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Abstract: Digital filtering is a fundamental technique in digital signal processing, which operates on
a digital sequence without any information on how the sequence was generated. This paper proposes
a methodology for designing the equivalent of digital filtering for neuromorphic samples, which are a
low-power alternative to conventional digital samples. In the literature, filtering using neuromorphic
samples is performed by filtering the reconstructed analog signal, which is required to belong to a
predefined input space. We show that this requirement is not necessary, and introduce a new method
for computing the neuromorphic samples of the filter output directly from the input samples, backed
by theoretical guarantees. We show numerically that we can achieve a similar accuracy compared to
that of the conventional method. However, given that we bypass the analog signal reconstruction
step, our results show significantly reduced computation time for the proposed method and good
performance even when signal recovery is not possible.

Keywords: event-driven sampling; time encoding machines; filter design

1. Introduction

In contemporary computing, the majority of tasks necessitate some form of digital
signal processing [1]. With the escalating computational capabilities of digital processing
systems, there is a concurrent surge in power consumption. This is further exacerbated
by the rapid advancements in the field of artificial intelligence. Neuromorphic sampling,
or time encoding, is an alternative to traditional digital encoding that transforms an ana-
log signal into a sequence of low-power time-based pulses, often referred to as a spike
train. Neuromorphic sampling draws its inspiration from neuroscience and introduces a
paradigm shift by significantly reducing power consumption during encoding and trans-
mission [2,3]. Despite these advantages, as of now, there exist no equivalents of digital
signal processing operations tailored to neuromorphic sampling. This unexplored ter-
ritory holds the promise of groundbreaking developments in low-power and efficient
signal processing.

In this paper, we address the problem of filtering a signal using its neuromorphic
measurements, thus extending the principle of digital signal filtering for the case of neuro-
morphic sampling. In posing this problem, we do not seek alternatives for spiking neural
networks, but rather theoretically validated analytical approaches. Moreover, the proposed
problem is not to replace existing conventional digital signal processing, but it is posed
under the assumption that the communication protocol is emitting and receiving spike
trains [4,5]. In this case, the proposed problem is to perform the mathematical operation of
filtering on the analog signals encoded in these spike trains.

In the literature, the concept of spike train filtering predominantly refers to convolving
the filter function with a sequence of Diracs centered in the spike times [6]. This is not an
operation on the analog signal that resulted in those neuromorphic samples. Moreover, in
the context of neuromorphic measurements generated from multidimensional signals, such
as those generated by event cameras [7], filtering also refers to performing multidimensional
spatial convolution [8,9]. The case of filtering the analog signal via its neuromorphic
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measurements was proposed in [10], but the process also involves signal reconstruction. A
filtering approach of neuromorphic signals without reconstruction was first studied in [11].

Therefore, conventionally, to process the signal underlying a sequence of spike mea-
surements, the signal is recovered in the analog domain, followed by filtering and neu-
romorphic sampling. There are a number of drawbacks with this approach. First, this
method does not exploit the power consumption advantage of neuromorphic measure-
ments. Second, this approach is heavier computationally due to the complexity of signal
reconstruction from neuromorphic samples [12,13]. Third, reconstruction is only possible
if the input satisfies some restrictive smoothness or sparsity constraints. However, for
conventional sampling, the process of digital filtering is independent of the charateristics
of the signal that generated the measurements.

In this paper, we derive a direct mapping between the time encoded inputs and outputs
of an analog filter. The proposed mapping forms the basis for a practical filtering algorithm
of the underlying signal corresponding to some given neuromorphic measurements, with-
out direct access to the signal. We introduce theoretical guarantees and error bounds for the
measurements generated with the proposed algorithm. Through numerical simulations, we
demonstrate the performance of our method in terms of speed, but also reduced restrictions
on the input signal, in comparison with the existing conventional method.

This paper is structured as follows. Section 2 presents a brief review of the time
encoding model used in this paper and associated input reconstruction methods. Section 3
introduces the proposed problem. Section 4 describes the proposed filtering method.
Numerical results are presented in Section 5. Section 6 presents the concluding remarks.

