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Abstract: The application of the flipped voltage follower to implement two high-performance circuits
is presented: (1) The first is a class AB cascode flipped voltage follower that shows an improved slew
rate and an improved bandwidth by very large factors and that has a higher output range than the
conventional flipped voltage follower. It has a small signal figure of merit FOMSS = 46 MHz pF/µW
and a current efficiency figure of merit FOMCE = 118. This is achieved by just introducing an addi-
tional output current sourcing PMOS transistor (P-channel Metal Oxide Semiconductor Field Effect
Transistor) that provides dynamic output current enhancement and increases the quiescent power
dissipation by less than 10%. (2) The other is a high-performance low-voltage current mirror with
a nominal gain accuracy better than 0.01%, 0.212 Ω input resistance, 112 GΩ output resistance,
1 V supply voltage requirements, 0.15 V input, and 0.2 V output compliance voltages. These char-
acteristics are achieved by utilizing two auxiliary amplifiers and a level shifter that increase the
power dissipation just moderately. Post-layout simulations verify the performance of the circuits in a
commercial 180 nm CMOS (Complementary Metal Oxide Semiconductor) technology.

Keywords: buffer; flipped voltage follower; CMOS analog integrated circuits; current mirror

1. Introduction

Two of the basic building blocks of analog integrated circuits are the voltage follower
and the current mirror. The conventional common-drain amplifier or voltage follower
(denoted here as CONV_VF)) [1–3] of Figure 1a has been used for many years as a buffer due
to its infinite input resistance, medium–low output impedance Rout = 1/gm (in the order of
tens of kΩs) close to the unity voltage gain, and relatively high bandwidth BW = gm/(2πCL).
The flipped voltage follower of Figure 1b [4] is an improved voltage follower that uses
local negative feedback to provide lower output resistance Rout = 1/[gm(gmro)] = 1/(gmA)
(hundreds of Ω), where CL is the load capacitance, gm and ro are the transconductance
gain and output resistance, and A = gmro is the intrinsic gain of the MOS transistor. The
basic Flipped Voltage Follower(FVF) version of Figure 1b (denoted here as CONV_FVF)
suffers the serious limitation that it has a very low peak-to-peak output swing Voswingpp,
which is independent of the supply voltage and given by Voswingpp = VTH − VDSsat (where
VTH is the threshold voltage and VDSsat is the drain-source saturation voltage of MFVF).
It operates in class A with a peak positive output current and positive slew rate limited
by the bias current Ibias to a value SR+ = Ibias/CL. Several versions of the flipped voltage
follower have been reported with improved output range and lower output resistance.
For example, the cascode FVF (denoted here as CONV_CSCFVF) shown in Figure 1c and
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reported in [5] uses an additional branch with a cascode transistor MCAS that increases the
local feedback loop gain and provides even lower output resistance by a factor A = gmro so
that, in this circuit, Rout = 1/[gm(gmro)2] = 1/[gmA2] (on the order of tens of Ωs). It also
has an increased output swing, which is dependent on the supply voltage and given by
Voutswingpp = VDD − (VGS + VDSsat) = VDD − VTH − 2VDSsat. The cascode FVF of Figure 1c
(denoted here as CONV_CSCFVF) is a class A circuit with a positive slew rate seriously
limited by the bias current to a value: SR+ = Ibias/CL. Class AB versions of the FVF have
also been reported [6–9] to overcome this limitation to a certain degree.
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Figure 1. (a) Conventional voltage follower, (b) basic FVF, and (c) cascode FVF.

