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Abstract: Despite the promising performance improvement observed in emerging  
many-core architectures in high performance processors, high power consumption 
prohibitively affects their use and marketability in the low-energy sectors, such as 
embedded processors, network processors and application specific instruction processors 
(ASIPs). While most chip architects design power-efficient processors by finding an 
optimal power-performance balance in their design, some use sophisticated on-chip 
autonomous power management units, which dynamically reduce the voltage or 
frequencies of idle cores and hence extend battery life and reduce operating costs. For large 
scale designs of many-core processors, a holistic approach integrating both these 
techniques at different levels of abstraction can potentially achieve maximal power 
savings. In this paper we present CASPER, a robust instruction trace driven cycle-accurate 
many-core multi-threading micro-architecture simulation platform where we have 
incorporated power estimation models of a wide variety of tunable many-core  
micro-architectural design parameters, thus enabling processor architects to explore a 
sufficiently large design space and achieve power-efficient designs. Additionally CASPER 
is designed to accommodate cycle-accurate models of hardware controlled power 
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management units, enabling architects to experiment with and evaluate different 
autonomous power-saving mechanisms to study the run-time power-performance  
trade-offs in embedded many-core processors. We have implemented two such techniques 
in CASPER–Chipwide Dynamic Voltage and Frequency Scaling, and Performance Aware 
Core-Specific Frequency Scaling, which show average power savings of 35.9% and 26.2% 
on a baseline 4-core SPARC based architecture respectively. This power saving data 
accounts for the power consumption of the power management units themselves. The 
CASPER simulation platform also provides users with complete support of SPARCV9 
instruction set enabling them to run a full operating system software stack, and hence a 
wide variety of benchmarking applications. 

Keywords: simulation; processor architectures; modeling; power consumption; 
performance evaluation and estimation; dynamic power management unit; hardware based 
power management; power estimation 

 

1. Introduction 

Emerging instruction set based multi-core processors [1–5] are significantly larger and more 
complex compared to their dual and quad core predecessors [6]. Consisting of hundreds of cores  
on-chip, new heterogeneous many-cores are designed with bigger on-chip caches, complex 
interconnection topologies, and multiple customized IP cores for better performance. Large chip area 
however signifies high leakage and dynamic power dissipation. Hence architects increasingly use  
on-chip power controllers which use power-saving techniques such as power-gating, clock-gating and 
dynamic voltage and frequency scaling (DVFS) to minimize overall power dissipation of their designs. 
Existing cycle-accurate processor simulators extensively used for performance modeling and 
validation of processor micro-architectures [7,8] are inadequate to accurately capture the effect of the 
dimensions and dynamic interactions between the micro-architectural components such as number of 
cores, cache size and associativity and interconnection network topologies to name a few, on performance 
and power dissipation of simulated designs as well as accurately model the complex logic of the power 
controller. Such capabilities are quintessential to efficiently explore the vast micro-architectural design 
space of heterogeneous many-core processors created from a large number of design choices of the 
various micro-architectural parameters and achieve optimal designs with the right balance of power 
and performance.  

Contemporary popular cycle-accurate simulators such as MPTLSim and NepSim target superscalar 
architectures and network processor architectures respectively and fall short on covering important 
features such as hardware multi-threading, in-order instruction pipeline, custom IP cores and 
heterogeneity—some of the fundamental micro-architectural aspects of emerging many-core designs. 
Hardware multi-threading in the cores is used to exploit latency hiding [8,9]. Heterogeneous cores are 
used to achieve better power-performance balance for example in Netronome NFP-32. State-of-the-art 
simulators such as Simics and M5 on the other hand covers a wide range of micro-architectures, 
various instruction set architectures and pre-existing processor architectures, but do not capture two key 
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elements of processor research—(i) interfaces to control a large number of tunable micro-architectural 
parameters such as load miss queue, store buffer size, branch prediction buffer size to name a few; and 
(ii) cycle-accurate models of on-chip power management units which enable power gating, clock gating 
and DVFS. Finally, existing simulators are often not scalable to hundreds of cores and do not support 
complete operating software stack which restricts their usability for a wide range of applications.  

In this paper, we present Chip multi-threading Architecture Simulator for Performance, Energy  
and aRea (CASPER)—a SPARCV9 instruction set architecture based cycle-accurate power-aware 
heterogeneous multi-threading many-core processor micro-architecture simulation platform. The idea 
is to provide a simulation platform where the user can easily modify a wide range of tunable 
architectural parameters to evaluate the performance and estimate pre-silicon leakage and dynamic 
power dissipation of their designs. The platform also provides interfaces through which users can 
design and develop cycle-accurate models of power management algorithms in CASPER and evaluate 
strategies to increase energy efficiency of their designs. Our primary contributions include:  

(a) SPARCV9 ISA—CASPER is a simulation tool for cycle accurate full system simulation of 64-bit 
SPARCV9 instruction set architecture. After the success of Oracle’s UltraSPARC T1, T2 and T3 
processors and open-sourcing the T1 and T2 designs via the OpenSPARC project [10], there is an 
increased interest in SPARC instruction set based processor designs for example SimplyRISC [10] 
which makes this platform an important contribution. 

(b) In-Order Cores with Hardware Multi-Threading—A key shift in the design principle in  
many-core designs is to use a large number of simple low power cores to exploit a high degree of 
parallelism significantly observed in products such as Tilera [11], Intel Atom [12] and 
UltraSPARC T1 [13]. At the same time, hardware multi-threading is used in the cores to exploit 
latency hiding and increase overall throughput. However, single-thread performance critically 
depends upon the number of hardware threads in a core. Hence, CASPER is designed to simulate 
simple in-order multi-threaded cores parameterized in terms of number of hardware threads  
per core. 

(c) Heterogeneous Cores—Exploiting heterogeneity enables designers to achieve optimal  
power-performance trade-offs in their designs. For example, a processor core with deeper store 
buffer can be most energy efficient in case of write intensive application which tends to utilize 
more store instructions compared to a core which is designed with a large data cache [14,15]. This 
motivates us to design CASPER to simulate a set of heterogeneous cores where each core is 
structurally different from each other. In CASPER, a core can be optimized by tuning a large 
number of micro-architectural parameters namely number of hardware threads, number of pipeline 
stages, instruction and data cache (I$/D$) size, associativity and line size, and size of instruction 
and data virtual-to-physical address translation buffer (I-TLB/D-TLB), branch prediction buffer, 
instruction miss queue, load miss queue and store buffer. Users can specify the structure of each 
core independently in CASPER.  

(d) Shared Memory—Low latency on-chip shared memory system is used to optimize data sharing 
which is connected to the cores through an interconnection network. Therefore, in addition to the 
per cycle behavior of the heterogeneous multi-threading cores, the cycle by cycle functionality of 
chip level architectural features such as number of shared memory banks, control logic of the 
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memory banks and interconnection structure are included in CASPER to accurately model the 
impact of all the micro-architectural features on overall processor performance and power. 

(e) Pre-Silicon Power Estimation—Although popular simulators do a good job in modeling 
performance through cycle accuracy and functional accuracy, they fall short in power estimation. 
Similar to performance, both dynamic and leakage power depends on the dimensions and dynamic 
interactions between the micro-architectural features of a processor. In CASPER, hardware models 
of the architectural features are synthesized, placed and routed using technology files to derive 
dynamic and leakage power dissipation values. These values are used in a cycle-accurate manner 
during simulation. Hence as silicon technology generation files become available, they can be used 
in CASPER to estimate power dissipation of simulated designs. Currently, technology files from 
90 nm to 32 nm are freely available [16] and can be used in CASPER. Power-aware simulation 
tools such as Wattch [17] also consist of both leakage and dynamic power dissipation models of 
the micro-architectural features of processors. We intend to compare the accuracy of our 
methodology and Wattch in future work. 