2. Time Encoding

The time encoding machine (TEM) is a conceptualization of neuromorphic sampling
that maps input u(t) into sequence of samples {tk}k∈Z. The particular TEM considered
here is the integrate-and-fire (IF) TEM, which is inspired by neuroscience. Consequently,
sequence {tk}k∈Z is called a spike train, where the spike refers to the firing of an action
potential, representing the information transmission method in the mammalian cortex.
Previously, the IF model was used for system identification of biological neurons [14,15]
to perform machine learning tasks [16,17] but also for input reconstruction [13,18–21].
The IF model adds input g(t) with bias parameter b, and subsequently integrates the
output to generate a strictly increasing function y(t). When y(t) crosses threshold δ, the
integrator is reset and the IF generates output spike time tk. The IF TEM is described by the
following equations: ∫ tk+1

tk

u(s)ds = δ− b(tk+1 − tk), k ∈ Z∗+. (1)

Without reducing the generality, it is assumed that t0 = 0. A common assumption
is that the input is bounded by c ∈ R+, such that |u(t)| 6 c < b. This bound enables
derivation of the following density guarantees [2]:

δ

b + c
6 tk+1 − tk 6

δ

b− c
. (2)

Signal u(t) is, in the general case, not recoverable from {tk}k∈Z. To ensure it can be
reconstructed, we require imposing restrictive assumptions. A common assumption is that
u(t) belongs to PWΩ, the space of functions bandlimited to Ω rad/s that are also square
integrable, i.e., u ∈ L2(R). If this assumption is satisfied, then u(t) can be recovered from
{tk}k∈Z if

δ

b− c
<

π

Ω
. (3)
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To ofer an intuition on the recovery condition and its link to the Nyquist rate, we note
that TEM Equation (1) can be re-written as〈

u,1[tk ,tk+1]

〉
L2

= δ− b(tk+1 − tk), (4)

where 〈·, ·〉L2 denotes the inner product in Hilbert space L2(R) of square integrable func-
tions and 1[tk ,tk+1]

is the characteristic function of [tk, tk+1]. We note that although
1[tk ,tk+1]

∈ L2(R), it is not bandlimited, i.e., 1[tk ,tk+1]
6∈ PWΩ. However, due to the properties

of the inner product [22],〈
u,1[tk ,tk+1]

〉
L2

= 〈u, ϕk〉L2 = δ− b(tk+1 − tk), (5)

where ϕk(t) ,
sin(Ω·)

π· ∗ 1[tk ,tk+1]
(t) denotes the projection of 1[tk ,tk+1]

in PWΩ. In the case of
the Nyquist rate condition, the uniform samples can be described as

u(kT) =
〈

u,
sin(Ω(· − kT))

π(· − kT)

〉
L2

.

The Nyquist rate criterion [23] ensures that {u(kT)}k∈Z uniquely identify u(t) if

T < π
Ω , which is guaranteed by the fact that functions

{
sin(Ω(·−kT))

π(·−kT)

}
k∈Z

form a basis in

PWΩ. The same is not true in the case of time encoding, which is a form of nonuniform
sampling [24–26], where {ϕk}k∈Z do not form a basis. They can, however, form the more
general concept of frame [27], which guarantees that u(t) is uniquely determined by
〈u, ϕk〉L2 if sequence {tk}k∈Z is dense enough. Via (2), we can use δ

b−c as a measure of
density of sequence {tk}k∈Z, yielding Nyquist-like criterion (3).

Input u(t) is then recovered from {tk}k∈Z as

u(t) = ∑m∈Z c̃m ·
sin Ω(t− sk)

π(t− sk)
,

where sk =
tk+tk+1

2 are the midpoints of intervals [tk, tk+1] and c̃k are the solution in the
least square sense of the following system [22]:

∑
n∈Z

cn

∫ tk+1

tk

sin Ω(t− sk)

π(t− sk)
dt = δ− b(tk+1 − tk). (6)

Unlike uniform sampling, the input recovery for an IF TEM is much more complex
computationally because, for each new input, functions sin Ω(t−sk)

π(t−sk)
have to be computed

and System (6) needs to be solved. This becomes very demanding computationally for long
sequences {tk}. Alternative recovery approaches are based on optimizing a smoothness-
based criterion instead of aiming to uniquely recover the input [28,29]. Moreover, the
problem of input recovery was shown to be equivalent to that of system identification of a
filter in series with an IF TEM in the case of linear [30,31] and nonlinear filters [32].