The low-voltage cascode current mirror of Figure 2a (denoted here as CN_CS_CM) has
been used for many years as a high-bandwidth linear current amplifier. It has a moderately
low input resistance Rin = 1/gm (on the order of tens of kΩs), moderately high output
resistance Rout = ro(gmro) = roA (on the order of tens of MΩs), high linearity, low gain
error, low output compliance voltage (Voutmin = 2VDSSat), and moderate input voltage
requirements Vin = VGS = VTH + VDssat. A simple rearrangement of the circuit of Figure 2a
is shown in Figure 2b. It injects the input current source Iin at the source of the cascode
transistor M1C (node Vx) instead of at its drain (node Vy). This reduces the input voltage
requirements from VGS to VDSsat and leads to a reduction in the input resistance by a factor
A from Rin = 1/gm to Rin = 1/[gm(gmro)] = 1/[gmA]. Notice that, in this circuit, the input
transistors M1 and M1C form a flipped voltage follower with a constant input voltage Vcn
at the gate of M1C and the current input signal Iin injected at the output terminal of the
FVF (node Vx). In spite of the improvement in the mirror characteristics, this modification
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suffers from a non-linear current mirror gain resulting from lambda effect and unequal
drain source voltages in the input and output transistors M1 and M2 of the current mirror.
This is due to the fact that the cascode input and output transistors M1C and M2C have
unequal drain currents which cause their gate-source voltages to be different. The gate
source voltages of M1C and M2C determine the drain-source voltages of M1 and M2 and
the linearity of the mirror. This effect can be greatly mitigated in a BiCMOS process by
replacing the cascode transistors by bipolar transistors.
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Figure 2. (a) Conventional cascode current mirror and (b) FVF-based low-voltage cascode current
mirror with reduced input impedance.

In this paper, the authors introduce two improved circuits based on the flipped voltage
follower: (1) a power-efficient class AB cascode FVF (denoted here as HP_CSCFVF) with
high swing, very low output resistance, and essentially higher small signal and large
signal figures of merit than previously reported AB FVF versions and (2) a low-voltage
high-performance cascoded current mirror (denoted here as HP_CS_CM) with much lower
input resistance and much higher output resistance than the conventional current mirror
and highly linear gain. The proposed circuits are described in Section 2. Section 3 shows
the post-layout simulation results that verify the high-performance characteristics of the
proposed circuits, and Section 4 provides the conclusions.

2. Proposed Circuits
2.1. High-Performance Class AB Voltage Follower HP_CSCFVF
2.1.1. Description

Figure 3 shows the scheme of the proposed class AB high-performance cascode FVF
(HP_CSCFVF). It is a modification of the class A cascode FVF reported in [5] and is shown
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in Figure 1c. It includes an additional branch with a PMOS transistor Msource that provides
efficient class AB operation. Msource has a small quiescent current IQsource, but it can inject
positive output currents Iout into the load CL, which are much larger than IQsource. On the
other hand, transistor Msink can sink very large negative load currents (also much larger
than the quiescent current of Msink given by IQsink = IQsource + Ibias), as is discussed below.
The biasing branch has two diode-connected PMOS transistors Mb and MbC. Based on
replica biasing, this branch sets the voltage Vy to a value Vy = VDD − VSGb and the gate
voltage of Msource to a value Vg = Vy + Vbat, where Vbat = IbatRbat. The values of Ibat and
Rbat are selected so that Vbat has an approximate value Vbat = VSDsat = 0.1 V. In this case, the
quiescent source-gate voltage of Msource is given by VQ

SGsource = VSGb − IbatRbat. This leads
to a quiescent voltage VQ

SGsource = VSGb − VSDsat ≈ VTH close to the threshold voltage of
Msource. This quiescent source-gate voltage sets a relatively small quiescent current IQsource
in Msource, which is independent of the supply voltage. A capacitor Cbat forms a high-pass
filter with Rbat and Cbat. This is used to transfer fast transient variations from Vx to the gate
Vg of Msource.
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2.1.2. Class AB Operation of Proposed Voltage Follower

For positive input voltage variations in Vin, the output voltage VoHPCSC increases, and
the gate voltage Vx of Msink decreases. The current in Msink decreases (and eventually turns
off) and the dynamic changes in Vx are transferred to Vg by Cbat to the gate of Msource. The
decrease in Vg causes the current Isource of Msource to increase, providing a positive output
current Iout that can be significantly larger than the quiescent current IQsource of Msource (in
the design described in Section 3, IQsource has a value IQsource = 7 µA). For negative input
voltages, the output voltage decreases, and Vx increases. This increases the current Isink
and provides a large negative output current Iout that can be much larger than the quiescent
current IQsink of Msink. The FVFs in Figures 1b,c and 3 use an RC compensation network
formed by Cc and Rc for the local feedback loop. These elements provide a dominant
pole and a high-frequency zero at Vx that approximately match the output pole of the
open loop gainωpout = gmFVF/CL at the output node VoHPCSC. This allows FVF circuits to
significantly improve their bandwidth with respect to the conventional voltage follower of
Figure 1a. This simple but effective FVF compensation and bandwidth extension technique
was reported in [10].