(f) Power Control Unit—Dynamic power management (DPM) in multi-core processors involves a 
set of techniques which perform power-efficient computations under real-time constraints to 
achieve system throughput goals while minimizing power. DPM is executed by an integrated 
power management unit (PMU), which is typically implemented in software, hardware or a 
combination thereof. The PMU monitors and manages the power and performance of each core by 
dynamically adjusting its operating voltage and frequency. Hardware-controlled power 
management eliminates the computation overhead that the processor incurs for software based 
power management while performing workload performance and power estimations. Hence 
hardware power management realizes more accurate and real time impact on workload 
performance than slower reacting software power management can achieve. In CASPER, the PMU 
has a hierarchical structure. The local PMU exercises clock-gating at the stages of the instruction 
pipeline in the cores, where the global PMU enforces a power control policy where DVFS and 
power-gating of a core is decide by analyzing its utilization and wait times due to long latency 
memory accesses. 

(g) Operating Stack—A full SPARCV9 instruction set implemented in CASPER makes it more 
usable and programmable. Solaris 5.10 version operating system kernel is ported onto CASPER 
along with a complete libc software stack [18]. This enables users to run any application on a 
simulated processor. In this study, we have used ENePBench a network packet processing 
benchmark to evaluate many-core designs. 

CASPER is written in C++ programming language and has been flexibly threaded to take advantage 
of a wide variety of multi-core machines. On an Oracle T1000 server, CASPER can simulate 
approximately 100K instructions per second per hardware thread. The rest of the paper is organized as 
follows. Section 2 explains the processor model in addition to the configurable parameters in 
CASPER. Sections 3 and 4 explain the methodologies used to model performance and power/energy 
consumption in CASPER. Section 5 explains the benchmarks used and the outputs and capabilities of 
the simulation platform are explained in Section 6. Section 7 discusses related work. Finally, we 
conclude and discuss our future work in Section 8.  
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2. Processor Micro-Architecture 

The processor model used in CASPER is shown in Figure 1. Each core is organized as single-issue 
in-order with fine-grained multi-threading (FGMT) [7]. In-order FGMT cores utilize a single-issue six 
stage pipeline [8] shared between the hardware threads, enabling designers to achieve: (i) high 
throughput per-core by latency hiding; and (ii) minimize the power dissipation of a core by avoiding 
complex micro-architectural structures such as instruction issue queues, re-order buffers and  
history-based branch predictors typically used in superscalar and out-of-order micro-architectures. The 
six stage RISC pipeline is an alteration of the basic simplest five-stage in-order instruction pipeline 
Fetch, Decode, Execute, Memory and WriteBack. The sixth stage is a single-cycle thread switch 
scheduling stage which follows a round robin algorithm and selects an instruction from a hardware 
thread in ready state to issue to the decode stage.  

Figure 1. The shared memory processor model simulated in CASPER. NC heterogeneous 
cores are connected to NB banks of shared secondary cache via a crossbar interconnection 
network. Each core consists of S0 to SN are the pipeline stages, T0 to TNT hardware threads, 
L1 I/D cache and I/D miss queues. 

 

Each core contains NT number of hardware threads. NT is parameterized in CASPER and can be 
different from one core to another. The 64-bit pipeline in each core is divided into 6 stages—
Instruction-Fetch (F-stage), Thread-Schedule (S-stage), Branch-and-Decode (D-stage), Execution  
(E-stage), Memory-Access (M-stage) and Write-back (W-stage) as shown in Figure 2. 

The F-stage implemented inside Instruction Fetch Unit (IFU) includes the instruction address 
translation buffer (I-TLB), instruction cache (I$), missed instruction list (MIL) and the integer register 
file (IRF). MIL is used to serialize I$ misses and send these type of packets from the core to the L2 
cache. A similar structure called the Instruction Fetch Queue (IFQ) manages returning I$ miss packets. 
The size of MIL and IFQ are parameterized in CASPER and is same for all the threads. IRF contains 
160 total registers used to support the entire SPARCV9 instruction set. Each hardware thread privately 
owns IRF, MIL and IFQ whereas I-TLB and I$ are shared. The S-stage which is also part of IFU 
contains the thread scheduler and thread finite state machine. 
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Figure 2. Block diagram of the stages of an in-order FGMT pipeline. 

 

The D-stage includes a full SPARCV9 instruction set decoder as described in [19]. Execution Unit 
(EXU) contains a standard RISC 64-bit ALU, an integer multiplier and divider. EXU constitute the  
E-stage of our pipeline. Load Store Unit (LSU) is the top level module which includes the  
micro-architectural components of the M-stage and W-stage. It includes the data TLB (D-TLB), data 
cache (D$), address space identifier queue (ASIQ), load miss queue (LMQ) and store buffer (SB). 
LMQ maintains D$ misses. SB is used to serialize the store instructions following the total store order 
(TSO) model. Stores are write through. Both LMQ and SB are separately maintained for each 
hardware thread while the D-TLB and D$ are shared. Special registers in SPARCV9 are accessed via 
the ASI queue and ASI operations are categorized as long latency operations as these instructions are 
asynchronous to the pipeline operation [19]. Loads and stores are resolved in the L2cache and the 
returning packets are serialized and executed in the data fetch queue (DFQ) also a part of LSU. The 
Trap logic Unit (TLU) of SPARCV9 architecture used in CASPER is structurally similar to that of 
UltraSPARC T1 [20]. 

In addition to hardware multi-threading, clock-gating [21] in the pipeline stages enables us to 
minimize power dissipation by canceling the dynamic power in the idle stages compared to active 
blocks which consumes both dynamic and leakage power. Long latency operations in a hardware thread 
are typically blocking in nature. In CASPER, the long latency operations such as load misses and stores 
are non-blocking. We call this feature hardware scouting. This feature optimally utilizes the deeper load 
miss queues compared to other architectures such as UltraSPARC T1 [22,23] where the load miss 
queue contains only one entry. In average, this enhances the performance of a single thread by 2–5%. 
The complete set of tunable core-level micro-architectural parameters is shown in Table 1. 
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Table 1. Range and description of the core-level micro-architectural parameters. 

Name Range Increment Description 
1. NT 1 to 16 Power of 2 Threads per core 
2. MIL Size Per Thread 1 to 32 Power of 2 Used to enqueue the I$ misses 

3. IFQ Size Per Thread 1 to 32 Power of 2 
Used to process the returning I$ miss 
packets 

4. ITLB Size 1 to 256 Power of 2 
Virtual to Physical address translation 
buffer for instruction addresses 

5. L1 ICache Associativity 2 to 32 Power of 2 Set-associativity of I$ 
6. L1 ICache Line Size 8 to 64 Power of 2 Block size of I$ 
7. L1 ICache Size 1 KB to 64 KB Power of 2 Total I$ size 

8. DTLB Size 1 to 256 Power of 2 
Virtual to Physical address translation 
buffer for data addresses 

9. L1 DCache Associativity 2 to 8 Power of 2 Set-associativity of D$ 
10. L1 DCache Line Size 8 to 64 Power of 2 Block size of D$ 
11. L1 DCache Size 1 KB to 64 KB Power of 2 Total D$ size 
12. Load Miss Queue 

(LMQ) Size Per Thread 
1 to 32 Power of 2 Used to enqueue all the D$ misses 

13. SB Size Per Thread 1 to 64 Power of 2 
Used to serialize the store instructions 
following the TSO model [20] 

14. DFQ Size Per Thread 1 to 32 Power of 2 
Used to enqueue all the packets returning 
from L2 cache 

15. ASI Queue Size  
Per Thread 

1 to 16 Power of 2 
Used to serialize all Address Space 
Identifier register reads/writes 

At the chip level, NC cores are connected to the inclusive unified L2 cache via a crossbar 
interconnection network. L2 cache is divided into NB banks. NC and NB are parameterized in CASPER. 
Each L2 cache bank maintains separate queues negotiating core to L2 cache instruction miss/load 
miss/store packets from each core. An arbiter inside the banks selects packets from different queues in a 
round-robin fashion. The length of the queue is an important parameter as it affects the processing time 
of each L2 cache access time. The complete set of tunable chip-level micro-architectural parameters is 
shown in Table 2. 