The methods presented so far are assuming the input is bandlimited. Further gen-
eralizations were introduced for the case where u(t) is a function in a shift-invariant
space [13,19] or in a space with finite rate of innovation [20,21]. However, if u(t) does not
belong to one of the classes above, or if it is bandlimited and does not satisfy (3), then
the conventional theory does not allow any processing of signal u(t) via its samples tk.
The same is not true for conventional digital signals, which can be processed even when
they are not sampled at the Nyquist rate. We show that some types of processing such as
filtering are still doable even when (3) is not true.
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3. Problem Statement

Here, we formulate the proposed signal filtering problem as follows. We assume the
neuron input is continuous, i.e., u ∈ C(R). To satisfy the neuron encoding requirement
in Section 2, we assume the input is bounded, such that |u(t)| 6 c < b, ∀t ∈ R. Further-
more, we assume that the input is absolutely integrable u ∈ L1(R) and square integrable
u ∈ L2(R). Following the same idea as in digital filtering, we do not impose any general
conditions on the bandwidth, smoothness, or sparsity of the analog signal in order to
compute the filter output.

The filter is assumed to be linear, with impulse response g(t) that is continuous,
g ∈ C(R), and absolutely integrable, g ∈ L1(R). The output of the filter then satisfies

y(t) =
∫ ∞

−∞
u(τ)g(t− τ)dτ,

|y(t)| 6
∫ ∞

−∞
|u(τ)| · |g(t− τ)|dτ 6 c‖g‖L1 6 c,

(7)

where the last inequality assumes that ‖g‖L1 6 1, which is introduced to ensure that
|y(t)| 6 c, which in turn allows y(t) sampling by the same neuron. According to the
properties of the convolution operator, we also have y ∈ L2(R) ∩ L1(R), where L2(R)
denotes the space of square integrable functions.

We let
{

tu
k
}

k∈Z and
{

ty
k

}
k∈Z

be the neuromorphic samples of signals u and y, respec-

tively, computed using an IF neuron with parameters δ, b. The proposed problem is to
compute ty

k knowing tu
k , sampling parameters δ, b and filter g(t). This problem, illustrated

in Figure 1, is inspired by digital signal processing, where a digital filter is applied directly
to the samples of a signal. The conventional way to address this problem would be to
recover u(t) from tu

k , apply filter g(t) in the analog domain, and subsequently sample
output y(t) with the same IF model to obtain ty

k . We refer to this as the indirect method
for filtering. The first step of recovery, however, is not possible unless we impose some
further restrictive conditions on u(t) such as being bandlimited [22], shift-invariant [13,19],
or having a finite rate of innovation [18,20]. Therefore, the proposed problem is not solvable
in its full generality using conventional approaches.

Figure 1. Approximating the output of an analog filter using input measurements. In the case of
uniform sampling measurements (bottom), digital filters are well known and have been studied
exhaustively. Mapping the filter input to the output was not studied extensively for neuromorphic
measurements. The conventional approach is to reconstruct the input and compute filtering in the
analog domain, which is time consuming and not always possible.
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However, if we replace neuromorphic sampling by conventional uniform sampling,
this problem leads to the widely used operation of digital filtering. The operation itself
does not require any special conditions on the analog signal that generated these sam-
ples. Therefore, an equivalent of this solution for the case of neuromorphic sampling is
highly desirable.

4. The Proposed Neuromorphic Direct Filtering Method

In this section, we describe the proposed direct filtering method. To compute ty
k from

tu
k we need to create an analytical link between the integrals of the underlying analog

signals u(t) and y(t) due to the integral operators in (1) and (7). To this end, we define the
following auxiliary functions:

U(t) ,
∫ t

0
u(τ)dτ, Y(t) ,

∫ t

0
y(τ)dτ. (8)

We note that U satisfies |U(t)| 6 ‖u‖L1 . Using Young’s convolution inequality, we
obtain |Y(t)| 6 ‖y‖L1 6 ‖u‖L1 · ‖g‖L1 . Using these functions, we derive the equivalent of
t-transform Equations (1) as

U(tu
k ) = kδ− btu

k , Y(ty
k) = kδ− bty

k , ∀k ∈ Z. (9)

Assuming we know Y(t), the target spike train ty
k satisfies fk(t

y
k) = ty

k , where

fk(t) ,
1
b
(kδ−Y(t)). (10)

The following result shows that ty
k can be uniquely computed using fk(t).

Lemma 1 (Exact Output Samples Computation). Function fk(t) has a unique fixed point
t = ty

k . Furthermore, we let ty
k,m be computed recursively such that ty

k,0 ∈ R is arbitrary and

ty
k,m+1 = fk

(
ty
k,m

)
. (11)

Then, limm→∞ ty
k,m = ty

k and
∣∣∣ty

k,m − ty
k

∣∣∣ < ∣∣∣ty
k − ty

k,0

∣∣∣( c
b
)m.