2.2. High-Performance Low-Voltage Current Mirror (HP_CS_CM)

The scheme of the proposed low-voltage high-performance current mirror (HP_CS_CM)
is shown in Figure 4a. It is a modified version of the FVF current mirror of Figure 2b that in-
cludes two auxiliary amplifiers ASEinvfcamp with gain Aaux and a level shifter FVFlevelshifter.



J. Low Power Electron. Appl. 2023, 13, 28 5 of 17

The transistor level implementation of the auxiliary amplifiers and the level shifter is shown
in Figure 4b. Each of the amplifiers form local negative feedback loops with the cascode
transistors M1C and M2C. They boost their effective gain by the gain Aaux = (gmro)2 = A2

of the auxiliary amplifiers. They are implemented in Figure 4b using single-ended folded
cascode inverting amplifiers formed by MFCA1 and MCA1 and by MFCA2 and MCA2. A
modified flipped voltage follower is used to generate a very-low-impedance node VG that
operates as the signal ground (or reference node) for the input common source transistors
MFCA1 and MFCA2 of the auxiliary amplifiers. Transistors MBAT, MFCA1, and MFCA2 have
the same W/L dimensions, the same quiescent current, and quiescent gate-source voltages.
For this reason, the negative feedback loops of the auxiliary amplifiers shown in Figure 4a,b
cause the gate voltages VrefX, VX, and VXP to have the same value. This results in equal
drain-source voltages of the input and output mirror transistors and leads to a highly linear
and accurate current mirror gain. On the other hand, the large gain boosting of the cascode
transistors M1C and M2C provided by the folded cascode auxiliary amplifiers leads to an
extremely low input resistance Rin = 1/(gmA3)/2, which is lower by a factor of Aaux = A2/2
than the input resistance of the FVF mirror of Figure 2b and to an extremely high output
resistance Rout = roA3 that is higher by the same factor Aaux than the output resistance of
the mirrors of Figure 2. The value of VrefX (selected by the designer) sets the input voltage
requirement Vin of the mirror. It must be higher than VDSsat in order to keep the input and
output mirror transistors in saturation. In the proposed design, VrefX was selected to have
a value VrefX = 0.15 V, but it can also have been lower since input and output transistors
had a value VDSat = 0.06 V in the design discussed in Section 3. Remarks: (1) The FVF
level shifter is a modified version of the basic FVF (or CONV_FVF). It has a resistor R
in series with transistor MBFVF. This resistor R in Figure 4a is used to generate a voltage
drop that pulls down the voltage at node Vz and allows transistor MBAT to have enough
drain-source (VDS > VDSSat) voltage to operate in saturation. (2) The implementation of the
auxiliary amplifiers using folded cascode amplifiers with a floating virtual ground node
VG in which the nominal voltage is set by the designer has the purpose of reducing the
supply requirements of the circuit. (3) A distinctive characteristic of the proposed mirror is
that the modified FVF with resistor R allows the quiescent value of VG to be set to a value
that is convenient to minimize the supply voltage and the input voltage requirements of
the circuit. It also allows MBAT to be maintained in saturation. Previous implementations
of mirrors with auxiliary amplifiers (i.e., the regulated cascode mirrors discussed in [1])
required the source of the auxiliary amplifier’s input transistors to be connected to one
of the supply rails and does not allow the supply requirements to be minimized or Vin
to be set. (4) If required, the gain Aaux of the auxiliary amplifiers can be further boosted
from a value Aaux = A2/2 in the circuit of Figure 4b to a value Aaux = A3/2 by utilizing
double-cascoded auxiliary amplifiers. This would also boost the output impedance by
an additional factor A/2 and decrease the input impedance of the mirror by the same
factor. (5) The local negative feedback loops formed by the auxiliary amplifiers have only
one high-impedance node at VY and VYP. Compensation elements Rc and Cc are used to
generate a dominant pole (and a zero) at these nodes. This is in order to compensate these
loops and to prevent instability. (6) In order to reduce power dissipation, the auxiliary
amplifiers and the FVF level shifters are biased with currents Ibias/k, which is a factor
k times smaller than the bias current Ibias of the input and output mirror transistors M1
and M2. In the proposed design, a value k = 10 was used. This lead to a total quiescent
current and power dissipation of the proposed mirror that is only 25% higher than the
power dissipation of the mirrors of Figure 2. (7) The proposed current mirror can be easily
transformed into a class AB mirror using the techniques reported in [11].
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3. Simulation Results
3.1. Simulations of the High-Perfromance Class AB Follower HP_CSCFVF

