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Abstract: Convolutional Neural Networks (CNNs) have been incredibly effective for object detection
tasks. YOLOv4 is a state-of-the-art object detection algorithm designed for embedded systems. It is
based on YOLOv3 and has improved accuracy, speed, and robustness. However, deploying CNNs
on embedded systems such as Field Programmable Gate Arrays (FPGAs) is difficult due to their
limited resources. To address this issue, FPGA-based CNN architectures have been developed to
improve the resource utilization of CNNs, resulting in improved accuracy and speed. This paper
examines the use of General Matrix Multiplication Operations (GEMM) to accelerate the execution of
YOLOv4 on embedded systems. It reviews the most recent GEMM implementations and evaluates
their accuracy and robustness. It also discusses the challenges of deploying YOLOv4 on autonomous
vehicle datasets. Finally, the paper presents a case study demonstrating the successful implementation
of YOLOv4 on an Intel Arria 10 embedded system using GEMM.

Keywords: YOLOv4; GEMM; FPGA; autonomous driving

1. Introduction

In Advanced Driver Assistance Systems (ADAS), the object detection model should be
able to detect various types of objects, such as vehicles, pedestrians, cyclists, and road signs,
in a variety of conditions, such as day and night, rain, and snow. Thus, it is essential to
choose an accurate and fast model to help the driver to make safer decisions and to avoid
accidents [1]. However, several algorithms are proposed to detect objects, including single-
shot detector (SSD) [2], Faster R-CNN [3], Region-based Convolutional Neural Networks
(R-CNN) [4], and You-Only-Look-Once (YOLO) [5]. Among these models, YOLOv4 has
achieved high accuracy and speed on various object detection tasks, outperforming the
other models. Moreover, FPGAs are becoming more prevalent in ADAS due to their ability
to rapidly develop complex systems and accurate data processing from multiple sources in
real-time. FPGAs also require less power than traditional microprocessors, which makes
them ideal for ADAS because they can be used to reduce system power consumption [6].
In addition, FPGAs are cost-effective and can be adapted to meet the needs of different
ADAS applications.

Our research aims to evaluate the robustness and effectiveness of YOLOv4 on large
autonomous driving datasets. Comprehensive analysis, performance evaluation, and
dedicated FPGA architecture design will advance ADAS technologies and facilitate efficient
and accurate object detection. The main contributions of this paper are outlined as follows:

• Comprehensive analysis: We conduct a thorough investigation of the algorithmic
complexity of YOLOv4 on the KITTI and Self Driving Car datasets, considering
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various input sizes. This analysis provides a detailed understanding of the algorithm’s
computational requirements and helps identify potential areas for optimization.

• Performance evaluation: In addition to analyzing the algorithm’s complexity, we
evaluate the performance of YOLOv4 on self-driving datasets. This evaluation encom-
passes accuracy assessment, where we quantify the detection precision and recall rates
achieved by YOLOv4 on the autonomous driving datasets.

• FPGA-based GEMM implementation: To optimize the computational efficiency of
YOLOv4, we propose a novel FPGA architecture specifically designed for implement-
ing the GEMM operation within the algorithm.

This paper is organized in the following sections. Section 2 introduces the related
work. Section 3 presents the autonomous driving datasets and provides an overview of
the YOLOv4 algorithm and its architecture. Section 4 outlines the experiment setting and
describes the evaluation metrics employed to assess the performance of the algorithm.
Section 5 presents the results of the study and offers an analysis of the findings. In Section 6,
we propose an FPGA-based GEMM for YOLOv4 and evaluate its effectiveness on two
autonomous driving datasets. Finally, we summarize our findings and draw some outlook
directions for future research in Section 7.

2. Related Work

Several implementations of CNN and GEMM for YOLOv4 have been proposed to
fulfill high ADAS requirements. Most of the implementations are based on the PyTorch
framework and exploit the power of GPUs for fast inference and training. Among these
implementations, the paper [7] proposes a new methodology for the efficient execution of
CNN inference on embedded CPU-GPUs MPSoCs. This methodology takes full advantage
of task (pipeline) and data-level parallelism in a CNN to obtain high-throughput execution.
This proposed methodology is evaluated by mapping real-world CNNs onto an NVIDIA
Jetson MPSoC with integrated CPU-GPUs. Their results show 20% higher throughput
than the leading TensorRT DL framework for NVIDIA Jetson MPSoCs. Similarly, Ref. [8]
discusses adapting the YOLOv4 neural network detector architecture to multispectral
pedestrian detection, evaluating its accuracy and efficiency in automotive applications
on Nvidia RTX 3080. Experiments on the KAIST dataset demonstrate that YOLOv4 can
achieve high accuracy while retaining low latency of 30 ms and low false negatives, making
it suitable for real-time decision-making. The experiments also show that thermal and
visible light images can be merged in the modern YOLOv4 architecture without additional
computational cost, assuming the two images are aligned and synchronized. Another
implementation on an embedded GPU was done by [9], which introduces a new object
detection model, YOffleNet, based on YOLOv4, but with a much lighter network architec-
ture that uses ShuffleNet modules instead of CSP DenseNet. Experiments with the KITTI
dataset showed that YOffleNet is compressed by 4.7 times, achieving a speed of 46 FPS on
an embedded GPU system (NVIDIA Jetson AGX Xavier). Despite the high compression
ratio, the accuracy is only slightly reduced to 85.8% mAP, which is only 2.6% lower than
YOLOv4. Although, GPUs can provide inference times that meet the needs of advanced
driver assistance systems (ADAS), they consume a significant amount of energy, which can
be prohibitive in embedded CNN applications [10].