Proof. We assume, by contradiction, that ∃t̄ 6= ty
k such that fk(t̄) = t̄. It follows that

bt̄ + Y(t̄) =
∫ t̄

0
(y(τ) + b)dτ = kδ.

On the other hand, we know that |y(t)| 6 c < b due to (7), and thus
∫ t̄

0 (y(τ) + b)dτ

is a strictly increasing function of t̄, which ensures that
∫ t̄

0 (y(τ) + b)dτ = kδ has a unique
solution. Using (9), we obtain t̄ = ty

k , which invalidates our initial assumption and
proves uniqueness.

From (9), it follows that ∀k ∈ Z, fk(t
y
k) = ty

k . The following holds:∣∣∣ f ′k(t)∣∣∣ = ∣∣∣∣− y(t)
b

∣∣∣∣ 6 c
b

,

and thus
∀ζ > 0, ∀t ∈

[
ty
k − ζ, ty

k + ζ
]
, fk(t) ∈

[
ty
k − ζ

c
b

, ty
k + ζ

c
b

]
. (12)

We let ζ =
∣∣∣ty

k − ty
k,0

∣∣∣ and t = ty
k,0. It follows that∣∣∣ fk(t

y
k,0)− ty

k

∣∣∣ = ∣∣∣ty
k,1 − ty

k

∣∣∣ 6 ∣∣∣ty
k − ty

k,0

∣∣∣ c
b

. (13)



J. Low Power Electron. Appl. 2023, 13, 63 6 of 15

Similarly, by choosing ζ =
∣∣∣ty

k − ty
k,1

∣∣∣ and t = ty
k,1, we obtain

∣∣∣ty
k − ty

k,2

∣∣∣ 6 ∣∣∣ty
k − ty

k,1

∣∣∣ c
b
6
∣∣∣ty

k − ty
k,0

∣∣∣( c
b

)2
,

and the process continues recursively, which completes the proof via c < b.

Therefore, ty
k can be computed by solving the fixed-point equation fk(t) = t. This

equation requires knowing Y(t), which satisfies

Y(t) =
∫ t

0

∫ ∞

−∞
g(τ)u(s− τ)dτ ds =

∫ ∞

−∞
g(τ)

∫ t

0
u(s− τ)ds dτ

=
∫ ∞

−∞
g(τ)[U(t− τ)−U(−τ)]dτ =

∫ ∞

−∞
U(τ)[g(t− τ)− g(−τ)]dτ,

where the last equality uses the variable change τ → t− τ. In reality, however, Y(t) is
unknown, since it could only be precisely computed using U(t). Given that we only know
tu
k and do not impose any smoothness or sparsity conditions on u(t), we do not have access

to U(t), but only to its samples U
(
tu
k
)

via (9). In the following, we show that Y(t), fk(t)
and subsequently ty

k can be estimated using a piecewise constant approximation of U(t) at
points tu

k . We let f̃k : R→ R be defined by

f̃k(t) =
1
b

(
kδ− Ỹ(t)

)
, (14)

where
Ỹ(t) =

∫ ∞

−∞
I1U(τ)[g(t− τ)− g(−τ)]dτ, (15)

where I1U(t) is the piecewise constant interpolant to U at points
{

tu
k
}

k∈Z, such that

I1U(t) = U
(
tu
k
)

for t ∈
[
tu
k , tu

k+1

)
. The next proposition derives some properties of Ỹ(t).

Proposition 1. Function Ỹ(t) is continuous and satisfies

Ỹ(t) = ∑
k∈Z

U(tu
k )(G(t− tu

k ) + G(−tu
k ))−U(tu

k )
(
G(t− tu

k+1)− G(−tu
k+1)

)
, (16)

where G(t) ,
∫ t

0 g(s)ds.

Proof. Using (15), we obtain

Ỹ(t) = ∑
k∈Z

∫ tu
k+1

tu
k

I1U(τ)[g(t− τ)− g(−τ)]dτ

= ∑
k∈Z

U(tu
k )

[∫ tu
k+1

tu
k

g(t− τ)dτ −
∫ tu

k+1

tu
k

g(−τ)dτ

]
(17)

= ∑
k∈Z

U(tu
k )

[∫ t−tu
k

t−tu
k+1

g(τ)dτ −
∫ −tu

k

−tu
k+1

g(τ)dτ

]
,

which proves (16). It follows that Ỹ(t) is a linear combination of continuous functions; thus,
it is itself continuous.

