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The collection of research works in this Special Issue focuses on Ultra-Low-Power
(ULP) Integrated Circuits (ICs) operating under a tight budget of power as a criterion to
build electronic devices relying less and less on batteries. These enable the Internet of
Things (IoT): a view of a world in which we are surrounded by devices that exchange
data to enhance our quality of living. Thus, the goals of novel IC design strategies target
both reducing the cost and the power consumption of any device. A method to reduce
the cost is to minimize the use of a manual design process and maximize the use of a
digital (automated) design flow so that the design is transferable across technological
nodes. A digital-in-concept design also allows the scale of the supply voltage and offers a
performance–power consumption trade-off [1–4]. In particular, a two-stage inverter-based
operational transconductance amplifier (OTA) using rail-to-rail output operating with a
supply voltage of 0.5 V is presented in [1]. Then, a novel implementation of a digital-based
OTA consisting of only digital gates usually available in the standard cell libraries is the
focus of [2]. In [3], a novel fully standard-cell-based common-mode feedback (CMFB)
loop to improve the CMRR and to stabilize the DC output voltage of pseudo-differential
standard-cell-based amplifiers is proposed. To further explore complexity, dynamic perfor-
mance, and energy efficiency, a fully synthesizable digital–delta (∆) modulator (∆M) ADC
with noise shaping using passive components (i.e., integrated capacitors and resistors) and
standard-cell-based amplifiers is presented in [4].

The other research works exploit other methods, focusing on increasing the energy
efficiency for a number of building blocks for general-purpose applications (i.e., amplifiers);
more specifically, they target biomedical applications or at the system level. ULP/Ultra-
Low-Voltage (ULV) ICs exploring bulk-drive solutions and operating with Sub-1V supply
voltage down to 0.3 V were considered [5–8]. In [5], the authors proposed a new technique
to improve the DC voltage gain, while keeping the high linearity in symmetrical bulk-
driven (BD) OTA topology. A novel tree-based architecture that allows the implementation
of a ULV OTA exploiting a body-driven input stage to guarantee a rail-to-rail input common
mode range is also described in [6]. A bootstrapped BD Voltage Buffer is used to increase
the intrinsic voltage gain of the Second-Order Gm-C Bandpass Filter in [7]. Moreover,
a current-controlled CMOS ring oscillator topology, which exploits the bulk voltages of
the inverter stages as control terminals to tune the oscillation frequency, is proposed and
analyzed in [8]. Then, a fully differential (FD) instrumentation amplifier aimed at electrical
impedance measurements in an IoT biomedical scenario is presented in [9].

To assist the ULP IC design flow, a compact and simplified approach that contains
only four parameters and is based on the Advanced Compact MOSFET (ACM) model was
implemented in Verilog-A and compared with the BSIM model in [10].

Sinusoidal oscillators based on second-generation voltage conveyors are investigated
in [11], while a relaxation oscillator with valuable line sensitivity for Low Power Applica-
tions is shown in [12].

The last two studies in this Special Issue consider the IC as part of a ULP/ULV sensor
system that needs to interact with the surrounding environment.

A wideband cascaded receiver including an inverter-based low-noise transconduc-
tance amplifier and a stacked receiver using an improved clock strategy with reduced mixer

J. Low Power Electron. Appl. 2023, 13, 38. https://doi.org/10.3390/jlpea13020038 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea13020038
https://doi.org/10.3390/jlpea13020038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-6938-9806
https://doi.org/10.3390/jlpea13020038
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea13020038?type=check_update&version=1


J. Low Power Electron. Appl. 2023, 13, 38 2 of 2

switches is described in [13]. Hardware solutions for Low-Power Smart Edge Computing
are presented in [14].

In summary, the published research works cover a wide area of the ULP/ULV IC field,
offering the reader many ideas inspired by these innovative design approaches.
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