Thus, alternative hardware solutions and optimization techniques are needed to
ensure that the power consumption of the embedded CNNs remains within acceptable
limits while meeting the performance requirements of ADAS. In particular, an optimized
version of YOLOv4 has been proposed by [11], which presents hardware acceleration of
the YOLOv4 object detection algorithm on the Xilinx Zynq-7000 system-on-chip (SoC). The
proposed implementation enables efficient resource utilization of 43.6% of LUTs, 43.04%
of Flip-flops, 82.17% of BRAMs, 79% of DSPs, 189.14 GOP/s throughput, and 10.36 W
power consumption. The implementation also achieves a frame rate of 30 FPS with the
MS-COCO reference dataset, but does not provide the evaluation accuracy of the algorithm.
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The Vivado HLS tool is used to synthesize and implement the object detection algorithm
on the SoC.

A different work for accelerating convolution operations is proposed by [12]. This
work proposes an FPGA-based architecture to accelerate convolution operations to provide
AI functionality to edge devices. The architecture is implemented in Verilog and can be
used with different FPGA devices. It can compute simultaneously on multiple feature
channels and filter cores, increasing computational parallelism. Their experiences show
that the architecture can achieve 0.224 GOPS on a single core when used on a single edge
computing FPGA board and 4.48 GOPS when fully utilized. Likewise, this paper [13]
explores neural-network-based FPGA acceleration by accelerating general matrix mul-
tiplication (GEMM). They propose a design that exploits 8-bit quantization to improve
bandwidth while preserving model accuracy, leveraging FPGAs for model parallelization
and data reuse for high-performance, low-latency neural network inference. The design is
implemented on Xilinx-based Zynq SoCs and tested on the MNIST dataset. The proposed
method produces faster acceleration while maintaining nearly identical performance to the
unquantized method.

Additionally, the paper [14] presents a low-memory GEMM algorithm for CNN infer-
ence on Xilinx Virtex UltraScale+ VU9P FPGAs. The authors design a new accelerator based
on systolic networks and a three-level cache to increase parallelism and save bandwidth.
The design is evaluated on MobileNet V1 and Inception V4, and the results show excellent
performance in terms of throughput and latency with a reduction in memory usage of
21–44%. Additionally, an automated framework for implementing hardware-accelerated
DNN architectures is proposed by [15] on Xilinx ZYNQ SoCs for Edge computing appli-
cations. The framework combines the scalability of custom hardware with optimization
strategies to improve performance per watt while maintaining accuracy. The proposed
framework provides an end-to-end solution that facilitates the efficient deployment of
topologies on FPGAs. Experiments show that the architectures developed by the frame-
work provide the best trade-off between performance, power consumption, and system cost.
As a result, the low-power DNN topologies generated for the MNIST database achieved
a high throughput of 3626 FPS and power consumption of only 0.266 W.

Much of the research on FPGA-based accelerators focusing on efficiency and cost-
effectiveness by utilizing lightweight object detection models and small datasets. These
approaches aim to simplify development and enable real-time applications. However,
our research takes a distinct approach by emphasizing the utilization of the full-weight
YOLOv4 object detection algorithm on extensive autonomous driving datasets. This
choice enables us to explore the algorithm’s suitability for Advanced Driver Assistance
Systems applications demanding high detection accuracy. The outcomes of our work hold
paramount importance, as they will yield invaluable insights into the suitability of YOLOv4
for Advanced Driver Assistance Systems (ADAS) applications demanding high detection
accuracy. By focusing on the robustness and efficacy of YOLOv4 on large-scale autonomous
driving datasets, our research aims to significantly contribute to the advancement of ADAS
technologies and their practical implementation.