Proposition 1 shows that, unlike Y(t) and fk(t), function Ỹ(t) and, consequently,
also f̃k(t), are fully known from the IF parameters and input samples tu

k . The remaining
challenge is to show that the fixed point equation f̃k(t) = t can be solved and to provide an
error bound for estimating ty

k . This challenge is addressed rigorously in the next theorem.
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Moreover, the result allows computing recursively a sequence of estimations t̃y
k,m that

converges to a vicinity of ty
k .

Theorem 1 (Estimating Output Samples from Input Samples). We let u(t) be a signal satisfy-
ing u ∈ L1(R)∩ L2(R)∩ C(R), |u(t)| 6 c < b. Furthermore, we let g(t) be the impulse response
of a filter satisfying g ∈ L1(R) ∩ C(R), ‖g‖L1 6 1, and let y(t) be the filter output in response to
input u(t). Signals u(t) and y(t), sampled with an IF neuron with parameters δ, b, generate values{

tu
k
}

k∈Z and
{

ty
k

}
k∈Z

, respectively. Then, the following hold true:

(a) ∀k ∈ Z, ∃ t̃y
k ∈

[
ty
k −

2δc
(b−c)2 , ty

k +
2δc

(b−c)2

]
such that f̃k(t̃

y
k) = t̃y

k , where f̃k(t) satisfies (14).

(b) We let t̃y
k,m be a sequence defined recursively as t̃y

k,m+1 = f̃k(t̃
y
k,m), where t̃y

k,0 ∈ R. Then,

∣∣∣t̃y
k,m − ty

k

∣∣∣ 6 ∣∣∣ty
k − t̃y

k,0

∣∣∣ · ( c
b

)m
+

2δc
b(b− c)

·
m

∑
i=1

( c
b

)i−1
. (18)

(c) For t̃y
k,m defined above, ∃m0 ∈ Z such that t̃y

k,m ∈
[

ty
k −

2δc
(b−c)2 , ty

k +
2δc

(b−c)2

]
, ∀m > m0.

Proof. (a) Function Ỹ satisfies∣∣∣Y(t)− Ỹ(t)
∣∣∣ 6 ∫ ∞

−∞
|U(τ)− I1U(τ)| · |g(t− τ)− g(−τ)|dτ

6 ∆ · sup
τ∈R

∣∣U′(τ)∣∣ · ∫ ∞

−∞
|g(t− τ)− g(−τ)|dτ 6 E,

(19)

where E = 2∆c‖g‖L1 , ∆ = supk∈Z
(

tu
k+1 − tu

k

)
. From (12), the following holds:

∀ζ > 0, ∀t ∈
[
ty
k − ζ, ty

k + ζ
]
, fk(t) ∈

[
ty
k − ζ

c
b

, ty
k + ζ

c
b

]
. (20)

Using
∣∣∣ fk(t)− f̃k(t)

∣∣∣ 6 E
b , ∀t ∈ R,

∀ζ > 0, ∀t ∈
[
ty
k − ζ, ty

k + ζ
]
, f̃k(t) ∈

[
ty
k − ζ

c
b
− E

b
, ty

k + ζ
c
b
+

E
b

]
. (21)

Unlike in the case of Lemma 1, in this case, applying f̃k(t) recursively does not
guarantee the exact computation of ty

k . However, we observe that by picking ζ = E
b−c , we

obtain identical intervals for t and f̃k(t):

∀t ∈
[

ty
k −

E
b− c

, ty
k +

E
b− c

]
, f̃k(t) ∈

[
ty
k −

E
b− c

, ty
k +

E
b− c

]
. (22)

This observation is very useful as it enables applying Brouwer’s fixed-point theorem
which states that for any continuous function f : S→ S where S is a nonempty compact
convex set, there is a point t0 such that f (t0) = t0. Given that Ỹ(t) is continuous due to
Proposition 1, it follows that f̃k is also continuous. By applying Brouwer’s fixed point
theorem for f (t) = f̃k(t) and S =

[
ty
k −

E
b−c , ty

k +
E

b−c

]
, it follows that fk(t) has a fixed point

in S. We recall that E = 2∆c‖g‖L1 , which, using (2), leads to

E 6
2δc

b− c
‖g‖L1 6

2δc
b− c

. (23)
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It follows that S ⊆
[

ty
k −

2δc
(b−c)2 , ty

k +
2δc

(b−c)2

]
, which yields the required result.

(b) We approach this proof using mathematical induction. We select t = t̃y
k,0 in (21).

