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Abstract: This paper deals with the design, analysis, and implementation of a Ka-band, single-stage,
quasi-inverse class F power amplifier (PA). A detailed methodology for the evaluation of the active
device’s output capacitance is described, enabling the designing of a second-harmonically tuned
load and resulting in enhanced performance. A simplified model for the extraction of time-domain
intrinsic voltage and current waveforms at the output of the main active core is introduced, enforcing
the implementation process of the proposed quasi-inverse class F technique. The PA is fabricated in a
130 nm SiGe BiCMOS technology with fT/ fmax = 250/370 GHz and it is suitable for 5G applications.
It achieves 33% peak power-added efficiency (PAE), 18.8 dBm saturation output power Psat, and
14.7 dB maximum large-signal power gain G at the operating frequency of 38 GHz. The PA’s response
is also tested under a modulated-signal excitation and simulation results are denoted in this paper.
The chip size is 0.605× 0.712 mm2 including all pads.

Keywords: inverse class F; quasi-F−1; power amplifier; cascode amplifier; harmonic tuned PA;
mm-wave PA; Ka-band PA; 37–40 GHz PA

1. Introduction

The surge in consumer demand for mobile data, as well as their preference for superior
performance, enhanced quality, and increased reliability, has led to a continual rise in the
need for elevated data rates and reduced latency [1]. This demand has been a major
driver for Federal Communication Committee (FCC) to announce procedures for mm-wave
auctions and define the 5G new radio specifications [2]. Ka-band (26.5–40 GHz) is one of
the mm-wave bands of interest, since it can support higher data rate communication, lower
latency, and smaller equipment size [3]. The final scope behind the efforts of the research
community in the Ka-band circuit technologies is to enable various applications, such as
space telescope, close-range targeting radars, satellite communications, and fifth-generation
enhanced mobile broadband applications (eMBB) [4,5].

The power amplifier (PA) is an essential component in the mm-wave transmitter
chain, as it contributes significantly to power consumption and linearity [6]. In 5G wireless
systems, the utilization of complex modulated signals that possess a high peak-to-average
power ratio (PAPR) necessitates the power amplifiers to sustain high efficiency while
operating over a broad range of power at back-off. This requirement arises because the
PAs need to operate in such a way that they can accommodate the high variations in signal
power that are inherent in signals with high PAPR. This is important in order to ensure
that the system can operate with a high level of performance, even under challenging
conditions [7]. However, developing highly efficient silicon-based mm-wave PAs that
can offer satisfactory PAE even at power back-off (PBO) is a challenging task. The reason
behind this challenge is not only the inherent trade-off between break-down voltages
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and maximum speed in silicon-based transistors, but also the limited quality factor from
the integrated passive components [8]. Therefore, additional research on PA modeling is
necessary to ensure the precise design of digital or analog pre-distorters, envelope tracking,
and linear Doherty PAs [9]. Furthermore, harmonically tuned and switch-mode power
amplifiers are widely investigated, since it is proven that they can achieve higher efficiencies
compared to the conventional linear PAs [10].

This paper includes an extended analysis of the design flow that was followed for
the implementation of a 37–40 GHz SiGe BiCMOS quasi-inverse class F power amplifier
presented in [11]. The key differences and main contributions of the present paper are
summarized as follows: in contrast to [11], a comprehensive theoretical description of the
proposed PA class is provided in the present work, as well as post layout information for
some key passive parts of the amplifier. Moreover, new experimental results have been
added, enforcing the understanding of the proposed PA class and providing information
about the response and characteristics of the fabricated PA. Moreover, the PA’s response
to modulated-signal excitation has been examined after the creation of a simplified
PA model.

The present work is organized as follows: the ideal quasi-inverse class F power
amplifier and its comparison with the conventional inverse class F PA are described in
Section 2. An analytical model for the main active core of the fabricated Ka-band PA
along with a novel technique for the cancellation of the output parasitic capacitance of our
active device are presented in Section 3. Afterwards, Section 4 provides a concise overview
of each part of the proposed PA, in both a schematic and physical level. In Section 5, a
straightforward model is presented for plotting the voltage and current waveforms after
the parasitic output capacitance has been extracted. The extraction of this capacitance is
a critical step in the process, and the model provides a simplified way to visualize the
resulting waveforms. Section 6 denotes both the simulation and experimental validation
that were conducted to assess the effectiveness and reliability of the proposed PA. Finally,
in Section 7, the conclusions of the present work are drawn.

