test the behaviormdmates for a typical speech model, we varied
three parameters namely: “taper”, delay between inputstaa@&PSP strengths of the synaptic inputs.
In terms of “taper”, two approaches were tested. One withiater” and the second with increasing
“taper”. Results are shown in FiguBa. We observed that by using “taper” we could ensure that the
input current would transmit more in one direction of the di@ic cable. To achieve this we increased
the axial conductance of the cable down the line, such thatrman current tends to flow to the end
of the cable. At every node of the dendrites we input EPSRentsrin a sequence. This is similar to a
speech processing model, where all the phonemes/worda aregquence and based on the sequence
we classify the word/phoneme. We then varied the delay ketviiee input EPSP signals as seen in
Figure9b. It was observed that as the delay between the inputs sesethe amplitude of the output
decreases. This implies that as outputs are spaced fapther tnere is less coincidence detection. The
third parameter varied was the strength of the EPSP inpuits the difference in EPSP strengths of the
first node and the last node increasing for subsequent @atsen in Figur8c. The EPSP strengths near
the distal end are larger than the EPSP strengths near thienalaend. Evidence for the same has been
shown in biology 16]. It was observed that as the difference in amplitude waessed, the amplitude
of the output reduced. The study of the variation of thesapaters showed the robustness that such
a system would demonstrate in terms of speech signals. Tieeedice in delay, models the different
time delays between voice signals when a word is spoken Brélift subjects. The difference in EPSP
strengths ensures that the impact of all the phonemes onutpatas similar for detection of a word and
not dominated by just the last stage.

In Figure10, we have studied the trends that one would observe colidgtior different parameters.
The output metric here is the difference of amplitude of tagte when all inputs are present and when
only the last input is present. We observed that as we inedetige timing difference between various
inputs, the final metric of the line decreased as seen in Eiily. We simulated the dendritic branch to
observe the effects a wide range of time delays betweensgsughown in FigurgOc. We observed that
the output metric decreased as we increased the delay bethweéputs for a line. And for the cases
where we reversed the sequence, the amplitude was verytolaseo. This clearly demonstrates that if
the sequence of the inputs is not in succession, there wilbb&ord detection. Also, the output metric
decreases as the delay between the inputs increases.
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Figure 9. Experimental results for a single branch 6-tap dendritedftierent parameters.
The three main parameters that govern the output of a dena®, namely the taper of
the line, the spatial-temporal characteristics of the pyinanputs and the strength of the
synaptic inputs. All results are from the last tap of the d#ad (@) Metric changed is the
taper of the dendrite. For subsequent figures, the tapecrieased from no taper to a larger
taper. The diameter of the dendrite increases down the limehws achieved by increasing
the conductances of the axial transistors from left to right Metric changed is the delay
between EPSP inputs into each of the taps of the dendriteheltinst case we have zero
time unit delay, 10 time units deldg ms) for second and 20 time units del&ym.s)for the
third diagram in the sequence. One time unit.2ms; (c) Metric changes is the difference
between the EPSP strengths of the input signals. In the &isst,¢he difference is 10 mV,
50 mV for the second and 100 mV for the third case. As can beisgbe graph we can see
decreasing amplitude as the difference in EPSP strengthesaises
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Figure 10. Experimental results, simulation results and trends oeskfor a single line
dendrite. We varied the input sequence with respect to the tifference between signals.
The output metric in this case is the difference between titput of the dendrite when
all signals were present and output of the dendrite when th@ylast input was present.
(a) Diagram depicting the decreasing EPSP inputs into a si@M©S dendrite line; kf)
Experimental data showing change in peak to peak amplitada tlendrite as the EPSP
inputs into each of the nodes decrease down the lp)eCifange in amplitude of the output
with respect to increasing difference in the EPSP amplguste we progress from left to
right down the line.t4; implies the time delay between inputs. As we increase the tim
delay the output metric reduces. Negatiyg,; implies a reversed sequence of inputs, where
the output metric is zerod] Change in amplitude of the output with respect to incraasin
difference in the taper of the dendrite. In this experiméme, diameter of the dendrite was
increased as we progress from left to right down the lipg, implies the time delay between
inputs. As we increase the time delay the output metric resludNegative ;;; implies a
reversed sequence of inputs, where the output metric is Zé® study of these parameters
showed the robustness that such a system would demonsttatens of speech signals. The
difference in delay, models the different time delays beiwveoice signals when a word is
spoken by different people. The difference in EPSP strengtisures that the impact of all
the phonemes on the output is similar for detection of a wadireot dominated by just the
last stage.
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4. Analog Classifier for Word-Spotting