Table 2. Range and description of chip-level micro-architectural parameters. 

Name Range Increment Description 
16. L2$QSize 4 to 16 Power of 2 L2 cache input queue size per core 
17. Size 4 to 512 MB 1 MB Total L2 size 
18. Associativity 8 to 64 Power of 2 Set-associativity of L2 cache 
19. Line Size 8 to 128 Power of 2 Line size of L2 cache 
20. NB 4 to 128 Power of 2 Number of L2 banks 
21. NC 1 to 250 Increment of 1 Number of processing cores 

Coherency is maintained in the L2 following the directory based cache coherency protocol. The L2 
cache arrays consists of the reverse directories of both instruction and data L1 caches of all the cores. A 
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read miss at the L2 cache populates an entire cache line and the corresponding cache line in the 
originating L1 cache instruction or data cache. All subsequent reads to the same address from any other 
core lead to a L2 cache hit and is populated directly from L2 cache. The L2 cache is inclusive and 
unified; hence it contains all the blocks which are also present in L1 instruction or data caches in the 
cores. Store instructions or the writes are always committed at the L2 cache first following the  
write through protocol. Hence, the L2 cache always has the most recent data. Once a write is committed 
in the L2 cache all the matching directory entries are invalidated which means that the L1 instruction 
and data cache entries are invalidated using special L2 cache to core messages. 

2.1. Performance Measurement  

Counters are used in CASPER in each core to measure the number of completed instructions 
individually for each hardware thread (InstrTHREAD) as well as for the entire core (InstrCORE) every clock 
cycle. Counters are also attached to the L2 cache banks to monitor the load/store accesses from the 
cores. This enables the user to estimate average wait time for loads/stores per core and per hardware 
thread in each core. The wait time includes wait time of each load/store instruction in the LMQ or SB 
respectively, propagation time in the interconnection network and total L2 cache access time. 

2.2. Component-Level Power Dissipation Modeling 

To accurately model the area and the power dissipation of the architectural components we have  
(i) designed scalable hardware models of all pipelined and non-pipelined components of the processor 
in terms of corresponding architectural parameters; and (ii) derived power dissipations (dynamic + leakage) 
of the component models (written in VHDL) using the commercial synthesis tool Design Vision from 
Synopsys [24] which targets the Berkeley 45 nm Predictive Technology Model (PTM) technology 
library [25], and placement and routing tool Encounter from Cadence [26]. The area and power 
dissipation values of I$ and D$ are derived using Cacti 4.0 [27]. In case of the parameterized micro-
architectural non-pipeline components in a core such as the LMQ, SB, MIL, IFQ, DFQ, and I/D-TLB 
area and power are found using a 1 GHz clock, and stored in lookup tables indexed according to the 
values of the micro-architectural parameter. The values from lookup tables are then used in the 
simulation to calculate the power dissipation of the core by capturing the activity factor α(t) from 
simulation, and integrating the product of power dissipation and α(t) over simulation time. The 
following equation is used to calculate the power dissipation of a pipeline stage: 

Pstage(t) = Pleakage(t) + αPdynamic(t) (1) 

where α is the activity factor of that stage (α = 1 if that stage is active; α = 0 otherwise) which is 
reported by CASPER; Pleakage and Pdynamic are the pre-characterized leakage and dynamic power 
dissipations of the stage respectively. The pre-characterized values of area, leakage and dynamic power 
of core-level architectural blocks are shown in Table 3. The HDL models of all the core-level 
architectural blocks have been functionally validated using exhaustive test benches. 
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Table 3. Post-Layout Area, Dynamic and Leakage Power of VHDL Models. 

HDL Model Area (mm2) Dynamic Power (mW) Leakage Power (μW) 
RAM (16) 0.022 1.03 17.81 
CAM (16) 0.066 3.51 67.70 
FIFO (16) for 8 threads 0.3954 165 1200.00 
TLB (64) 0.0178 21.11 92.60 
Cache (32 KB) 0.0149 28.3 - 
Integer Register File 0.5367 11.92 4913.7 
IFU 0.0451 3280.1 378.39 
EXU 0.0307 786.99 301.94 
LSU 0.8712 5495.3 6848.30 
TLU 0.064 1302.2 553.8458 
Multiplier 0.0324 23.74 383.88 
Crossbar–8 cores × 4 L2 banks 0.2585 50.92 1390 

The activity factor α is derived by tracking the switching of all the components in all the stages of 
the cores on a per cycle basis. As a given instruction is executed through the multiple stages of the 
instruction pipeline inside a core, the simulator tracks: (i) the intra-core components that are actively 
involved in the execution of that instruction; and (ii) the cycles during which that instruction uses any 
particular pipeline stage of a given component. Any component or a stage inside a component is 
assumed to be in two states–idle (not involved in the execution of an instruction) and active (process an 
instruction). For example, in case of a D$ load-miss, the occurrence of the miss will be identified in the 
M-stage. The load instruction will then be added to the LMQ and W-stage will be set to an idle state for 
the next clock cycle. A non-pipelined component is treated as a special case of a single stage pipelined 
one. We consider only leakage power dissipation in the idle state and both leakage and dynamic power 
dissipations in the active state. Figure 3 shows the total power dissipation of a single representative 
pipeline stage in one component. Note that the total power reduces to just the leakage part in the 
absence of a valid instruction in that stage (idle), and the average dynamic power of the stage is added 
when an instruction is processed (active). 

Figure 3. Power Dissipation transient for a single pipeline stage in a component. The area 
under the curve is the total Energy consumption. 

 

A certain pipeline stage of a component will switch to active state when it receives an instruction 
ready signal from its previous stage. In the absence of the instruction ready signal, the stage switches 
back to idle state. Note that the instruction ready signal is used to clock-gate (disable the clock to all 
logic of) an entire component or a single pipeline stage inside the component to save dynamic power. 
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Hence we only consider leakage power dissipation in the absence of an active instruction. In case of an 
instruction waiting for memory access or in the stall state due to a prior long latency operation, is 
assumed to be in active state. 

Figure 4 illustrates the methodology of power measurement in the pipelined components in CASPER 
as seen during 5 clock cycles. The blue dotted lines show the amount of power dissipated by the 
pipeline stage as an instruction from a particular hardware thread is executed. Time increases vertically. 
For example, for the 5 clock cycles as shown in Figure 4 the total contribution of Stage1 is given by 

Powerstage1 = Pdyn+lkg(due to instruction INSTRI from thread THR3) + Plkg +  
                     Pdyn+lkg(due to instruction INSTRJ from thread THR0) +  
                     Pdyn+lkg(due to instruction INSTRK from thread THR2) + Plkg 

The shaded parts correspond to active states of the stage (dynamic + leakage power), while the 
dotted parts correspond to idle states of the stage (only leakage power). Note that different stages have 
different values of dynamic and leakage power dissipations. 

Figure 4. Power profile of a pipelined component where multiple instructions exist in 
different stages. Dotted parts of the pipeline are in idle state and add to the leakage power 
dissipation. Shaded parts of the pipeline are active and contribute towards both dynamic 
and leakage power dissipations. 

 

2.3. Power Dissipation Modeling of L2 Cache and Interconnection Network  

The power and area of L2 cache and interconnection network however depend on the number of 
cores which makes it immensely time-consuming to synthesize, place and route all possible combinations. 
Hence we have used multiple linear regression [28] for this purpose. The training set required to derive 
the regression models of dynamic power and area of L2 cache arrays are measured by running  
Cacti 4.0 [27] for different configurations of L2 cache size, associativity and line sizes. Dynamic power 
dissipation measured in Watts of L2 cache is related to the size in megabytes, associativity and number 
of banks  as shown in Equation 2. The error of estimate found for this model ranges between 0.524 
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and 2.09. Errors are estimated by comparing the model predicted and measure value of dynamic power 
dissipation for configurations of L2 cache size, associativity, linesize and number of banks. These 
configurations are different from the ones used to derive the training set. 