The CONV_VF, CONV_FVF, CONV_CSCFVF, and proposed HP_CSCFVF circuits of
Figures 1a–c and 3 were simulated in a commercial 180 nm CMOS technology with dual rail
voltages VDD = 0.75 V, VSS = −0.75 V (or Vsupply = VDD − VSS = 1.5 V), Ibias = IbCAS = 5 µA,
Rbat = 55 kΩ, Cbat = 2 pF, Ibat = 2 µA, CL = 100 pF, and W/L = 5/0.2 (µm) for all PMOS,
and NMOS transistors, except the PMOS and NMOS transistors, implementing biasing
sources that had dimensions W/L = 5/0.4 (µm), values Cc = 0.6 pF, and Rc = 75 kΩ were
used. In order to save on silicon area, Rc was implemented with an NMOS transistor
with W/L = 0.75/15 and with the gate connected to the positive rail VDD. Rc and Cc were
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selected to provide a dominant poleωpdom = 1/RxCc at node VX: and a high-frequency zero
ωz = 1/RcCc at Vx that approximately matches at the output pole ωpout = gmFVF/CL at the
output node VoHPCSC of the FVF, as suggested by the design guidelines in [10]. Transistors
Msource and Msink were scaled up by factors 10 and 3, respectively. This was performed in
order to equalize their dynamic output currents and to achieve symmetrical slew rates (SR+
and SR−). The total quiescent current and power dissipation of the proposed circuit were
ITotQ = 21 µA and PdissQ = 31.5 µW, respectively. The small signal transconductance gm and
output conductance gds of the NMOS and PMOS unit transistors had the following values:
gmN = 148 µA/V, gdsN = 2.94 µA/V, gmP = 160 µA/V, and gdsP = 2.2 µA/V.

Figure 5 shows the frequency responses of the CONV_VF, CONV_FVF, CONV_CSCFVF,
and proposed HP_CSCFVF. The bandwidth of the HP_CSCFVF is 14.6 MHz, that of
the CONV_CSCFVF is 3.47 MHz, that of the CONV_FVF is 2.5 MHz, and that of the
CONV_VF is 0.347 MHz. Notice that the bandwidth of the proposed circuit is a factor
almost 42 times larger than the bandwidth of the CONV_VF and 4.2 times larger than the
CONV_CSCFVF. Figure 6a shows the pulse response of the proposed HP_CSCFVF and of
the CONV_CSCFVF to a 1 MHz 0.9 Vpp pulse input. Figure 6b shows the corresponding
load capacitor currents. It can be seen that the proposed circuit has close to symmetrical
positive and negative peak output currents (and consequently slew rate) with the values
Ioutpk

+ = 2.6 mA and Ioutpk
− = 2.47 mA, respectively. Notice that the proposed circuit has

peak output currents, which are a factor 118 times larger than the total quiescent current of
the circuit. This corresponds to a very large current efficiency factor CE = Ioutpk/ITotQ = 118.
The peak currents (and slew rates) of the conventional circuits is much lower due to their
class A operation.

The positive and negative slew rates of the proposed circuit are SR+ = 34.47 V/µs
and SR− = 34.03 V/µs (for CL = 100 pF). Figure 7 shows the pulse response for various
CL values of 10 pF, 32 pF, 55 pF, 80 pF, and 100 pF. It can be seen that, in all cases, the
pulse response has a only a small overshoot. Figure 8 shows the AC response of the output
resistance of the proposed circuit. It has a very low value Rout = 2.11 Ω at low frequencies.
The layout of the proposed design is shown in Figure 9. It occupies a 114 µm × 47 µm
Si area.
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Table 1A–C show corner analysis of the proposed HP_CSCFVF at three different
temperatures (27 ◦C, 120 ◦C, and−20 ◦C). It can be said that the proposed VF’s characteristic
is very stable against process and temperature variations. The standard deviation (SD) of
each parameter for variation in the process has been given in Table 1 for the considered
temperatures (27 ◦C, 120 ◦C, and −20 ◦C).