Using (23), it follows that∣∣∣ f̃k

(
t̃y
k,0

)
− ty

k

∣∣∣ 6 ζ
c
b
+

2δc
b(b− c)

, s.t. t̃y
k,0 ∈

[
ty
k − ζ, ty

k + ζ
]
. (24)

We note that t̃y
k,0 ∈

[
ty
k − ζ, ty

k + ζ
]

is always true for ζ =
∣∣∣ty

k − t̃y
k,0

∣∣∣, which yields

∣∣∣ f̃k

(
t̃y
k,0

)
− ty

k

∣∣∣ 6 ∣∣∣ty
k − t̃y

k,0

∣∣∣ c
b
+

2δc
b(b− c)

. (25)

This demonstrates that (18) is true for m = 1. To finalize the induction, we assume (18)
to be true, and show it is true for m + 1 as follows:∣∣∣t̃y

k,m+1 − ty
k

∣∣∣ = ∣∣∣ f̃k

(
t̃y
k,m

)
− ty

k

∣∣∣ 6 ζ
c
b
+

2δc
b(b− c)

. (26)

Finally, as before, we use the fact that ζ =
∣∣∣ty

k − t̃y
k,m

∣∣∣ guarantees t̃y
k,m ∈

[
ty
k − ζ, ty

k + ζ
]
.

We also use the fact that ζ is bounded by (18), which, when substituted in (26), leads to the
desired result via (23).

(c) Equation (18) can be expanded into

t̃y
k,m 6 ty

k +
∣∣∣ty

k − t̃y
k,0

∣∣∣( c
b

)m
+

2δc
(b− c)2 ·

(
1−

( c
b

)m)
, (27)

t̃y
k,m > ty

k −
∣∣∣ty

k − t̃y
k,0

∣∣∣( c
b

)m
− 2δc

(b− c)2 ·
(

1−
( c

b

)m)
. (28)

The required result follows from limm→∞
( c

b
)m

= 0 via (23).

Theorem 1 shows that one can construct sequence t̃y
k,m that approximates ty

k with error
2δc

(b−c)2 . We note that this error is dependent only on neuron parameters, and thus can be

made arbitrarily small by changing the IF model. In practice, we use a finite sequence of
input measurements

{
tu
l
}

l=0,...,L to approximate output samples
{

ty
k

}
k=0,...,K

that satisfy

tu
0 6 ty

k 6 tu
L, ∀k = 0, . . . , K. The proposed direct filtering method is summarized in

Algorithm 1.
We note that, in practice, convergence was achieved in Algorithm 1 for M 6 4

iterations in all examples we evaluated. Moreover, we note that, in the proposed manuscript,
computing t̃y

k+1 uses t̃y
k as an initial condition. When new input data samples become

available, Algorithm 1 incorporates them in computing new output data samples, but does
not need to re-compute the output samples that are already known. In the next section, we
numerically evaluate the proposed algorithm.
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Algorithm 1 Computing the neuromorphic output data samples via the proposed method .

Data:
{

tu
k
}

, g(t), δ, b;

Result:
{

t̃y
k

}
;

Step 1. Set k = 1 and t̃y
0 = 0. While t̃y

k−1 < tu
L,

Step 1a. t̃y
k,0 = t̃y

k−1;

Step 1b. Compute t̃y
k,m+1 = f̃k

(
t̃y
k,m

)
for m = 1, . . . , M, where f̃k(t) = 1

b

(
kδ− Ỹ(t)

)
,

Ỹ(t) =
L

∑
l=0

U(tu
l )(G(t− tu

l )− G(−tu
l ))−U(tu

l )
(
G(t− tu

l+1) + G(−tu
l+1)

)
, (29)

and G(t) =
∫ t

0 g(τ)dτ, U(tu
l ) = lδ− btu

l , l = 0, . . . , L;

Step 1d. t̃y
k = t̃y

k,M;
Step 1e. k = k + 1;

Step 2. Set K = k− 2.

5. Numerical Study

In order to evaluate the performance of the proposed method, we define the following
approximation errors:

1. Output inter-spike time error between the output of the time-encoded filter and the
time-encoded output of the conventional filter:

et
j(k) =

(
ty
k+1 − ty

k

)
−
(

t̃
yj
k+1 − t̃

yj
k

)
, ∀k = 1, . . . , K,

where t̃
yj
k is the output spike train prediction with Algorithm 1 (j = 1) and the

conventional method, involving the reconstruction of u(t) (j = 2).
2. Output error between the decoded output of the time-encoded filter and the output

of the conventional digital filter:

ey
j (t) = y(t)− ỹj(t), ∀t ∈ [0, 2], j = 1, 2.