_L2 0 1 Size 2 Associativity 3dynamic power Bc c c c N= + × + × − ×  (2) 

Similarly, the dynamic and leakage power dissipation measured in mill watts of a crossbar 
interconnection network is given by Equation 3 and Equation 4 respectively. The training set required 
to derive the regression models of dynamic and leakage power of the crossbar are derived by 
synthesizing its hardware model parameterized in terms of number of L2 cache banks and number of 
cores using Synopsys Design Vision and Cadence Encounter. Note that dynamic and leakage power is 
related square of the number of cores (NC) and number of cache banks (NB) which means that the power 
dissipation scales super linearly with number of banks and cores. Thus, crossbar interconnects are not 
scalable. However, they provide high bandwidth required in our many-core designs. The regression 
model parameters and 95% confidence interval as reported by the statistical tool SPSS [29] are for 
dynamic and leakage power dissipation is shown in Tables 4 and 5 respectively. The confidence 
interval shows that the strength of the model is high. The models are further validated by comparing the 
model predicted power values and values measured by synthesizing 5 more combinations of number of 
L2 cache banks and number of cores different from the training set. We found that in these two cases, 
the errors of estimates ranges between 0.7 and 10.64. 

2
_ 0 1dynamic power C BIN b N b N= × + ×  (3) 

2
_ 0 1leakage power C BIN b N b N= × + ×  (4) 

Table 4. Regression model parameters of dynamic power of interconnection network. 

  95% Confidence Interval 
Parameter Standard Error Lower Bound Upper Bound 

b0 0.003 0.191 0.203 
b1 0.198 1.628 2.501 

Table 5. Regression model parameters of leakage power of interconnection network. 

  95% Confidence Interval 
Parameter Standard Error Lower Bound Upper Bound 

b0 0.001 0.016 0.017 
b1 0.018 0.180 0.255 

2.4. Hardware Controlled Power Management in CASPER 

Two hardware-controlled power management algorithms called Chipwide DVFS and MaxBIPS as 
proposed in [30] are implemented in CASPER. Note that all these algorithms continuously re-evaluate 
the voltage-frequency operating levels of the different cores, once every evaluation cycle. When not 
explicitly stated, one evaluation cycle corresponds to 1024 processor clock cycles in our simulations. 
The DVFS based GPMU algorithms rely on the assumption that when a given core switches  
from power mode A (voltage_A, frequency_A) in time interval N to power mode B (voltage_B, 



J. Low Power Electron. Appl. 2012, 2 41 
 
frequency_B) in time interval N + 1, the power and throughput in time interval N + 1 can be predicted 
using Equation (1). Note that the system frequency needs to scale along with the voltage to ensure that 
the operating frequency meets the timing constraints of the circuit whose delay changes linearly with 
the operating voltage [31]. This assumes that the workload characteristics do not change from one time 
interval to next one, and there are no shared resource dependencies between tasks and cores. Table 6 
explains the dependencies of power and throughput on the voltage and frequency levels of the cores. 

Table 6. Relationship of power and throughput in time interval N and N + 1. 

Time Interval N N + 1 

Mode (v, f) 
(v’, f’) 

f’ = f (v’/v) 
Throughput T T’ = T × (f’/f) 

Dynamic Power P P’ = P × (v’/v)2 × (f’/f) 

The key idea of DVFS in Chipwide DVFS is to scale the voltages and frequencies of a single core 
or the entire processor during run-time to achieve specific throughputs while minimizing power 
dissipation, or to maximize throughput under a power budget. Equation (5) shows the quadratic  
and linear dependences of dynamic or switching power dissipation on the supply voltage and 
frequency respectively: 

fCVP dd
2α=  (5) 

where α is the switching probability, C is the total transistor gate (or sink) capacitance of the entire 
module, Vdd is the supply voltage, and f is the clock frequency. Note that the system frequency needs to 
scale along with the voltage to satisfy the timing constraints of the circuit whose delay changes linearly 
with the operating voltage [30]. DVFS algorithms can be implemented at different levels such as the 
processor micro-architecture (hardware), the operating system scheduler, or the compiler [32].  
Figure 5 shows a conceptual diagram implementing DVFS on a multi-core processor. Darker shaded 
regions represent cores operating at high voltage, while lighter shaded regions represent cores 
operating at low voltage. The unshaded cores are in sleep mode. 

Figure 5. Dynamic voltage and frequency scaling (DVFS) for a multi-core processor. 

 

Chipwide DVFS is a global power management scheme that monitors the entire chip power 
consumption and performance, and enforces a uniform voltage-frequency operating point for all cores 
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to minimize power dissipation under an overall throughput budget. This approach does not need any 
individual information about the power and performance of each core, and simply relies on entire chip 
throughput measurements to make power mode switching decisions. As a result, one high performance 
core can push the entire chip over throughput budget, thereby triggering DVFS to occur across all 
cores on-chip. A scaling down of voltage and frequency in cores which are not exceeding their 
throughput budgets will further reduce their throughputs. This may be undesirable, especially if these 
cores are running threads from different applications which run at different performance levels. The 
pseudo-code is shown in Table 7. Cumulative power dissipation is calculated by adding the power 
dissipation observed in the last evaluation cycle to the total power dissipation of Corei from time  
T = 0. Cumulative throughput similarly is the total number of instructions committed until now from 
time T = 0 including the instructions committed in the last evaluation cycle. Also, in this case the 
current core DVFS level is same across all the cores. 

Table 7. Pseudo Code of Chipwide DVFS. 

/* this algorithm continuously executes once every evaluation cycle */ 
Get_current_core_dvfs_level; 
For all Coresi { 
 Get power dissipated by Corei in the last evaluation cycle;  
 Get effective throughput of Corei in the last evaluation cycle; 
 Sum up cumulative power dissipated by all cores in the last evaluation cycle; 
 Sum up cumulative throughput of all cores in the last evaluation cycle; 
} 
If (Overall throughput of all cores > throughput budget) { 
  if (current_core_dvfs_level > lowest_dvfs_level) { 
      Lower down current_core_dvfs_level to next level; 
     } 
} 
For all Coresi { 

Update every core’s new dvfs level; 
} 

The MaxBIPS algorithm [30] monitors the power consumption and performance at the global level 
and collects information about the entire chip throughput, as well as the throughput contributions of 
individual cores. The power mode for each core is then selected so as to minimize the power dissipation 
of the entire chip, while maximizing the system performance subject to the given throughput budget. 
The algorithm evaluates all the possible combinations of power modes for each core, and then chooses 
the one that minimizes the overall power dissipation and maximizes the overall system performance 
while meeting the throughput budget by examining all voltage/frequency pairs for each core. The cores 
are permitted to operate at different voltages and frequencies in MaxBIPS algorithm. A linear scaling of 
frequency with voltage is assumed in MaxBIPS [30].  

Based on Table 6, the MaxBIPS algorithm predicts the estimated power and throughput for all 
possible combinations of cores and voltage/frequency modes (vf_mode) or scaling factors and selects 
the (core_i, vf_mode_j) that minimizes power dissipation, but maximizes throughput while meeting the 
required throughput budget. The pseudo-core of MaxBIPS algorithm is shown in Table 8, the Power 
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Mode Combinationi used in MaxBIPS algorithm is a lookup table storing all the possible combinations 
of DVFS levels across the cores. For example, if there are 4 cores and 3 DVFS levels as described in 
Table 6 which stores the predicted power consumption and throughput observed until the last evaluation 
cycle in the chip for all possible combinations of DVFS levels across the cores in the chip. 

Table 8. Pseudo-code of MaxBIPS DVFS. 