3. Materials and Methodology

In autonomous driving applications, object detection models are typically based on
deep-learning neural networks. Object detection is an essential part of autonomous driving,
enabling autonomous cars to recognize and react to their environment. One of the most
challenging aspects of autonomous driving is detecting and recognizing objects on the road,
including vehicles, pedestrians, traffic signs, and traffic lights [16]. Several object detection
models exist in the literature, including YOLO, SSD, and Faster RCNN, among others.
However, to determine the most suitable model for autonomous driving applications, it
is essential to evaluate the accuracy of these models. This paper presents an evaluation
of several state-of-the-art object detection models on the COCO dataset. We compare
the models using the mean Average Precision (mAP) metric and present the results to
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determine the most accurate model for the given tasks. In addition, we focus on the model
that provides the most satisfactory performance on the COCO dataset. Additionally, we
evaluate it over two popular autonomous driving datasets, KITTI, and Self Driving Car.

3.1. Vision-Based Object Detection Algorithm

Object detection models use a combination of object classifiers and object localizers to
accurately identify and localize objects within an image or video [17]. Convolutional neural
networks (CNNs) are used to train these models to recognize and localize objects of specific
types, such as cars, people, and animals, within an image or video. Object detection models
are applicable to various applications, including self-driving cars, automated surveillance
systems, facial recognition systems, and medical image analysis [18]. In this experiment, we
evaluate different object detection models using DL Workbench, to facilitate assessing and
using these models [19]. Table 1 presents information on several object detection models.
We evaluated the mAP of these models on the Deep Learning Workbench framework
released by Intel. This framework contains pre-trained object detection and classification
models. It allows users to evaluate model accuracy and inference time using virtual CPUs
and GPUs on multiple datasets, such as COCO, a benchmark dataset commonly used
for object detection tasks, including a large number of images with a variety of objects in
different contexts. The mAP metric computes the average accuracy for each object class
and averages the average accuracy of all classes. The third column refer to the number
of parameters, which is the sum of all weights and biases of the neural network. For
example, YOLOv4 has over 60 million trainable parameters. The results show that the
YOLO series models outperform the other models on the COCO dataset, and YOLOv4 is
the most accurate, with an mAP of 77.40%. This signifies that the YOLO models are very
effective for object detection on this dataset. Furthermore, YOLOv4 has gained a significant
accuracy improvement over previous versions of YOLO and other object detection models,
thus making it a prominent option for autonomous driving applications.

Table 1. Performance analysis of object detection models on COCO.

Object Detection Models Year N° of Parameters (×106) Model Size (MB) Backbone mAP %

RetinaNet 2017 65.13 146 Resnet + FPN 1 33.15
Rfcn-resnet-101 2016 53.46 206 Resnet-101 28.40
SSD-mobilenet-v1 2017 6.80 27 Mobilenet 23.33
SSD-mobilenet-v1-fpn 2017 36.18 119 Mobilenet + FPN 35.54
SSD-mobilenet-v2 2019 16.81 65 Mobilenet 24.95
SSDlite-mobilenet-v2 2018 4.47 18 Mobilenet 24.29
SSD-resnet50-v1-fpn 2017 56.93 198 Resnet-50 + FPN 35.01
Faster-RCNN-resnet-50 2015 29.16 112 Resnet-50 30
Faster-RCNN-resnet-101 2015 48.12 185 Resnet-101 35.72
Faster-RCNN-inception-v2 2015 13.30 52 Inception 26.24
YOLO-v2 2016 50.95 195 Darknet-19 53.15
YOLO-v2-tiny 2016 11.23 43 Darknet-19 29.11
YOLO-v3 2018 61.92 237 Darknet-53 67.7
YOLO-v3-tiny 2018 8.84 33 Darknet-19 33.1
YOLO-v4 2020 64.33 247 Cspdarknet-53 77.40
YOLO-v4-tiny 2020 6.05 24 Cspdark-53-tiny 46.3

1 Feature Pyramid Networks.

3.2. Datasets

The KITTI dataset [20] is well-known for training and testing autonomous driving
algorithms. It includes images, labels, and calibration data acquired from the onboard
camera, lidar, and radar sensors of a vehicle driven on German public roads. The collection
includes 7481 images of various locations, such as city streets, highways, and rural locations.
In addition, the dataset structures road participants in eight different classes (car, van, truck,
pedestrians, cycle, tram, and misc.). Calibration information is required to convert sensor
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values to real-world coordinates. The dataset is suitable for a wide range of applications,
including object detection, semantic segmentation, and 3D reconstruction.