Table 1. (A) Corner analysis at 27 ◦C; (B) corner analysis at 120 ◦C; (C) corner analysis at −20 ◦C.

(A)

Corner tt ff fs sf ss SD

ITotQ (µA) 21 22 21 22 21 0.49

f3dB (MHZ) 14.6 18 15.2 14.5 12.5 1.77

SR (V/µs) 24.3 28 21.5 25.6 21.7 2.4

Ioutpk (mA) 2.68 3.04 2.5 2.7 2.42 0.2

(B)

Corner tt ff fs sf ss SD

ITotQ (µA) 26 29 26 27 25 1.35

f3dB (MHZ) 15 18.5 15.2 14.8 12.7 1.86

SR (V/µs) 22.5 25.5 20.18 22.34 20.13 1.9

Ioutpk (mA) 2.45 2.73 2.38 2.42 2.22 0.16

(C)

Corner tt ff fs sf ss SD

ITotQ (µA) 20 20 20 19 19 0.49

f3dB (MHZ) 14.4 17.6 15.8 14.8 12.3 1.74

SR (V/µs) 26.6 29.3 22.9 25.8 22.8 2.4

Ioutpk (mA) 2.79 3.06 2.67 2.8 2.5 0.18
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The THD of the proposed circuit is 0.2% for a 0.5 Vpp 100 kHz input signal and
1% for a 0.5 Vpp 1 MHz sinusoidal input signal. The equivalent input noise power spectral
density and RMS noise are 29 nV/

√
Hz and 130 µVRMS. The small signal figure of merit

is FOMSS = 46 MHz·pF/µW, and the large signal current efficiency figure of merit is
FOMCE = Ioutpk/ITotQ = MIN{Ioutpk+, Ioutpk−}/ITotQ = 118. The global figure of merit is
FOMGlobal =

√
FOMSSFOMCE = 73.

Table 2 shows a comparison of the performance characteristics of the proposed
HP_CSCFVF with other voltage followers reported recently in the literature. It can be
seen that the proposed HP_CSCFVF has the lowest output impedance, the highest small
signal (FOMSS), a large signal and current efficiency (FOMCE), and global (FOMGlobal)
figures of merit in the table.

Table 2. Comparison of the proposed HP_CSCVF with state-of-the-art work.

Parameter Ref./Year
[6]/2012

Ref./Year
[12]/2016

Ref./Year
[13]/2018

Ref./Year
[14]/2016

Ref./Year
[15]/2021

Ref./Year
[16]/2018

CONV_VF
Figure 1a

This Work
Figure 3

Process
technology (µm)

0.35 0.18 0.18 0.5 0.045 0.5 0.18 0.18 0.18

Exp Sim by Auth. Sim Exp Sim Exp Sim Sim Sim

Supply (V) 3 ±0.9 1.2 1.5 1.2 2 1.2 ±0.75 ±0.75

ITotQ (µA) 81 243 20.8 80 8.3 69 20 9 21

Load Cap. (pF) 20 50 10/100 50 1 47 1 100 100

BW (MHz) 5.8 3.65 15@100 pF 10 170 32 670.2 0.347 14.6

Ioutpk+ (mA) 1.62 3.16 0.32 1.8 0.17 1.59 0.116 0.085 2.6

Ioutpk− (mA) 1.67 3.16 NA 1.8 0.08 1.42 0.120 0.034 2.47

SR+ (V/µS) 79.4 63.2 32@10 pF 36 42 33.8 116.6 2.5 34.47

SR− (V/µS) 83.6 63.2 NA 36 50 30.3 120.5 12 34.03

Output resistance
(Ω) NA NA 56 NA 1.15k NA 144 1.2k 2.11

Quiescent power
PdissQ (µWatt) 243 437 25 120 10 138 24 13.5 31.5

FOMCE =
Ioutpk/ITotQ

20 12 15 22.5 10 20 5.8 3.7 118

FOMSS =
BWxCL/PdissQ
[(MHz)pF]/µW

0.47 0.42 60 4.16 17 10.9 28 2.5 46

FOMGlobal 3.06 2.24 30 9.7 13 15 12.7 3.04 73

Figure 10 shows the Monte Carlo (MC) analysis of the proposed HP_CSCFVF power
dissipation over 200 sample Monte Carlo simulation for process variation and mismatch.
The mean quiescent power is 35.38 µW, and the standard deviation is 0.605 µW. From the
corner analysis and Monte Carlo analysis, it can be ascertained that the proposed VF is
robust against process variation, temperature, and mismatch effect.