We will now discuss the complete classifier structure. Weehbwilt a simple YES/NO HMM
classifier using dendrite branches, a Winner-Take-All (W&cuit and supporting circuitry. We will
simplify the modeling of a group of neuron somas and the i inter-neurons as a basic WTA block,
with one winning element. We can consider the winning WTApoit when it transitions to a winning
response as an equivalent of an output event (or actionfuaieio build this network, we made a model
of a dendrite, initially a single piece of cable with brandins, where the conductance of the line gets
larger towards the soma end, and the inputs are excitatagps$ig inputs. For classification, we focus on
the ability for dendritic trees to be able to compute usefatnas of confidence of a particular symbol
occurring at a particular time. This confidence metric wikt only be a metric of the strength of the
inputs, but also will capture the coincidence of the timifighe inputs. We would expect to get a higher
metric if thelst, 2nd, and3rd, inputs arrived in sequence, whereas we would expect a loegniic for
the 3rd, 2nd, and1st inputs arrived in sequence. This type of metric buildingyigi¢al of HMM type
networks. Simple example being if the word “Y” “E” “S” were teted in a sequence as opposed to “S”
“E” “Y”. This is demonstrated by the simulation results a®win in Figurel0, where when the input
sequence is reversed the output metric is zero. The outputrisedefined as the difference in output of
last node when all inputs are present and when only the Ipst ia present.

Figure 11. (a) The classifier structure with the normalization factor tplied,
f(t) = €!/; (b) The classifier structure after normalization. This figueendnstrates that the
normalization is inherent in the systeng) Detailed structure of the HMM classifier using
reconfigurable floating-gate devices. There are three niteactares here : The dendrite
branches, the Winner-Take-All circuit and the supportingwtry. The dendrite branch
consists of a 5-stage dendrite for both the branches ragnegehe words YES and NO; and
a single stage dendrite to set the the threshold currentd@hérites have synaptic inputs at
each node, which represent the phonemes of the word to betelgt&Vhen the output of a
dendrite exceeds the threshold limé., if a YES/NO is detected, the threshold loses. The
supporting circuitry consists of a Vector-Matrix Multiph (VMM) building block which acts
as a reset after a word is spottdd]
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The network we built has two desired winning symbols, “YESBH44NO”. Each symbol is represented
by one or more states that indicate if a valid metric has bé&essified. Only the winning states would
be seen as useful outputs. The useful outputs feed back togbedendrite lines, and in effect reset
the metric computations. This is implemented using a Veltatrix-Multiplier block [11]. The system
block diagram is as shown in Figufd. Each of the dendritic lines for the desired winning symbols
has 5 states (dendritic compartments), where the inputsetdéndritic line represent typical excitatory
synaptic inputs.

4.1. Synaptic Inputs Model Symbol Probability

In speech/pattern recognition, signal statistics/festlare the inputs to the HMM state decoder.
It generates the probability of the occurrence of any of theesh symbols. These signals when
grouped, generate a larger set of symbols like phonemes mswb3]. We assume we have these
input probabilities to begin with, as inputs to the classifigucture. We have taken inspiration from
Lazzaro’s Analog wordspotter for classification. Howeves,use a different normalization technique to
eliminate the decay as shown in Fig4l® We can draw comparisons for such a system to a biological
dendrite with synaptic inputs. We have modeled the inputaiyas excitatory synaptic currents. The
synaptic current is given by :

Ty o te "t tpear (21)

For a continuous cable,

dV(x,t)
dt

d*V (x,t)

dz?

+ Vi(x,t) = X(z)

T

Considering thatzp(t/7) is the normalizing factor we have,

V(Z’, t) — ‘/'1(1_’ t)et/’r (23)
where, )
d‘/l 2 d ‘/1 —t/T
T% + %(I‘, t) =\ (.I‘) dl& + R(.I‘)[Z'npute t/ (24)