/* this algorithm continuously executes once every evaluation cycle */ 
Define_power_mode_combinations; 
Initialize Min_power; 
Initialize Max_throughput; 
Initialize Selected_combination; 
--voltage frequency (power mode) combinations for different cores 
For all Coresi { 
  dvfsLevel = Get current DVFS level of Corei; 
  Get power dissipated by Corei in the last evaluation cycle;  
  Get effective throughput of Corei in the last evaluation cycle; 
 } 
 For all Power_Mode_Combinationsj { 
  For all Coresk { 
   Calculate predicted throughput value of core k in combination_j; 

--Using power_mode_combination, Equation (2) 
   Calculate predicted power value of core k in combination_j; 

--Using power_mode_combinations, Equation (2) 
   Accumulate predicted throughputs of all cores in combination_j; 
   Accumulate predicted power dissipations of all cores in combination_j; 
  }  
  If (overall_predicted_throughput of all cores <= throughput budget) { 
   If (Max_throughput  <  overall_predicted_throughput of all cores) { 
          Max_throughput = overall_predicted_throughput of all cores; 
        Min_power = overall_predicted_power of all cores; 
         Selected_combination = j; 
     } 
    If (Max_throughput  =  overall_predicted_throughput of all cores) { 
            Max_throughput = overall_predicted_throughput of all cores; 
          If (Min_power >= overall_predicted_power of all cores) 
             Min_power = overall_predicted_power of all cores; 
          Selected_combination = j; 
    } 
  }  

     } 
For all Coresi { 
  Update every core’s new dvfs level with values in Selected_combination; 

 } 

The three DVFS levels used in Chipwide DVFS and MaxBIPS DPM are shown in Table 9. These 
voltage-frequency pairs have been verified using the experimental setup of Section 4. Note that 
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performance predictions of the existing GPMU algorithms to be discussed this section do not consider 
the bottlenecks caused by shared memory access between cores.Please note that all synchronization 
between the cores is resolved in the L2 cache. During the cycle-accurate simulation, the L2 cache 
accesses from the cores are resolved using arbitration logic and queues in the L2 cache controllers. In 
case of L1 cache misses, packets are sent to the L2 cache which brings the data back in as load misses. 
An increased L1 cache miss hence means longer wait time for the instruction which caused the miss and 
effectively we observe the cycles per instruction (CPI) of the core to decrease. 

Table 9. DVFS Levels used in Chipwide DVFS and MaxBIPS. 

DVFS Level ID Voltage-Frequency Combination 
DVFS_LEVEL_0 0.85 V, 0.85 GHz 
DVFS_LEVEL_1 1.7 V, 1.7 GHz 
DVFS_LEVEL_2 1.7 V, 3.4 GHz 

3. Embedded Processor Benchmark (ENePBench) 

Figure 6. Pictorial representation of IP packet header and payload processing in two 
packet instances of different types. 

 

To evaluate the performance and power dissipation of candidate designs we have developed a 
benchmark suite called Embedded Network Packet Processing Benchmark (ENePBench) which 
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emulates the IP packet processing tasks executed in a network router. The router workload varies 
according to internet usage where random number of IP packets arrive at random intervals. To meet a 
target bandwidth, the router has to: (i) process a required number of packets per second; and 
(ii) process individual packets within their latency constraints. The task flow is described in Figure 6. 
Incoming IPv6 packets are scheduled on the processing cores of the NeP based on respective packet 
types and priorities. Depending on the type of a packet different header and payload processing 
functions process the header and payload of the packet respectively. Processed packets are either 
routed towards the outward queues (in case of pass-through packets) or else terminated. 

The packet processing functions of ENePBench are adapted from CommBench 0.5 [33]. Routing 
table lookup function RTR, packet fragmentation function FRAG and traffic monitoring function TCP 
constitute the packet header functions. Packet payload processing functions include encryption 
(CAST), error detection (REED) and JPEG encoding and decoding as shown in Table 10. 

Table 10. Packet processing functions in ENePBench. 

Function Type Function Name Description 

Header Processing Functions 
RTR A Radix-Tree routing table lookup program  

FRAG An IP packet fragmentation code 
TCP A traffic monitoring application 

Payload Processing Functions 

CAST A 128 bit block cipher algorithm 

REED 
An implementation of Reed-Solomon Forward 
Error Correction scheme 

JPEG A lossy image data compression algorithm 
Packet Scheduler DRR Deficit Round Robin fair scheduling algorithm 

Functionally, IP packets are further classified into types TYPE0 to TYPE4 as shown in Table 11. 
The headers of all packets belonging to packet types TYPE0 to TYPE4 are used to lookup the IP 
routing table (RTR), managing packet fragmentation (FRAG) and traffic monitoring (TCP). The 
payload processing of the packet types, however, is different from each other. Packet types TYPE0, 
TYPE1 and TYPE2 are compute bound packets and are processed with encryption and error detection 
functions. In case of packet type TYPE3 and TYPE4, the packet payloads are processed with  
both compute bound encryption and error detection functions as well as data bound JPEG 
encoding/decoding functions. 

Table 11. Packet Types used in ENePBench. 

Packet Type Header Functions Data Functions Characteristic Type of Service 
TYPE0 RTR, FRAG, TCP REED Compute Bound Real Time 
TYPE1 RTR, FRAG, TCP CAST Compute Bound Real Time 
TYPE2 RTR, FRAG, TCP CAST, REED Compute Bound Content-Delivery 
TYPE3 RTR, FRAG, TCP REED, JPEG Data Bound Content-Delivery 
TYPE4 RTR, FRAG, TCP CAST, REED, JPEG Data Bound Content-Delivery 

The two broad categories of IP Packets are hard real-time termed as real-time packets and soft  
real-time termed as content-delivery packets. Real-time packets are assigned with high priority 
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whereas content-delivery packets are processed with lower priorities. Table 12 enlists the end-to-end 
transmission delays associated with each packet categories [34]. The total propagation delay  
(source to destination) of real-time packets is less than 150 milliseconds (ms) and less than 10 s for  
content-delivery packets respectively [34]. 

Table 12. Performance Targets for IP packet type. 

Application/Packet Type Data Rate Size End-to-end Delay Description 
Audio 4–64 (KB/s) <1 KB <150 ms Conversational Audio 
Video 16–384 (KB/s) ~10 KB <150 ms Interactive video 
Data - ~10 KB <250 ms Bulk data 

Still Image - <100 KB <10 s Images/Movie clips 

In practice 10 to 15 hops are allowed per packet which means the worst case processing time is 
approximately 10 ms in case of real-time packets and 1000 ms in case of content-delivery packets 
respectively [34] per intermediate router. For each packet the worst case processing time in a router 
includes the wait time in incoming packet queue, packet header and payload processing time and wait 
time in the output queues [35]. Traditionally schedulers in NePs snoop on the incoming packet queues 
and upon packet arrival generate interrupts to the processing cores. A context switch mechanism is 
subsequently used to dispatch packets to the individual cores for further processing. Current systems 
however use a switching mechanism to directly move packets from incoming packet queues to the 
cores avoiding expensive signal interrupts [36]. Hence, in our case we have not considered interrupt 
generation and context switch time to calculate worst case processing time. Also due to the low 
propagation time in current high bandwidth optical fiber networks we ignore the propagation time of 
packets through the network wires [37]. In our methodology the individual cores are designed such 
that they are able to process packets within the worst case processing time. 

4. Verification of CASPER 

Functional correctness of candidate designs simulated in CASPER is verified using a set of 
diagnostic codes which are designed to test all the possible instruction and data paths in the stages of 
the pipeline in a core. Additional set of diagnostic codes are written in SPARCV9 assembly which 
consist of random combinations of instructions such that different system events such as traps, store 
buffer full and others are also asserted. To further verify the accuracy of CASPER, we have compared 
the total number of system events generated while executing 10 IP packets in the ENePBench in a  
real-life UltraSPARC T1000 machine consisting of an UltraSPARC T1 (T1) processor (T1) [19] to an 
exact UltraSPARC T1 prototype (T1_V) simulated in CASPER. UltraSPARC T1 is the closest  
in-order CMT variant to our CMT designs modeled in CASPER and consists of 8 cores and 
4 hardware threads per core. The simulated processor in CASPER had equal number of cores, 
hardware threads per core, L1 and L2 caches as T1. Our results are tabulated in Table 13. Columns 3a, 
3b, 4a, 4b, 5a, 5b and 6 in Table 13 compare the number of instructions committed, store buffer full 
event, I$ misses and D$ misses respectively in T1 and T1_V respectively. Column 6 shows that in 
average, the error in number of system events is less than 10%. 
  