The Self Driving Car dataset [21] comprises driving in Mountain View, California, and
surrounding cities during daylight hours. It contains 97,942 labels divided into 11 classes,
such as biker, car, pedestrian, traffic lights, trafficLight-Green, trafficLight-GreenLeft,
trafficLight-Red, trafficLight-RedLeft, trafficLight-Yellow, trafficLight-YellowLeft, truck,
and 15,000 images captured by a Point Grey camera at full HD resolution (1920 × 1200 px)
at 2 Hz.

The KITTI and Self Driving Car datasets are ideally suited to evaluate the performance
of YOLOv4 in the autonomous driving domain. These datasets contain images of envi-
ronments, such as highways and city streets, which is common in autonomous driving
applications. In addition, they provide many annotated images, which can be used to train
and accurately evaluate the object detection capabilities of YOLOv4. Furthermore, the
images in these datasets are specifically designed to simulate real-world driving scenarios
as shown in Figures 1 and 2. They can be used to evaluate the accuracy of YOLOv4 under
various driving conditions. We summarize the number of classes and the data structure of
the two datasets in Table 2.

Figure 1. Self Driving Car dataset images.

Figure 2. KITTI dataset images.

Table 2. Datasets description.

Dataset Training Set Testing Set Total Class

KITTI [20] 5237 2244 7481 8
Self Driving Car [21] 10,500 4500 15,000 11
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3.3. YOLOv4 Workflow

YOLOv4 has several advantages over other models. First and foremost, YOLOv4 is
more accurate than the majority of other models. It has achieved a mean average precision
of 77.40 on COCO, which is significantly higher than other models. Second, YOLOv4 is
also more efficient than most other models. It can process up to 65 frames per second on
a single GPU and up to 18 frames per second on a single CPU [22], making YOLOv4 much
faster than other models. Finally, YOLOv4 is also more flexible than other models. It is an
excellent choice for various applications, especially for autonomous driving.

YOLOv4 is a state-of-the-art object detection architecture developed by [22]. It is based
on the well-known YOLOv3 architecture [23] and is a powerful deep-learning technique
for object detection. The main difference between YOLOv3 and YOLOv4 is the addition
of the SPP-Net and PANet layers that help to improve the accuracy of the model. The
YOLOv4 workflow proceeds through three main components, as shown in Figure 3 the
feature extractor, the neck, and the head. The YOLOv4 workflow starts with the input
image, which is pre-processed to a standard size, and then goes through a feature extractor
as the backbone of the network to extract the feature maps. It consists of a new network
architecture called CSPDarknet-53, which contains 53 convolutional layers. Adding these
layers improves the accuracy and speed of the model. Afterward, the neck processes
the features extracted from the feature extractor, consisting of convolutional layers, batch
normalization, and pooling. Finally, the head is the final output layer that contains the
classification and regression heads for feature detection. It is typically a fully connected
layer. Moreover, the model applies non-maximum suppression to these predictions to
remove redundant detections and refine the final set of bounding boxes. In addition,
YOLOv4 includes various advanced techniques to improve its performance, including
a weighted loss function, spatial pyramid pooling, and a Mish activation function.

19×19×1024

38×38×512

76×76×256

YOLO Head 3

YOLO Head 2

YOLO Head 1

304×304

 152×152

76×76

38×38

19×19

Backbone CSPdarknet53 Neck SSP + PAN Head YOLOv3

Input image
608×608

Figure 3. YOLOv4 architecture.

4. Experiment

YOLOv4 is a version of the YOLO family of object detection models [24]. Several
metrics are used to evaluate the performance of the YOLOv4 model, such as mAP, pre-
cision, and recall [25]. The mAP is a popular metric to measure the precision of object
detection models at different confidence levels, calculating the average precision–recall
curve. Among the positive detections, precision measures the number of true positives
detected. Conversely, recall measures how many true positives the model detects out of all
the true positive instances.

For autonomous driving scenarios, accuracy in object detection is critical for ensuring
passenger safety. We must, therefore, rigorously evaluate YOLOv4’s performance metrics
to ensure they meet the required level of accuracy.



J. Low Power Electron. Appl. 2023, 13, 40 7 of 16

4.1. Experimental Settings

YOLOv4 uses the Adam optimizer, a stochastic gradient descent algorithm using
adaptive learning rates to update the model parameters. A learning rate 0.0013 was se-
lected to ensure gradient descent converged toward the optimal solution [26]. To address
weight decay, we adopted a weight attenuation value of 0.0005 from previous works such
as [27–29]. We utilized momentum with a default value of 0.949, as is typical in most
deep learning models. This technique was implemented to expedite the optimization
process. Additionally, we fixed the batch size to 64, which is adequate for GPU training.
A total of 6000 iterations were chosen to establish stability and prevent overfitting. Through
experimentation, we observed that the accuracy of the model reaches a stable state beyond
this point. We aimed to balance reliable accuracy and avoid overfitting by setting an appro-
priate iteration limit. Finally, the input size was fixed at 608 × 608 px to maximize model
precision. These carefully selected hyperparameters allowed us to achieve optimal model
performance, as demonstrated by our results. The model was trained on an Nvidia Quadro
RTX 6000 GPU with a total memory of 24 GB and 4608 CUDA cores. The instructions for
implementing YOLOv4 on custom data are available at [22]. For the training phase, the
darknet framework was used. It is an open-source neural network framework based on
C and CUDA. In this experiment, we use the following metrics: mean average precision,
precision, recall, and average precision (AP).