We compute the errors as percentages of true quantities
(

ty
k+1 − ty

k

)
and y(t), respec-

tively, by defining the following normalized error metrics:

ERRt
j = 100 ·

‖et
j‖`2√

∑K
k=1

(
t
yj
k+1 − t

yj
k

)2
(%), ERRy

j = 100 ·
‖ey

j ‖L2

‖y‖L2
(%).

Furthermore, we denote by Time1 and Time2 the computation times of the output spike
train with the proposed and indirect methods, respectively. In our numerical examples, we
discretize the time using a simulation time step of ε = 1× 10−4 s. The parameters used,
errors and computing times are summarized in Table 1.

Table 1. The parameters used in our numerical simulations section are summarized below.

Example Input Filter δ ERRt
1 (%) ERRt

2 (%) ERRy
1 (%) ERRy

2 (%) Time1 (s) Time2 (s)

5.1 Low pass Low pass 0.05 0.49 0.75 0.82 3.35 0.62 2.93
5.2 Uniform Noise Low pass 0.1 0.6 1.06 25.2 26.6 0.32 0.81
5.3 Uniform Noise Low pass 0–0.1 0.5–1.3 1–3 22–25 24–32 0.1–1 1–20
5.4 Uniform Noise Wavelet 0.04 2.85 3.2 N/A N/A 0.2 3
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5.1. Low-Pass Filtering of a Bandlimited Signal

The selected filter has the following transfer function:

G(s) =
ωc

s + ωc
, (30)

where ωc = 10 rad/s. Furthermore, the input is generated as

u(t) =
N

∑
k=1

ck ·
sin(Ω(t− kπ/Ω))

Ω(t− kπ/Ω)
, t ∈ [0, 2], (31)

where N = 191 and ck are random coefficients drawn from the uniform distribution on
(−1, 1), and Ω = 100 rad/2. We select ci = 0, i ∈ {1, 2, 3, N − 2, N − 1, N} in order to avoid
boundary errors for input recovery. The input and output of system G(s) are sampled
with an integrate and fire neuron with parameters δ = 0.05, b = 6. Signals u(t), y(t) and
corresponding spike times are depicted in Figure 2a,b, respectively.

Figure 2. Output spike train prediciton for a bandlimited input. (a) Filter input and the corresponding
spike train. (b) Filter output and the corresponding spike train. (c) Recovery errors ey

2(t) and ey
1(t)

with the indirect and proposed method, respectively.

We estimate spike times ty
k in two different ways, via the indirect method presented in

Section 3 and the proposed direct method in Section 4. The results are depicted in Figure 3,
and the recovery errors are ERRt

1 = 0.49% for the proposed method and ERRt
2 = 0.75%

for the indirect method. Furthermore, the filter output errors are ERRy
1 = 0.82% and

ERRy
2 = 3.35%. However, the computing times are 0.62 s for the proposed method and

2.93 s for the indirect method. We note that a major contribution in the error induced
by the conventional method is due to boundary errors, which are a known artefact of
reconstruction [12,33].
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Figure 3. Spike train prediction comparative performance: the true inter-spike intervals, interposed
on the predicted inter-spike intervals with the indirect and proposed methods, respectively.

5.2. Low-Pass Filtering of Uniform White Noise

To show that the proposed method has no limitations in terms of input bandwidth, as
indicated by the bounds in Theorem 1, here, we choose u(t) to be drawn from the random
uniform distribution on [−1.5, 1.5]. Given that in this case, filter G(s) reduces significantly
the noise amplitude, we amplify the output by 10 using the new filter, G(s) = 10 · ωc

s+ωc
,

where ωc = 10 rad/s. The neuron parameters are δ = 0.1, b = 6. The input and output
signals, as well as the output recovered with both methods, are presented in Figure 4a,b.
The proposed prediction method does not need any knowledge of the input bandwidth. As
an alternative, we reconstruct the input with the conventional indirect method, where the
recovery bandwidth is Ω = 100 rad/s. The value of Ω is well above the cuttoff frequency
of filter ωc, which leads to accurate recovery of the filter output. However, random input
u(t) cannot be recovered for any Ω > 0.

The output spike train prediction with both methods is presented in Figure 5a. The cor-
responding errors are ERRt

1 = 0.6%, ERRt
2 = 1.06%, ERRy

1 = 25.22%, and ERRy
2 = 26.68%,

also summarized in Table 1. The computing times are 0.32 s for the proposed method and
0.81 s for the indirect method.