J. Low Power Electron. Appl. 2012, 2 47 
 

Table 13. Comparison between number of system events for 10 IP packets in (i) T1000 
server with an UltraSPARC T1 processor and (ii) a T1 prototype simulated in CASPER. 

Packet 
Type 

Clock 
Ticks 

(in 106) 

Instr_cnt 
(in 106) 

SB_full 
(in 103) 

IC_misses 
(in 103) 

DC_misses 
(in 103) 

Avg. 
Error 
(%) T1 T1_V T1 T1_V T1 T1_V T1 T1_V 

TYPE0 0.674 0.255 0.255 5.0 4.9 2.6 2.6 1.56 1.59 2.01 
TYPE1 0.673 0.254 0.254 5.4 5.6 2.5 2.4 1.50 1.6 7.35 
TYPE2 0.612 0.26 0.258 5.1 5.2 2.6 2.5 1.51 1.52 4.0 
TYPE3 2.257 0.90 0.892 12.9 12.7 3.5 3.9 6.84 6.84 5.7 
TYPE4 2.259 0.94 0.896 18.9 17.1 3.5 3.6 6.89 6.89 9.5 

5. Results 

The power dissipation and throughput observed by varying the key micro-architectural components 
namely number of threads per core, data and instruction cache sizes per core, store buffer size per 
thread in a core and number of cores in the chip are showed in Figure 7 to Figure 21. Note that 
Hardware Power Management is not enabled for the experiments generating data shown for Figures 7 
through 21. In each of the figures, power-performance trade-offs are shown by co-varying two  
micro-architectural parameters while the other parameters are kept at a constant value as described in 
the baseline architecture shown in Table 14. Cycles per instruction per core or CPI-per-core (lower is 
better) is measured by the total number of clock cycles during the runtime of a workload divided by 
the total number of committed instructions across all the hardware threads during that time and 
average cycles per instruction per thread or CPI-per-thread is measured by the number of clock cycles 
divided by the number of instructions committed in a hardware thread during the same time. All the 
data is based on the execution of compute bound packet type 1 (TYPE1) as described in Table 11. 

Figure 7. Power dissipation versus CPI-per-thread in a 1-core 1-thread 1 MB L2 cache 
processor where the data cache size is varied from 4 KB to 64 KB for packet type TYPE1. 
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Figure 8. Power dissipation, CPI-per-core and CPI-per-thread in a 1-core 4-thread 1 MB 
L2 cache processor where the data cache size is varied from 4 KB to 64 KB for packet  
type TYPE1. 

 

Figure 9. Power dissipation, CPI-per-core and CPI-per-thread in a 1-core 8-thread 1 MB 
L2 cache processor where the data cache size is varied from 4 KB to 64 KB for packet  
type TYPE1. 
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Figure 10. Power dissipation, CPI-per-core and CPI-per-thread in a 1-core 1-thread 1 MB 
L2 cache processor where the instruction cache size is varied from 4 KB to 64 KB for 
packet type TYPE1. 

 

Figure 11. Power dissipation, CPI-per-core and CPI-per-thread in a 1-core 4-thread 1 MB 
L2 cache processor where the instruction cache size is varied from 4 KB to 64 KB for 
packet type TYPE1. 
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Figure 12. Power dissipation, CPI-per-core and CPI-per-thread in a 1-core 8-thread 1 MB 
L2 cache processor where the instruction cache size is varied from 4 KB to 64 KB for 
packet type TYPE1. 

 

Figure 13. Power dissipation and CPI-per-core in a 1-core 1-thread 1 MB L2 cache 
processor where the store buffer size is varied from 4 to 16 for packet type TYPE1. 
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Figure 14. Power dissipation, CPI-per-core and CPI-per-thread in a 1-core 4-thread 1 MB 
L2 cache processor where the store buffer size is varied from 4 to 16 for packet  
type TYPE1. 

 

Figure 15. Power dissipation, CPI-per-core and CPI-per-thread in a 1-core 8-thread 1 MB 
L2 cache processor where the store buffer size is varied from 4 to 16 for packet  
type TYPE1. 
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Figure 16. Power dissipation and overall CPI trade-offs as number of cores is scaled from 
4 to 128. All the cores have NT = 1 for packet type TYPE1. 

 

Figure 17. Power dissipation and packet bandwidth as number of cores is scaled from 4 to 
128. All the cores have NT = 1 for packet type TYPE1. 
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Figure 18. Power dissipation and CPI as number of cores is scaled from 4 to 128. All the 
cores have NT = 4 for packet type TYPE1. 

 

Figure 19. Power dissipation and packet bandwidth as number of cores is scaled from 4 to 
128. All the cores have NT = 4 for packet type TYPE1. 
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Figure 20. Power dissipation and CPI as number of cores is scaled from 4 to 128. All the 
cores have NT = 8 for packet type TYPE1. 

 

Figure 21. Power dissipation and packet bandwidth as number of cores is scaled from 4 to 
128. All the cores have NT = 8 for packet type TYPE1. 
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Table 14. Baseline architecture for packet type TYPE1 to study the power-performance 
trade-offs in single-core designs. 

Field Value 
Number of threads 4 
Data cache size 8 KB 
Data cache associativity 4 
Data cache line size 32 
Instruction cache size 16 KB 
Instruction cache associativity 4 
Instruction cache line size 32 
Store Buffer size 4 
Load Miss Queue size 4 
ASI Queue size 2 
L2 cache size 4 MB 
L2 cache banks 4 
L2 cache associativity 16 
L2 cache line size 64 

Figure 7, Figure 8 and Figure 9 show the power dissipation, CPI-per-core and average  
CPI-per-thread for NT = 1, 4 and 8 respectively as data cache size is scaled from 4 KB to 64 KB. In 
Figure 7, the increase in D$ size reduces the data miss rate and hence both CPI-per-thread and  
CPI-per-core improve. Power dissipation however increases due to increasing D$ size. The figures 
also demonstrates the trade-offs between performance and power when number of threads is scaled 
from 1 to 8. The increase in the number of threads in a core means performance of individual threads is 
slowed down by as many cycles as the number of threads due to the round robin small latency thread 
scheduling scheme. CPI-per-core however is not linearly dependent on the number of threads. While 
factors such as increased cache sharing, increased pipeline sharing, lesser pipeline stalls improves  
CPI-per-core with thread-scaling, factors such as increased stall time at the store buffer, instruction 
miss queue and load miss queues tend to diminish it. Hence, we clearly see a non-linear pattern where 
CPI-per-core is higher in NT = 4 compared to NT = 8. In case of NT = 8, we observe 10% decrease in 
cache misses which results in lower CPI-pe-core compared to NT = 4. However, this is not the case 
when NT is increased from 1 to 4. Important to note that this behavior is application specific and hence 
reestablishes the non-linear co-dependencies between performance and the structure and behavior of 
the micro-architectural components. Figure 10, Figure 11 and Figure 12 show the power dissipation, 
CPI-per-core and average CPI-per-thread for NT = 1, 4 and 8 respectively as instruction cache size is 
scaled from 4 KB to 64 KB. Here also, CPI-per-thread and CPI-per-core improves with increasing I$ 
size as instruction misses decrease. Power dissipation however increases due to increasing I$ size. 
Figure 13, Figure 14 and Figure 15 show the power dissipation, CPI-per-core and average  
CPI-per-thread for store buffer sizes of 4 to 16 for NT = 1, 4 and 8 respectively. We observe similar 
increasing power consumption with increasing store buffer size. Both CPI-per-core and CPI-per-strand 
improve. In all these figures, the co-variance of core-level micro-architectural parameters D$ size, I$ 
size and SB size articulately demonstrates both the diminishing and positive effects of NT scaling. 
Power dissipation increases with NT. CPI-per-strand increases prohibitively affecting single thread 
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performance due to shared pipeline, whereas CPI-per-core decreases showing improvement in 
throughput in a core as more instructions are executed in a core due to latency hiding. 