Vi(z,t) is the system output before normalization. From Equatiatsgnd @4), we see that the input is
similar to a synaptic current. Thus the inputs for the cfemsiising dendrites can be modeled as synaptic
currents. This is represented in Figurga and Figurellb. The derivation has two implications. First,
we can use EPSP inputs to represent the input probabiltrggifonemes. Second the system inherently
normalizes the outputs. In Figule, the input to dendrite-1 signifies the phonemes of the wordSY.
The inputs used were EPSP inputs that are similar to prabaliiputs b;(¢) that in a typical HMM
classification structure would be generated by a probglektimation block. There is no input into
dendrite-2 which signifies that phonemes of “NO” were noedttd. The threshold dendrite, dendrite-3
sets the threshold level. The WTA circuit determines thenemamongst the three dendritic lines. It
is observed that when “YES” is detected, dendrite-1 winds Rlappens when coincidence detection is
observed at the output of dendrite-1. The winning line sigaithe word that is classified. It is only when
all the inputs are in sequence and cross the given threshalidhte dendrite line wins. In Figude we
demonstrate the classification of the word “YES”. The feettlfeom the WTA acts as a reset function
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for the dendrites, as after a word has been classified thghbliek dendrite wins again. In Figuis, the
classification of words “YES” and “NO” in a sequence is dentmated. In Figurel4 we show the effect

of timing and variation of EPSP strengths for input sequsnce

Input 1 (mV)

Vout 1 (V)

Input 2 (mV)

Vout 2(V)

Figure 12. Experimental results for the YES/NO classifier system. Tsults shown are
for the case when a YES is detected by the sys@nSynaptic inputs at the nodes of the
first dendrite and the line output for the first dendrite. Heeeassume we have the input
probability estimate for the phonemes (symbols) for thedwES; (©) Corresponding WTA
output for first dendrite. A low value signifies that it is wing; (¢) The synaptic input
and output for the second dendritd) Corresponding WTA output for the second dendrite;
(e) The line output for the third dendritef) (Corresponding WTA output of the third dendrite.
The third dendrite acts as a threshold parameter. The ardplif the word detected on a

particular line needs to be higher than the threshold to win.
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Figure 13. Experimental results for the classifier system when a sexueh words is
detected. ) First dendrite wins when the word YES is detected and therskdendrite
wins when the word NO is detected. The WTA inputs and outprgsshown; ) Second
dendrite wins when the word NO is detected and first dendiiits when YES in detected.
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The winning output of the WTA is akin to an action potential térms of classification too, the WTA
output signifies if a “word” has been detected. Our result®ltemonstrated that, such a system looks
similar to an HMM state machine for a word/pattern. We cartydage from these experimental results
that there are some similarities in computation done by HMiworks and a network of dendrites. The
results are shown in Figuti for a single word and for continuous detection of words inuredl3. We
have demonstrated a biological model, built using circtingd is much closer than the implementation
of any HMM network to date. Thus we have shown that an HMM dfesss possible using dendrites,
and we have made a clearly neuromorphic connection to catipaf a computation more rich than
previously expected by dendritic structures.

5. Reconfigurable Platform to Build Neuromorphic Circuits

In the sections below, we will give a brief overview of the ekmental setup used for the study.
We used the FPAA, RASP.8a for all experimental data and the software tool MATLAB Simniland
sim?2spice script to build the dendrite simulation block.

5.1. FPAA Review

All the data presented in this paper comes from a reconfiggirabrdware platform. The
Field-Programmable Analog Array (FPAA) is a mixed-signaliGS chip which allows analog
components to be connected together in an arbitrary fastiteconfigurable Analog Signal Processor
(RASP) was one of the first large scale FPAAs. It allowed usuitdlbmultiple complex circuits. The
specific chip used from the family of RASP chips for this reskavork is RASP 2.8a19. Itis a
powerful and reconfigurable analog computing platform taat be used to build neuromorphic models.
It consists of thirty-two Computational Analog Blocks (C8B The CAB consists of groups of analog
elements which include nFETs, pFETs, Operational Trardectance Amplifiers, capacitors, Gilbert
multipliers, among others. These act as the computatideaients which together can form complex
sub-circuits that can be used to build analog computatisystems. The interconnection of the CAB
components is achieved by the switch matrix. It essenta@lhsists of floating-gate (FG) pFETs. These
50,000 programmable elements can be used not only as programnmabtednnects for routing but
also as adaptive computational elements. The switch maltiaxs for both local routing between
CAB elements as well as global routing. Last but not the |eastas the programmer block, which
selectively accesses a floating-gate device on the chiprmadgh tunneling and injection tune it on, off
or operational in between. This is not only an efficient nogtscheme but can enable implementation of
dense systems.