Figure 4. Output spike train prediction for uniform random noise. (a) Filter input and corresponding
spike train. (b) Filter output and corresponding spike train. (c) Recovery errors ey

2(t) and ey
1(t) with

the indirect and proposed methods, respectively.
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Figure 5. (a) Spike train prediction comparative performance: the true inter-spike intervals, inter-
posed on the predicted inter-spike intervals with the indirect and proposed methods, respectively.
(b) Spike train prediction comparative performance for 10 values of δ uniformly spaced in [0.02, 0.1].

5.3. The Effect of Spike Density on Performance

During our experiments, we noticed that neuron threshold δ has an important role in
deciding the computation time of both prediction routines. To illustrate this, we repeated
the experiment in Section 5.2 using the same settings where δ was iteratively assigned
10 values uniformly spaced in interval [0.02, 0.1]. As before, we measured the error on
the predicted spike train, the reconstructed filter output and computation time for each
method, illustrated in Figures 5b and 6a,b, respectively.

Figure 6. Filter output computation for 10 values of δ uniformly spaced in [0.02, 0.1]. (a) Analog
output error. (b) Computation time.

5.4. Output Spike Prediction for Neuron Sampling below the Nyquist Rate

In the examples presented so far, the filter output is sampled at a rate that allows
input reconstruction. In this example, we use a uniform white noise input bounded in
[−1.5, 1.5]. The input is filtered using a bandpass filter computed employing the Daubechies
orthogonal wavelet 30, depicted in Figure 7. We note that the effective bandwidth is around
1200 rad/s. When sampled with an IF with parameters δ = 0.04, b = 6, the filter output
samples satisfy max

(
ty
k+1 − ty

k

)
= 0.0074 > π

Ω = 0.0026, which violates the condition for

perfect recovery in (3). Therefore, in this example, we only evaluate the error using ERRt
j,

as ERRy
j involves the reconstruction of the filter output from IF measurements.

We note that, as in Sections 5.2 and 5.3, here, the input is not bandlimited, and its
recovery cannot be guaranteed by (3). In this case, the choice of the bandwidth parameter
Ω used in recovery is not determined by any existing theoretical result. We run the conven-
tional method by changing the recovery bandwidth across 11 uniformly distributed values
in interval [500 rad/s, 1500 rad/s]. The comparative results are depicted in Figure 8a,b.
We note that the proposed direct method does not have the bandwidth as a parameter,
and therefore its performance is the same for all choices of Ω. The results show that the
error introduced by the conventional method ERRt

2 changes quite significantly with Ω.
An error around 15% higher than the proposed method is achieved for Ω ∈ [600, 1300],
but the difference becomes significantly larger for Ω outside this interval. Meanwhile, the
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computation time of the proposed method is more than one order of magnitude lower than
that of the conventional method (see Figure 8b) for all values of Ω.

Figure 7. Bandpass filter computed via the Daubechies orthogonal wavelet 30.

Figure 8. Filter output computation for 11 values of the reconstruction bandwidth uniformly spaced
in [500 rad/s, 1500 rad/s]. (a) Spike train output error. (b) Computation time.

6. Conclusions

In this work, we introduced a new method to filter an analog signal via its neuromor-
phic measurements. Unlike existing approaches, the method does not require imposing
smoothness type assumptions on the analog input and filter output, such as a limited band-
width. We introduced recovery guarantees, showing that it is possible to approximate the
output spike train with arbitrary accuracy for an appropriate choice of the sampling model.
We compared the proposed method numerically against the conventional solution to this
problem, which involves reconstruction of the analog signal. The results show the accuracy
of the proposed method is comparable to that of the conventional approach. However,
the computing time was smaller for the proposed method in all examples, ranging from
2–3 times up to more than one order of magnitude smaller.

Conceptually, the proposed method has the advantage of not depending on the char-
acteristics of the analog signal, and therefore it is not restricted to satisfy any reconstruction
guarantees. As demonstrated numerically, the method works well in the case of random
inputs, as well as when the input and output of the filter are sampled below Nyquist.
Moreover, given the fact that it bypasses input reconstruction, the proposed method is not
affected by known artefacts of recovery methods such as boundary errors.

This work can be extended in several directions. First, the theoretical results can be
extended to work with higher-order interpolation rather than a piecewise constant, which
may lead to better error bounds. Second, the results can be extended for the more general
scenarios of multichannel or nonlinear filters. Third, the proposed algorithm could be
implemented in hardware and tested in practical communication scenarios. This work has
the potential to lead to the development of neuromorphic filters that would facilitate a
faster transition towards a power-efficient computing infrastructure.
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