Figure 16, Figure 18 and Figure 20 show the power dissipation and overall CPI observed in case of 
NT = 1, 4 and 8 respectively. Figure 17, Figure 19 and Figure 21 shows the peak power dissipation 
versus overall packet bandwidth observed in case of NT = 1, 4 and 8 respectively. Unlike the figures 
reporting core-level power dissipation and throughput, the overall power dissipation observed in the 
following figures include the cycle-accurate dynamic power consumption of the entire chip including 
all the cores, L2 cache and the crossbar interconnection. Interestingly, despite the consistent increase 
of peak power dissipation with increasing number of cores in the chip, packet bandwidth does not 
scale with number of cores due to the contention in the shared L2 cache. The diminishing effects of  
non-optimality can be observed especially in case of 128 cores. Packet bandwidth non-intuitively 
decreases as number of cores is scaled from 64 to 128. This further emphasizes the critical need of 
efficient and scalable micro-architectural power-aware design space exploration algorithms able to 
scan a wide range of possible design choices and find the optimal power-performance balance. In our 
case 32 cores is observed to be the optimal design since it shows the best power-performance balance. 
As shown in Figure 20, for the packet type TYPE1, with threads per core = 8, we observed both cache 
misses and pipeline stall reduce minimizing the CPI per core. In addition, with number of cores = 32, 
the wait time in the L2 cache queues was also minimum compared to the other core counts. Hence, in 
our case study of packet type TYP1, we found that with NT = 8, the optimal number of cores was 32. 
Increasing number of cores is diminishingly affecting throughput due to the non-optimal L2 cache 
micro-architecture which is divided into only 4 banks. Altering the number of L2 cache banks will 
mitigate contention and help increase packet bandwidth. 

In Figures 22 and 23, we show the power and throughput data (with a throughput budget 
constrained to at 90% of peak throughput with any voltage and frequency scaling) for Chipwide DVFS 
and MaxBIPS policies for packet type 3 (TYPE3) which is a typical representative of all other packet 
types. The baseline architecture is displayed in Table 15. Values on the X-axis correspond to the 
number of evaluation cycles, where one evaluation cycle is the time period between consecutive runs 
of the power management algorithms. Where not explicitly stated, one evaluation cycle corresponds to 
1024 processor clock cycles in our simulations. In Figure 22, the X-axis represents number of clock 
cycles and the Y-axis represents power (W). In Figure 23, the Y-axis represents throughput  
(in instructions per nanosecond-IPnS). 
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Figure 22. Power for Chipwide DVFS and MaxBIPS. 

 
Figure 23. Throughput for Chipwide DVFS and MaxBIPS. 

 

Table 15. Baseline architecture used in the experiments for power management. 

Fields Value 
Number of threads 4 
Data cache size 8 KB 
Data cache associativity 4 
Data cache line size 32 
Instruction cache size 16 KB 
Instruction cache associativity 4 
Instruction cache line size 32 
Store Buffer size 4 
Load Miss Queue size 4 
ASI Queue size 2 
Number of Cores 4 
L2 cache size 4 MB 
L2 cache banks 4 
L2 cache associativity 16 
L2 cache line size 64 
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As Figure 22 shows, the power consumption of MaxBIPS is much higher than Chipwide DVFS (the 
latter being the lower in power dissipation among the two methods). However the throughput of 
MaxBIPS is also higher than Chipwide DVFS. The percentage power-saving in all the cores in case of 
Chipwide DVFS and MaxBIPS is shown in Table 16. 

Table 16. Percentage power-saving due to Chipwide DVFS and MaxBIPS. 

 All Cores Running at 3.4 GHz Chipwide DVFS MaxBIPS 
Power (W) 0.0 35.9 26.2 

Figure 24 depicts the throughput per unit power (T/P) data for the two methods. Chipwide DVFS 
has the highest T/P values for the different packet types. Note that high T/P value for Chipwide DVFS 
arises from the fact that power dissipation in this scheme is substantially lower than other schemes, 
and not because the throughput is high. When implementing power management by Chipwide DVFS, 
any increase in the throughput of a single core over a target threshold triggers chipwide operating 
voltage (and hence, frequency) reductions in all cores, to save power. Hence, once the overall 
throughput exceeds the budget, all the cores have to adjust their power modes to a lower level. While 
this method reduces the overall power dissipation substantially, it also leads to excessive performance 
reductions in all cores as shown in Figure 24. 

Figure 24. Throughput per unit power data. 

 

A modification of the Chipwide DVFS algorithm required for achieving high performance is to 
assign a lower bound of throughput. Figures 25 and 26 show the power and throughput Chipwide 
DVFS characteristics (with a lower bound of throughput budget constrained to at 60% of peak 
throughput with all voltage-frequency levels) for packet type 3 (TYPE3). The power consumption and 
throughput of Chipwide DVFS are higher than those of MaxBIPS; this can be explained by the fact 
that the lower bound of throughput does not allow Chipwide DVFS to scale all the cores to lower 
voltage-frequency levels in order to guarantee the system performance. However the throughput per 
unit power of Chipwide DVFS is lower than those of MaxBIPS as Figure 27 demonstrates. The 
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percentage power-saving in case of Chipwide DVFS with and without lower bound on throughput is 
shown in Table 17. Table 18 shows the power, throughput, and throughput per unit power in this case.  

Figure 25. Power for Chipwide DVFS and MaxBIPS with a lower bound of throughput 
budget = 60% peak throughput. 

 

Figure 26. Throughput for Chipwide DVFS and MaxBIPS with a lower bound  
of throughput budget = 60% peak throughput. 
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Figure 27. Throughput per unit power data (Chipwide DVFS with lower bound throughput). 

 

Table 17. Percentage power-saving due to Chipwide DVFS and MaxBIPS. 

 All Cores Running at 3.4 GHz Chipwide DVFS MaxBIPS 
Power (W) 0.0 25.9 18.6 

Table 18. Power, throughput, throughput per unit power of Chipwide DVFS with and 
without lower bound on throughput. 

 With Lower Bound 60% of Peak T Without Lower Bound of Throughput 
Power in one 
time interval 

(W) 

Throughput 
in one time 

interval (IPnS)

Throughput 
per unit power 

(IPnS/W) 

Power in one 
time interval 

(W) 

Throughput  
in one time 

interval (IPnS) 

Throughput 
per unit power 

(IPnS/W) 
Chipwide DVFS 0.252 0.332 1.318 0.105 0.184 1.752 

In summary, experimental data show that when Chipwide DVFS is not enabled with lower bound of 
throughput, MaxBIPS has the highest throughput. Although Chipwide DVFS gives the highest 
throughput per unit power, its throughput, on average, is lower than that of MaxBIPs, which can be a 
constraining factor in high throughput systems that require throughputs close to the budget. When 
Chipwide DVFS is lower-bounded to 60% of peak throughput achievable by Chipwide DVFS, it 
produces the higher throughput and consumes the higher power between the two methods. This yields 
the lowest throughput per unit power for Chipwide DVFS, and MaxBIPS saves more power and 
achieves the highest throughput per unit power compared to the other two policies. Table 19 shows the 
relevant experimental results of two policies with different packet types. 
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Table 19. Power, throughput, throughput per unit power of two policies for different 
packet types. 

 
Chipwide DVFS Without Lower Bound MaxBIPS 

P (W) T (IPnS) T/P (IPnS/W) P (W) T (IPnS) T/P (IPnS/W)
TYPE0 3.72 6.61 1.78 7.53 10.62 1.41 
TYPE1 3.72 6.65 1.79 7.54 10.65 1.41 
TYPE2 3.93 6.65 1.69 7.83 10.65 1.36 
TYPE3 3.72 6.64 1.78 7.54 10.64 1.41 
TYPE4 3.72 6.64 1.78 7.54 10.63 1.41 
Average 3.75 6.64 1.76 7.58 10.64 1.40 

Table 20 shows the average power, average throughput, average throughput per unit power, average 
energy and average latency (execution time) of two power management policies while running about 
7300 instructions for all the packet types (averaging is done over all packet types). Results show that on 
average, Chipwide DVFS consumes 17.7% more energy than MaxBIPS and has 2.34 times its latency. 