4.2. Evaluation Metrics

Precision [30], recall [30], average precision, and mean average precision were em-
ployed to evaluate the model accuracy performance. The above metrics are calculated
as follows:

The average precision metric is the weighted average of the precision scores achieved
at each threshold on the PR curve, with an increase in recall over the previous threshold
used as a weighting factor. Average precision is high when precision P and recall R are
high, and low when one or the other is low over a range of confidence threshold values.
AP varies between 0 and 1.

AP = ∑
k=0,0.1,0.2,...,1

[R(k)− R(k − 1)] ∗ P(k) (1)

where k refers to the threshold, and P and R refer to precision and recall, respectively.
The mean average precision is obtained by taking the average of the APs of all

the classes.

mAP =
1
m

m

∑
i=1

APi (2)

The range of i starts with 1 to m (m is the number of classes).

5. Performance Evaluation

Using YOLOv4 in autonomous driving scenarios requires evaluating its relevance on
specific autonomous driving datasets under different resolutions. In addition to evaluating
its accuracy on autonomous driving datasets, it is also essential to measure the processing
time of the model to identify the most computationally intensive operations. This infor-
mation is essential to understand the model’s performance and improve its efficiency for
practical applications.

5.1. Experimental Results on KITTI and Self Driving Car Dataset

Yolov4 was thoroughly evaluated on several benchmark datasets and achieved ex-
cellent accuracy. On the MS COCO object detection dataset [31], Yolov4 achieved a mean
average precision of 45.6%. On the Open Images V4 dataset [32], Yolov4 achieved an av-
erage accuracy score of 39.7%. Alternatively, Yolov4 was evaluated on the PASCAL VOC
dataset, achieving an mAP of 71.9% [33].
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In this work, we evaluate Yolov4 on two autonomous car datasets with three classes rel-
evant to autonomous navigation (pedestrian, bicycle, car) under different input resolutions
608 × 608 px, 512 × 512 px, and 320 × 320 px.

Table 3 shows the performance of YOLOv4 on the KITTI and Self-Driving Car datasets
at three different resolutions. The results reveal that the model performs well overall, with
an mAP of up to 89.4% at the highest resolution, 608 × 608 px. However, the results vary
considerably depending on the resolution used. The model achieved a mAP of 74.18% and
87.51% at the lowest resolution of 320 × 320 px and the highest resolution of 512 × 512 px,
respectively. This result indicates that the model is more efficient when it receives more
information, as higher resolution allows for more accurate object detection. Furthermore,
the model detected objects in the KITTI dataset with high accuracy, as demonstrated by the
mAP score.

Table 3. The mean average precision (mAP) of the KITTI and Self Driving Car datasets at the three
levels of resolution.

Datasets KITTI Self Driving Car

Resolution 608 × 608 512 × 512 320 × 320 608 × 608 512 × 512 320 × 320

mAP (%) 89.40 87.51 74.18 58.19 57.61 47.15

For evaluating the Self Driving Car dataset, the model achieves an mAP of 58.19%,
57.61%, and 47.15% at a resolution of 608 × 608 px, 512 × 512 px, and 320 × 320 px,
respectively. The results suggest that the model does not yield better performance. Several
different factors might cause this. First, as mentioned in Section 3, the resolution of this
dataset is 1920 × 1200 px, and the current version of YOLOv4 may not be equipped to
handle higher-resolution images. The model may not have sufficient capacity to process
higher-resolution images without a significant increase in computational cost. Second,
the dataset includes many duplicate bounding boxes for the same object, resulting in
poor performance.