5.2. Dendrite on the Routing Fabric

We used floating gate pFET switches to build the network ofldess. This would also enable us
to build denser networks as we scale the system. In our dusgestem implementation for a single
dendrite, we implemented 5 dendritic compartments, withesompartment consisting of 3 floating
gate transistors. The most exciting aspect of implememterglritic circuits using floating-gates is, that
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we can do so in a very compact manner. As stated above, thehswitrix of the RASP 2.8a FPAA is
completely made up of about 50,000 floating-gate elemergs iuge arrays of dendrites can be made
using the switch matrix. Its inherent function is to intemoect components, which is similar to the
function of dendrites that are used to transmit signals fom structure to another. Modeling dendritic
circuits using floating gates, however has a few compliostid@ he reason being the capacitive coupling
from source and drain to the floating gate is more pronountad tegular pFETs4]. Characterizing
this capacitive coupling between the source and the drampsrtant if precision is desired. Another
non-ideality that arises due to indirect programming is miematch between the transistor that is
“programmed’versus the transistor that is actually used in the circuit. Howexecently methods have
been developed to characterize this misma2€h [

Nevertheless, floating-gates enable building very comgieaiits. This enables the building of larger
systems like HMM classifiers using CMOS dendrites. The athga being that not only could we
individually program the FG-FETs for varying levels of cparto obtain taper easily but also could
build a denser network. This would be useful for buildingyirsystems. Also one must also take into
account that neural systems are known to be inherently ioigee Dendritic structures are not always
similar and synapses are very unreliable. So one can sayhibdtoating-gate mismatch is similar to
dendrite-to-dendrite variabilityd].

5.3. Smulink Model for Smulating CMOS Dendrites

Engineers have conventionally relied on digital systenmke IDSPs and FPGAs to implement
algorithms for signal processing. A lot of software toole available that enable and simplify this
process. Thus existence of such intuitive software toolbks engineers to leverage the higher
computational efficiency offered by hardware systems.@brHas developed sim2spice, which is a
tool that automatically converts analog signal processygjems from Simulink designs to a SPICE
netlist [21]. It is the top-level tool in a complete chain of automationls.The basic analog elements
consist of the CAB elements on the FPAA. All parameters oftloek are configurable. The Simulink
block mainly serves two purposes. First, it converts thelelevel Simulink model into a spice netlist
which can be implemented on the FPAA. Secondly, it can alaaskd to run a behavioral simulation of
the circuit.

5.3.1. Dendrite Simulink Block

The Simulink block simulates the behavioral charactesstf the dendrite structure given input/s.
This provides the user an insight to the working of the demddircuit when implemented using
the FPAA. The MOSFET parameters used are based on the MOSPBEEESNt on the FPAA. It is
characterized by coupled ordinary differential equati@BE) and solved using the ode solver ode-45.
The model has been tested for both static as well as timengaiyputs and has given reasonable results.
For this paper we have used EPSP signals as inputs for thk. b@ansider a dendritic line as given
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in Figure5c, with n number of nodes. The voltage at each node can be calculateglitbhe following
coupled ODE 4],
awv 1

- = —(ay - ]zn + kl ea2~\7/UT . €a3~\7/UT
dt C !

+ k1(6a4-‘7/UT _ eas-‘?/UT) (25)
+ k2(ea6-‘7/UT _ eEk/UT))

For taper, we changed the parametarss it is proportional to axial conductances.

6. Classifier: Computational Efficiency

Current approaches for Automatic Speech Recognition (ASBHidden Markov Models as acoustic
models for sub-word/word recognition and N-gram modelddoguage models for words/word-class
recognition. For HMMs, discriminative training methods/adeen found to perform better than other
Maximum Likelihood methods like Baum-Welch estimatid2?] . Our dendritic model is similar
to a continuous-time HMM model and can be used to classifypghuneme, phonemes or words.
Typically, phoneme recognition models have a much higher eate as they are much less constrained
as compared to word recognition models. Based on our cosgrastudies for different features we
hypothesize that our model would have higher tolerancddemed dynamic range. We have not used
an audio-dataset to characterize our system, rather we ussa symbolic representations to make a
hypothesis. These are experiments we plan to do int he namefuHowever, we can compare the
computational efficiency of these methods since we can mibdsle systems mathematically. The
unit used to compare computational efficiency is Multiply@d@ulates (MAC) per Watt. The energy
efficiency at a given node of the system, depends on the biasnts, supply voltage and also the
node capacitance.