Table 20. Average power, average throughput, and average throughput per unit power, 
average energy, and average execution time of two discussed policies. 

 P_average 
(W) 

T_average 
(IPnS) 

T/P_average 
(IPnS/W) 

Energy_average 
(nJ) 

Average Latency 
(nS) 

Chipwide without lower bound 3.75 6.64 1.77 3.371 34,816 
MaxBIPS 7.58 10.64 1.40 2.864 14,848 

Figures 28 and 29 show the dynamic and leakage power dissipations, along with the hardware 
implementation areas for the Chipwide DVFS and MaxBIPS algorithms, as the number of cores is 
scaled. The total power dissipation of the MaxBIPS DPM hardware for an 8 core processor is around 
101 µW, which is small compared to the average 20% power saving achieved. This justifies the use of 
on-chip power management units which enable substantial power saving while meeting the 
performance requirements of the packet processing application. 

Figure 28. Dynamic power, leakage power and area of the Chipwide DVFS module  
in CASPER. 
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Figure 29. Dynamic power, leakage power and area of the MaxBIPS module in CASPER. 

 

6. Related Work 

First we will do a brief survey of existing general purpose processor simulators and then  
power-aware simulators. The authors of [15,38–43] study variations of power and throughput in 
heterogeneous architectures. B. C. Lee and D. M. Brooks et al. minimize the overhead of  
micro-architectural design space exploration through statistical inference via regression models in [44]. 
The models are derived using fast simulations. The work in [45] differs from these in that they use 
full-fledged simulations for predicting and comparing performance and power of various architectures. 
A combination of analytic performance models and simulation-based performance models is used  
in [45] to guide design space exploration for sensor nodes. All these techniques rely on efficient 
processor simulators for architecture characterization. 

Virtutech Simics [46] is a full-system scalable functional simulator for embedded systems. The 
released versions support microprocessors such as PowerPC, x86, ARM and MIPS. Simics is also 
capable of simulating any digital device and communication bus. The simulator is able to simulate 
anything from a simple CPU + memory, to a complex SoC, to a custom board, to a rack of multiple 
boards, or a network of many computer systems. Simics is empowered with a suite of unique 
debugging toolset including reverse execution, tracing, fault-injection, checkpointing and other 
development tools. Similarly, Augmint [47] is an execution-driven multiprocessor simulator for Intel 
x86 architectures developed in University of Illinois, Urbana-Champagne. It can simulate 
uniprocessors as well as multiprocessors. The inflexibility in Augmint arises from the fact that the user 
needs to modify the source code to customize the simulator to model multiprocessor system. However 
both Simics and Augmint are not cycle-accurate and they model processors which do not have  
open-sourced architectures or instruction sets; this limits the potential for their use by the research 
community. Another execution-driven simulator is RSIM [48] which models shared-memory 
multiprocessors that aggressively exploit instruction-level parallelism (ILP). It also models an 
aggressive coherent memory system and interconnects, including contention at all resources. However 
throughput intensive applications which exploit task level parallelism are better implemented by the 
fine-grained multi-threaded cores that our proposed simulation framework models. Moreover we plan 
to model simple in-order processor pipelines which enable thread schedulers to use small-latency, 
something vital for meeting real-time constraints. 
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General Execution-driven Multiprocessor Simulator (GEMS) [49] is an execution-driven simulator 
of SPARC-based multiprocessor system. It relies on functional processor simulator Simics and only 
provides cycle-accurate performance models when potential timing hazards are detected. GEMS Opal 
provides an out-of-order processor model. GEMS Ruby is a detailed memory system simulator. GEMS 
Specification Language including Cache Coherence (SLICC) is designed to develop different memory 
hierarchies and cache coherence models. The advantages of our simulator over the GEMS platform 
include its ability to (i) carry out full-chip cycle-accurate simulation with guaranteed fidelity which 
results in high confidence during broad micro-architecture explorations; and (ii) provide deep chip 
vision to the architect in terms of chip area requirement and run-time switching characteristics, energy 
consumption, and chip thermal profile. 

SimFlex [50] is a simulator framework for large-scale multiprocessor systems. It includes  
(a) Flexus–a full-system simulation platform; and (b) SMARTS–a statistically derived model to reduce 
simulation time. It employs systematic sampling to measure only a very small portion of the entire 
application being simulated. A functional model is invoked between measurement periods, greatly 
speeding the overall simulation but results in a loss of accuracy and flexibility for making fine  
micro-architectural changes, because any such change necessitates regeneration of statistical functional 
models. SimFlex also includes FPGA-based co-simulation platform called the ProtoFlex. Our 
simulator can also be combined with an FPGA based emulation platform in future, but this is beyond 
the scope of this work.  

MPTLsim [51] is a uop-accurate, cycle-accurate, full-system simulator for multi-core designs based 
on the X86-64 ISA. MPTLsim extends PTLsim [52], a publicly available single core simulator, with a 
host of additional features to support hyperthreading within a core and multiple cores, with detailed 
models for caches, on-chip interconnections and the memory data flow. MPTLsim incorporates 
detailed simulation models for cache controllers, interconnections and has built-in implementations of 
a number of cache coherency protocols. CASPER targets an open-sourced ISA and processor 
architecture which Sun Microsystems, Inc. has released under the OpenSPARC banner [4] for the 
research community. 

NePSim2 [53] is an open source framework for analyzing and optimizing NP design and power 
dissipation at architecture level. It uses a cycle-accurate simulator for Intel's multi-core IXP2xxx NPs, 
and incorporates an automatic verification framework for testing and validation, and a power 
estimation model for measuring the power consumption of the simulated NP. To the best of our 
knowledge, it is the only NP simulator available to the research community. NePSim2 has been 
evaluated with cryptographic benchmark applications along with a number of basic test cases. 
However, the simulator is not readily scalable to explore a wide variety of NP architectures. 

Wattch [17] proposed by David Brooks et al. is a multi-core micro-architectural power estimation 
and simulation platform. Wattch enables users to estimate power dissipation of only superscalar  
out-of-order multi-core micro-architectures. Out-of-order architectures consist of complex structures 
such as reservation stations, history-based branch predictors, common data-width buses and re-order 
buffers and hence are not always power-efficient. In case of low-energy processors such as embedded 
processors and network processors simple in-order processor pipelines are preferred due to their 
relatively low power consumption. McPAT [54] proposed by Norman Jouppi is another multi-core 
micro-architectural power estimation tool. McPAT provides power estimation of both out-of-order and 
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in-order micro-architectures. Although efficient in estimating power dissipation for a wide range of 
values of the architectural parameters, McPAT is not cycle-accurate and hence incapable of capturing 
the dynamic interactions between the pipeline stages inside cores and other core-level micro-architectural 
structures, the shared memory structures and the interconnection network as all cores execute streams 
of instructions. 

7. Conclusion 

In this paper CASPER—a cycle-accurate simulator for shared memory many-core processors is 
presented. A variety of multi-threaded architectural parameters such as number of cores, number of 
threads per core, and cache sizes, to name a few, are tunable in the simulator. This allows the 
exploration of a vast many-core micro-architectural design space for throughput intensive high 
performance and embedded applications. Pre-characterized libraries containing scalable area, delay 
and power dissipation models of different hardware components are included in CASPER. This 
enables accurate power estimation and monitoring of dynamic and leakage power dissipation and area 
of designs at the high level architecture exploration stage. Additional hardware controlled power 
management modules are designed in CASPER which enables dynamic power saving. The power 
saving capabilities of two such dynamic power management algorithms namely Chipwide DVFS and 
MaxBIPS are discussed and their performance-power trade-offs are shown.  
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