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The following paragraphs are reproduced from the website of the publisher [1]: 

Loop control is an essential area of electronics engineering that today’s professionals need to 

master. Rather than delving into extensive theory, this practical book focuses on what you really need 

to know for compensating or stabilizing a given control system. You can turn instantly to practical 

sections with numerous design examples and ready-made formulas to help you with your projects in 

the field. You also find coverage of the underpinnings and principles of control loops so you can gain a 

more complete understanding of the material. This authoritative volume explains how to conduct 

analysis of control systems and provides extensive details on practical compensators. It helps you 

measure your system, showing how to verify if a prototype is stable and features enough design 

margin. Moreover, you learn how to secure high-volume production by bench-verified safety margins. 
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