We know that the node capacitancas the product of conductance and the time constahtow the
bias current/;, for a dendrite node is given by,

C

[bias - (‘/rest - Ek); (26)

where,V,..,; is the resting potentiall’,, signifies the voltage of a potassium channel and G is the axial
conductance. Also, power is the product of voltage acrossitfue and current into the node. Now for
a single node of an HMM classifier, we have 2 MAC/sample. Asegm ~ delay , which at a given
node is approximatelyms. Thus,

1
E?’L@?”gy/MAC - §Vdd(v;"est - Ek)c (27)

We have compared the computational efficiency of digitagl@m and biological systems as shown
in Table2. Now for a wordspotting passive dendritic structure, weehaWIAC/node. Typical dendrite
would have over 1000 state variable equivalents in its ooltis structure. For a particular neuron
time constantr, we would want to have multiple samples for proper operatibor this discussion,
let's assume an effective discrete time sample rate 5 tima® fhanr. Let us choose = 1ms
for this discussion. Thus, we have each tree computing 10 I@M& an HMM computation. For
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biological systems, say the brain ha%' neurons and total power consumption of about 20 W. Thus the
power consumption is20 pW/neuron. In a passive dendritic structure, the computati efficiency

is 10 MMAC /neuron. Thus the computational efficiency of biolagicsystems works out to be
0.5 MMAC/pW. Also from the equation it is evident that a majort@ccontributing to energy efficiency

is node capacitance. Currently the node capacitance orhtpeve used waspF'. If we further scale
down the process used, this number will also reduce. Thec®fely means higher computational
efficiency. A decrease to0f F' itself will give us an improvement of 2 orders of magnitudenisTis
depicted in Figurd5.

Table 2. Comparing computational efficiency of Digital, Analog andBgical systems.

Computing type Computational efficiency

Digital (DSP) < I0MMAC/mW [23]
Analog SP (VMM)  10MMAC/ uW [11,24]
Analog (wordspotter) > 10MMAC/ uW
Neural process > 10MMAC/pW

Figure 15. Computational efficiencyersus capacitance plot for VMM (analog) and
dendritic computation algorithms féf;,; = 2.5V [25].
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7. Conclusions

We have demonstrated a low-power dendritic computatiotedsdier model to implement the
state decoding block of a YES/NO wordspotter. We have alsmdothat this implementation is
computationally efficient. We have demonstrated a singleddic line with 6 compartments, with
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each compartment having a single synaptic input currenth&/e seen the behavior of a single dendrite
line by varying three parameters, namely, the “taper”, thkayl between inputs and the strength of the
EPSP input currents. The effects of taper which enableccm®nce detection were studied. We have
also seen the functioning of the WTA block with dendritic i and the how feedback helps initiate
the reset after a word/phoneme is detected. We also buildnal®k dendritic model and simulated
the output for time-varying inputs to compare with expenia data. This demonstrated how such a
network would behave if inputs were in a sequence or if theseweversed.

The broader impact of such a system is two-fold. First, thetesn is an example of a computational
model using bio-inspired circuits. Secondly the systenppses a computationally efficient solution
for speech-recognition systems using analog VLSI systéasve scale down the process, we can get
more efficient and denser systems. We can also address hagtgylearning can be implemented and
classification systems be trained. We can also model the symapses as NMDA synapses to get a more
multiplicative effect. In NMDA synapses, the synaptic stgth is proportional to the membrane voltage.
It couples the membrane potential to the cellular outputis Tbuld lead to a more robust system and
is also closer to how biological systems are modeled. Alsohave modeled passive dendrites in this
paper. It would be interesting to see how the system behalves we add active channels. We currently
have systems built that will enable us to further explore thscussion which is beyond the scope of
this paper. There is a lot of scope for discussing how to Hailger systems using this architecture. We
can use spiking WTA networks for a larger dictionary of wordisis evident from the computational
efficiency discussions, that clearly analog systems ar¢tartwhoice for higher computational efficiency
and lower costs. This calls for greater effort to build sughtems. Reconfigurable/programmable
analog systems open a wide range of possibilities in dermatingy biological processing and also for
signal processing problems. As shown in Figdfthere is great potential in other areas as image
processing and communication networks as well. Theseragstgll not only enhance our understanding
of biological processes but also will help us design morematationally efficient systems.

Figure 16. Different applications using the Pattern Recognitioneysbased on biology. It
has application in speech and image processing and in comatiam systems. The state
decoder in this paper is one block that is part of the wholé&sydevel design that we plan

to build.
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