Furthermore, the performance evaluation for the three classes, as shown in Figure 4,
shows that the model on KITTI with a resolution of 608 × 608 px achieves an average
accuracy (AP) of 97.15% for car detection, 81.25% for pedestrian detection, and 89.79%
for bicycle detection. Similarly, for the self-driving car (see Figure 5), the model achieves
an average accuracy (AP) of 77.85%, 51.05%, and 45.66% for car, pedestrian and bicycle
detection, respectively. We can notice that the class “Car” is more accurate than the other
classes due to the fact that it occupies a large number of labels in both databases. In addition,
when reducing the input size from 608 × 608 px to 320 × 320 px, we observed a proportional
decrease in the average accuracy for all three classes. In the case of the KITTI dataset, as
shown in Figure 4, the average accuracy for the car class decreased by approximately 7.44%,
resulting in a value of 89.71%. Additionally, for the pedestrian class, the average accuracy
decreased by about 19.31% to reach 61.94%, while for the bicycle class, it decreased by about
18.9% to reach 70.89%. Similarly, for the Self Driving Car dataset, as shown in Figure 5, we
observed a decrease in the average accuracy for the car class by about 5.93%, resulting in
a value of 71.92%. The pedestrian class experienced a decrease of approximately 14.39%
to 36.66%, and the bicycle class decreased by approximately 12.79% to 32.87%. These
results highlight the impact of scaling the input size on the accuracy performance of the
model. The results indicate that the model is able to accurately identify multiple classes
simultaneously, making it a viable option for multi-class object detection tasks.
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(a) (b)

(c)

Figure 4. Average Precision (AP) of the three classes, car, pedestrian and bicycle at different reso-
lutions. In blue 608 × 608 px, in orange 512 × 512 px and in green 320 × 320 px on KITTI dataset.
(a) Class = Car, (b) Class = Pedestrian, (c) Class = Bicycle.

(a) (b)

(c)

Figure 5. Average Precision (AP) of the three classes with different resolutions. In blue 608 × 608 px,
in orange 512 × 512 px and in green 320 × 320 px on Self Driving Car dataset. (a) Class = Car,
(b) Class = Pedestrian, (c) Class = Bicycle.

Overall, YOLOv4 performed better on the KITTI dataset with the three different
resolutions tested than on the Self-Driving Car dataset. Using the highest resolution
improved performance, as expected. However, YOLOv4 is not suitable for all autonomous
driving datasets.
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5.2. Processing Time Evaluation

YOLOv4 extracts features from an input image using a series of convolutional layers,
which are followed by a batch normalization layer, which reduces overfitting. Yolov4
also uses Mish activation, a hybrid of ReLU6 and Softplus activation functions. These
operations are used to predict the objects in the image and compute the confidence score
of each object. In this work, we examine the primary operations of YOLOv4 to identify
the most computationally intensive operations and propose an optimization on a high-
performance FPGA using high-level synthesis. We divide YOLOv4 into different functional
blocks to evaluate the processing time of each layer, such as the convolution layer, batch
normalization layer, max-pooling layer, activation functions layer, and other layers. We
conducted this experiment on an Intel Xeon workstation with 12 cores, 24 threads, and
a frequency of 3.50 GHz. The graph below shows the processing time in milliseconds (ms)
consumed for each operation in YOLOv4.

As depicted in Figure 6, with a 608 × 608 px input, YOLOv4 takes up to 2177.066 ms
to detect objects in the image, where the convolution layer takes about 1381.71 ms, the
batch normalization 38.49 ms, the activation functions 305.23 ms, and the remaining time
belongs to the max-pooling layers and other operations such as such as maximum-non-
suppression and cIOU. Convolution is very compute-intensive, especially when dealing
with large images. It takes up to 65% of the total time of the algorithm, followed by
“Other” operations, which take up the remaining time. Processes such as YOLO and max-
pooling prove to be relatively light. In YOLOv4, the GEMM method is used to accelerate
the computation of the convolution operation. It works by decomposing a large matrix
multiplication into smaller operations. Thus, the calculations can be performed in parallel,
which reduces the total time of the operation. It also reduces memory requirements by
allowing the reuse of intermediate results.

Figure 6. Execution time of YOLOv4 operations.

6. Accelerator Design

Accelerating the GEMM operation of YOLOv4 on FPGA is a promising way to improve
the performance of the algorithm. FPGAs can provide higher computational throughput,
lower power consumption, and lower latency than CPUs and GPUs. This can be achieved
through high-level synthesis tools, custom hardware accelerators, and optimization tech-
niques such as pipelining and loop unrolling.

The FPGA-based GEMM acceleration architecture for YOLOv4 is proposed in Figure 7
to improve the object detection speed. It involves using the direct memory access (DMA)
to transfer a feature map of size HxWxC and the associated weight parameters of size
KxKxCxM to the on-chip memory. The feature map is then extended into C vectors using
the im2col function, and the results are sent to the Processing Units (PE) for efficient
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parallel multiplication and accumulation. Following this, the results are converted back
into a matrix of MxHxW as the output feature map, which can then be used for further
analysis or processing.
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Figure 7. FPGA-based GEMM architecture.