3.2. Simulation Results for Low-Voltage High-Performance Current Mirror HP_CS_CM

The CN_CS_CM and proposed HP_CS_CM current-mirror circuits of Figures 2a and 4
were simulated in a commercial 180 nm CMOS technology with a supply voltage of
1V and Ibias = 2 µA. The resistor used to implement Rbat in the FVF level shifter has a
value 75 kΩ. It is implemented using a PMOS transistor. The W/L ratio of the PMOS
and NMOS transistors used in the input and output stages of both current mirrors are
W/L = 5 µm/0.4 µm. Transistors used in the auxiliary amplifiers and the FVF level shifter
of the proposed current mirror are scaled down by factor k = 10. This was performed in
order to reduce the quiescent power dissipation. The compensation elements had values
Cc = 1.5 pF and Rc = 4 kΩ.
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Figure 11 shows the frequency response of the proposed high-performance cascoded
current mirror (HP_CS_CM). It has a 144 MHz bandwidth. Figure 12 shows the frequency
response of the input impedance of the conventional cascode mirror CN_CS_CM and of the
proposed HP_CS_CM. The CN_CS_CM has constant input impedance of 22 kΩ, whereas
the input impedance of the proposed current mirror is 0.212 Ω up to 800 Hz and 8.9 kΩ
at 118 MHz. The HP_CS_CM has an input impedance, at low frequencies, that is close to
105 times lower than the CN_CS_CM.
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Figure 12. Variation of input resistance with the frequency of Proposed HP_CS_CM and CN_CS_CM.

Figure 13 shows the frequency response of the output impedance of the CN_CS_CM
and of the HP_CS_CM. The proposed HP_CS_CM has an output impedance of 112 GΩ
until 100 Hz, and the lowest output impedance is 18 MΩ through its bandwidth. On
the contrary, the output impedance for the CN_CS_CM is 355 MΩ. Thus, the proposed
high-performance current mirror has an output impedance that is 315 times higher than
the CN_CS_CM at low frequencies.
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Figure 13. Variation of output resistance with frequency of High Performance HP_CS_CM
and CN_CS_CM.

Figure 14 shows the transient response to a triangular input current waveform. It can
be seen that the proposed HP_CS_CM closely follows the linear input triangular current
waveform. Figure 15 shows the transient pulse response of the proposed HP_CS_CM to a
10 MHz, 10 µA input pulse. It can be seen that the proposed HP_CS_CM has no peaking in
the output pulse response.
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Figure 14. Transient response of the High performance Current Mirror.
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Figure 15. Transient Pulse Response of High-Performance Current Mirror.

An ideal current source is a circuit element that maintains a constant current flow
independent of the voltage developed across its terminals as this voltage is determined
by other circuit elements. To verify this property, Figure 16 shows the DC output transfer
characteristics for dc voltage variation of 0 to 1 V by stepping the input current up from
0 to 10 µA in steps of 2.5 µA. It can be seen that the mirror compliance (minimum output)
voltage for performance as a current source is approximately 0.2 V.

Figure 17 shows the input voltage of the CN_CS_CM and of the proposed HP_CS_CM
by sweeping the input current Iin from o to 10 µA. It can be seen that the proposed
HP_CS_CM has a constant 0.15 V input voltage, while the input voltage of the conventional
mirror CN_CS_CM varies from 450 mV to 550 mV.
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Figure 16. Output DC transfer characteristics of HP_CS_CM Voutmin = 0.2 V.
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Figure 18 shows the gain error (in percent) e = 100[(Iout − Iin)/Iin] in the current
transfer characteristic of the CN_CS_CM and the proposed HP_CS_CM as a function of the
input current. It can be seen that, as expected, errors are similar since, in both mirrors, the
drain-source voltages of input and output transistors are very similar. The total harmonic
distortion of the proposed HP_CS_CM is given in Table 3 for a 200 µA amplitude sine wave
at frequencies 500 Hz, 10 KHz, 1 MHz, and 100 MHz.