Results and Discussion

YOLOv4 GEMM operations are implemented on DE5a-Net DDR4, enabling high-
speed data processing with high-performance Intel Arria 10 FPGAs. The board includes
16 GB of DDR4 memory running at over 75 Gbps, allowing data transfer up to 7.876 Gbps
over PCIe Gen 3 × 8 between the board and the host PC [34]. In addition to these features,
the host PC is equipped with an 8-core Intel Xeon Silver 4108 processor that runs at a basic
frequency of 1.8 GHz. The host has 32 GB of DDR4-2666 ECC SDRAM memory (2 × 16 GB).

Table 4 shows the resource usage for the GEMM implementation on FPGA. Resource
utilization includes using logic resources such as LUTs, registers and RAM blocks, and
DSP blocks. From the data in the table, it can be seen that the GEMM implementation on
FPGA is relatively efficient regarding resource utilization. The utilization of logic resources
such as LUTs and registers is relatively low, at about 12% and 12%, respectively. DSP block
utilization is about 6%, while memory utilization is relatively high, at about 19%.

Table 4. Resource usage summary.

Resource Usage

Logic utilization 24%
ALUTs 12%

Dedicated logic registers 12%
Memory blocks 19%

DSP blocks 6%

To evaluate the effectiveness of our FPGA-based approach, we conducted experiments
on two popular object detection datasets: KITTI, as shown in Figure 8, and Self Driving
Car, as shown in Figure 9. YOLOv4 convolution layers are implemented on a DE5a-Net
DDR4 with a high-performance Intel Arria 10 FPGA. The communication between the
FPGA and the host is done via PCIe. The convolution process is performed on the FPGA,
and the results are transferred to the host PC to continue the YOLOv4 process, and then
Figures 8 and 9 are displayed. Our results indicate that our FPGA architecture is well-
suited for object detection tasks and can efficiently detect and classify objects such as
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cars, pedestrians, and bicycles. Overall, our results highlight the potential of FPGA-based
implementations to perform effective object detection in real-world applications.

(a) (b)

(c)

Figure 8. Detecting autonomous vehicle objects using FPGA-based GEMM of YOLOv4 on KITTI
dataset. (a) Cars, (b) pedestrians, (c) bicycles.

(a) (b) (c)

Figure 9. Detecting autonomous vehicle objects using FPGA-based GEMM of YOLOv4 on Self
Driving Car dataset. (a) Cars, (b) pedestrians, (c) bicycles.

Furthermore, the results of our proposed GEMM implementation on FPGA are promis-
ing and demonstrate its effectiveness in terms of performance. As shown in Figure 10, with
a resolution of 608 × 608 px, 512 × 512 px, and 320 × 320 px, our GEMM implementa-
tion achieved a mAP of 89.40%, 87.51%, and 74.18% on KITTI, respectively—and 58.19,
57.61, and 47.15% on the Self Driving Car dataset. Moreover, the performance evaluation
for the three classes, as illustrated in Figure 11, the model on KITTI with a resolution of
608 × 608 px achieves an average precision of 97.15% for car detection, 81.25% for pedes-
trian detection and 89.79% for bicycle detection. At 512 × 512 px resolution, the model
achieves an average accuracy of 96.56% for car detection, 76.61% for pedestrian detection,
and 89.37% for bicycle detection. Additionally, with a resolution of 320 × 320 px, the model
achieves an AP of 89.71% for car detection, 61.94% for pedestrian detection, and 70.89% for
bicycle detection. Similarly, for Self Driving Car, as shown in Figure 12, with 608 × 608 px,
the model achieves an AP of 77.85% for car detection, 51.05% for pedestrian detection, and
45.66% for bicycle detection. For a resolution of 512 × 512 px, the model obtains an AP of
78.33% for car detection, 49.72% for pedestrian detection, and 44.78% for bicycle detection.
Additionally, with a resolution of 320 × 320 px, the model achieves an average accuracy of
71.92% for car detection, 36.66% for pedestrian detection, and 32.87% for bicycle detection.



J. Low Power Electron. Appl. 2023, 13, 40 13 of 16

(a) (b)

Figure 10. Evaluating the mean average precision for FPFA-based GEMM of YOLOv4 on two
autonomous driving datasets. (a) mAP for FPGA-based GEMM on KITTI dataset. (b) mAP for
FPGA-based GEMM on Self Driving Car dataset.

Figure 11. Average precision of three classes on KITTI dataset for FPGA-based GEMM of YOLOv4
(blue: car, green: pedestrian, orange: bicycle).

Our research results demonstrate the effectiveness of our proposed FPGA architecture
for implementing the GEMM operation in YOLOv4 without affecting the accuracy. Our ap-
proach provides detection results comparable to those obtained with GPU implementations
in Section 5 while offering significant performance advantages.