Table 3. Variation in THD with frequency for HP_CS_CM at different frequencies with 200 µA
amplitude sinusoidal current.

Frequency (Hz) THD (dB)

500 −60

10 k −62

1 M −60

100 M −40

A Monte Carlo analysis with 200 samples was executed for some important parameters
of the proposed HP_CS_CM for a 2 µA bias current. Table 4 gives the mean value and
standard deviation of the bandwidth, input, output resistance, quiescent power, and gain
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for 200 runs. It can be see that the proposed current mirror is robust against process
variation and mismatch effects. A noise analysis was also performed for the HP_CS_CM.
The input referred noise was 14.5 pA/

√
Hz.
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Table 4. Summary of results of 200 samples Monte Carlo analysis of proposed current mirror’s parameter.

Parameter Name Mean Value Standard Deviation

Bandwidth (MHz) 144 0.789

Input resistance (dBΩ) −13.7 0.728

Output Resistance(dBΩ) 221 0.505

Quiescent Power (µW) 5.33 0.066

Gain (A/A) 0.999 17.8 µ

Table 5 compares the performance characteristics of the proposed HP_CS_CM to other
low-voltage mirrors in the literature [17–20]. The proposed mirror has the highest output
resistance and the lowest input resistance of all mirrors. Bandwidth is dependent on power
dissipation. A mirror figure of merit FOMCM = BW/Pdiss is used to compare the circuits.
Notice that the proposed mirror has the highest FOMCM in the table (the input compliance
voltage of the resistance based mirror in [18] is lower but it has the serious shortcoming
that, with the reported 39.6 mV input voltage, it is subject in practice to very large random
gain/linearity errors caused by mismatch in VDS due to random offset of input and output
transistors in the control circuit).

Table 5. Comparison of the proposed HP_CS_CM with state-of-the-art work.

Parameter [17] [18] [19] [20] This Work

Input
Compliance Voltage 520 m 39.6 m - - 150 m

Current
Transfer error (%) 1.71 0.6 0.16 0.22 0.1

Input resistance (Ω) 21.43 496 68.3 130 0.212

Output
Resistance (Ω) 1.14 G 1 M 10.5 G 9.5 G 112 G

Bandwidth (Hz) 6.17 G 181 M 402 M 2.7 G 144 M

Noise (pA/
√

Hz) - - 7.8 - -

Supply (V) 1 0.9 1 1 1

Power (µW) 916.65 154 110 142.9 5

FOMCM (MHZ/µW) 6.73 1.17 3.6 18.89 28.8

Technology (µm) 0.18 0.18 0.18 0.18 0.18
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4. Conclusions

Two high-performance circuits based on the flipped voltage follower were introduced:
(1) One was a class AB high-performance cascode flipped voltage follower that uses an
additional output branch with a PMOS current-sourcing transistor. Replica biasing tech-
niques are used to bias the sourcing transistor with a small quiescent current independent
of the supply voltage. Under dynamic conditions, the sourcing transistor can provide very
large positive output currents, which are over a factor 100 larger than the total quiescent
current of the proposed circuit. Simulations in a commercial 0.18 µm CMOS technology
have shown that it has low supply voltage requirements, greatly enhanced bandwidth,
approximately symmetrical and large slew rates, and the largest small signal and large
signal figures of merit of all class AB voltage followers. (2) The other was a low-voltage
high-performance current mirror with 0.15 V input and 0.2 V output compliance volt-
ages, 1 V supply voltage, extremely high output resistance (112 GΩ), extremely low input
resistance (0.212 Ω), and the highest figure of merit.

This high-performance current mirror is implemented by utilizing two auxiliary
amplifiers and a level shifter that boost the gain of the mirror cascode transistors and that
equalize the drain source voltages of input and output mirror transistors. The auxiliary
circuit increases the power dissipation of the mirror by only 25%. These characteristics
were also verified with simulations in a commercial 0.18 µm CMOS technology.
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