These results demonstrate that the proposed GEMM implementation is an efficient way
to process data in an FPGA environment and can be successfully used for object detection
in autonomous driving applications. Additionally, our proposed implementation of GEMM
on FPGA achieved a runtime of 38 ms with a cadence of 100 Hz on the KITTI dataset,
which can reduce power consumption and improve the overall performance of embedded
systems. This processing time could be reduced by using optimization techniques such
as shift register pipelining, and channels. These techniques can significantly improve the
performance of computing systems by increasing the speed of data transfer and processing.

Overall, our results demonstrate potential generalizability to other versions of the
YOLO family, including the recently released YOLOv8, which is available on GitHub [35].
In addition, YOLOv8 and YOLOv4 share the same convolutional blocks, enabling us to
translate our study to YOLOv8. This transferability demonstrates the robustness and
applicability of our research within the broader YOLO framework, allowing us to further
explore and validate our findings within the context of YOLOv8. Furthermore, our results
highlight the potential of FPGA-based implementations to perform effective object detection
in real-world applications.
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Figure 12. Average precision of three classes on Self Driving Car dataset for FPGA-based GEMM of
YOLOv4 (blue: car, green: pedestrian, orange: bicycle).

7. Conclusions

This paper investigates the utilization of Field Programmable Gate Arrays for imple-
menting YOLOv4 GEMM for autonomous driving applications. Our study analyzes the
performance of YOLOv4 on two prominent autonomous driving datasets, namely KITTI
and Self Driving Car. Notably, we have assessed the performance using various input
sizes, specifically 608 × 608 px, 512 × 512 px, and 320 × 320 px. Furthermore, we have
compared the detection performance achieved by GEMM operations implemented on an
FPGA compared to those executed on a GPU. The outcomes derived from our investigation
effectively demonstrate the immense potential of FPGAs in implementing YOLOv4 while
preserving model accuracy.

In future research, there are several avenues to further explore the potential of pro-
grammable gate arrays in accelerating YOLOv4. It would be interesting to further analyze
the performance of other versions of YOLO, such as YOLOv6, YOLOv7, and YOLOv8,
on other autonomous driving datasets, such as BDD and Cityscapes, to gain a complete
understanding of the effectiveness of these models. Alternatively, considering the com-
plexity inherent in YOLOv4 as a neural network architecture, it becomes interesting to
investigate the application of FPGA acceleration to other network components. This could
involve exploring novel techniques for optimizing convolutional operations on FPGAs,
including systolic networks, data preprocessing approaches, and parallelization techniques.
Additionally, conducting comparative studies to evaluate the performance of optimized
YOLOv4 implementations on FPGAs against CPUs, GPUs, and other FPGAs would provide
invaluable information.

Author Contributions: All authors contributed to the editing and improvement of the manuscript.
F.Z.G. developed and implemented the methodology for this article. Conceptualization, F.Z.G., S.R.F.
and A.E.O.; data curation, F.Z.G.; software, S.R.F., A.E.O. and M.A.; validation, S.R.F., A.E.O., M.A.
and M.R.; supervision, S.R.F., A.E.O., M.A. and M.R.; resources, all authors. All authors analyzed the
results and conducted literature reviews. All authors contributed to the design and development of
the experiments. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the Ministry of Europe and Foreign Affairs, (Eiffel grant
number: 116724T), and by the National Center for Scientific and Technical Research of Morocco (grant
number: 30UM5R2021).

Conflicts of Interest: The authors declare no conflict of interest.



J. Low Power Electron. Appl. 2023, 13, 40 15 of 16

References
1. Wei, J.; He, J.; Zhou, Y.; Chen, K.; Tang, Z.; Xiong, Z. Enhanced object detection with deep convolutional neural networks for

advanced driving assistance. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1572–1583. [CrossRef]
2. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
3. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]
4. Bharati, P.; Pramanik, A. Deep learning techniques—R-CNN to mask R-CNN: A survey. In Computational Intelligence in Pattern

Recognition: Proceedings of CIPR 2019; Springer: Singapore, 2020; pp. 657–668.
5. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
6. Zeng, K.; Ma, Q.; Wu, J.W.; Chen, Z.; Shen, T.; Yan, C. FPGA-based accelerator for object detection: A comprehensive survey.

J. Supercomput. 2022, 78, 14096–14136. [CrossRef]
7. Minakova, S.; Tang, E.; Stefanov, T. Combining task-and data-level parallelism for high-throughput cnn inference on embedded

cpus-gpus mpsocs. In Proceedings of the Embedded Computer Systems: Architectures, Modeling, and Simulation: 20th
International Conference, Athens, Greece, 5–9 July 2020; pp. 18–35.
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