2. Ideal Quasi-F−1 Power Amplifier

A conventional inverse class F PA is defined as ideal if the ideal harmonic-impedance
conditions are realized at the output node of the active device under test. More specifically,
not only a proper transistor’s biasing is required, but also an infinite number of odd-
harmonic and even-harmonic tank resonators are necessary to be included in the output
network of an ideal inverse class F PA. In such a case, control of an infinite number of even
and odd harmonics are realized, resulting in zero overlapping of the square current and
half-sinusoidal voltage waveforms across the active device [12]. The latter impose 100%
efficiency and, thus, zero power dissipation. However, it is noteworthy to highlight that
only a finite number of harmonics will be present at the transistor’s load in practice. The
above restriction comes from the band-limiting behavior of the passive output network
as well as the chip area limitations [13]. As follows, nonideal square current and half-
sinusoidal voltage waveforms are present across the active device under test and, thus,
power proportional to the V-I overlap is dissipated. An interesting solution to enhance the
power profile of higher harmonics is presented in [14], where cascaded p-n junctions for
carrier injection engineering with poly-silicon are used. Table 1 summarizes the theoretical
maximum efficiencies that can be achieved for various combinations of voltage and current
harmonic components that are present at transistor’s load. The analysis and calculation of
the presented efficiencies can be found in [10]. Due to the restrictions mentioned above,
most of the inverse class F PAs realized in practice limit the harmonics control up to the
third of a fundamental frequency, setting the upper limit of their maximum efficiency
at 75% [13,15–17].
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Table 1. Resultant efficiencies for various combinations of voltage and current harmonic components [10].

Current Harmonic Components

Voltage Harmonic
Components 1 1, 3 1, 3, 5 1, 3, 5, . . . , ∞

1 0.500 0.563 0.586 0.637

1, 2 0.667 0.750 0.781 0.849

1, 2, 4 0.711 0.800 0.833 0.905

1, 2, 4, ∞ 0.785 0.884 0.920 1

A quasi-inverse class F power amplifier imitates by half the behavior of a conventional
inverse class F power amplifier concerning the harmonically tuned output termination.
The distinctive feature of the proposed PA class is its ability to regulate only the second
harmonic component of the voltage output across the active device, which streamlines
the design process for the output-matching network. Unlike conventional inverse class
F power amplifiers, the proposed PA class does not utilize a third harmonic resonator
in the output current, avoiding the insertion of additional losses during high-frequency
operation. The limited quality factor (Q) of passive components frequently causes the third
harmonic resonator to cancel the expected improvement in efficiency. According to Table 1,
the upper limit of the proposed quasi-inverse class F is 66.7%. However, this efficiency
limit is reduced even more, as it happens in the case of the conventional inverse class F
PA, due to finite knee and breakdown voltages of the active device as well as the resistive
losses of the passive load network.

3. Modelling of the Active Device

To achieve an accurate modeling of a mm-wave PA, it is crucial to thoroughly examine
the main amplifying core or active module of each stage, as well as the electromagnetic
(EM) characterization of its passive structures. By considering the active module as a
voltage-dependent current source with an input and output admittance Yin = Gin + jBin
and Yout = Gout + jBout, respectively (Figure 1a) [18], a “loop gain” analysis can be per-
formed at node X not only to assess stability, but also to estimate the output admittance.
This analysis involves “breaking” the circuit at the desired node while still maintaining
overall performance. The result of the described process can provide insight into the output
admittance (Yout). Such an analysis is beneficial in the circuit design flow, especially for
multiple-stage PAs with or without feedback loops (Figure 1b) compared to the conven-
tional large-signal S-parameter analysis (LSSP), which is not able to provide information
regarding the input and output impedances of the intermediate stages, since it calculates
the coefficients related only to the defined terminations.

The amplifying core model of the proposed single-stage PA is depicted in Figure 1c,
and it incorporates the cascode topology as a single active device (AD). By separating
the AD from the output-matching network (OMN), the output capacitance (Cout) can be
determined as:

Cout = Bout/ω (1)

where ω is the angular frequency. The presented ideal RF choke provides a transparent dc
current path.

As follows, we can determine the input and output impedances of the device under
test while the input power is being varied. For that purpose, we can perform a harmonic
balance simulation in which the proposed nonlinear circuit is represented as a superposition
of harmonic components and the steady-state behavior of each harmonic component is
analyzed separately. Once the steady-state behavior of each harmonic component has been
determined, the output admittance can be calculated by dividing the harmonic voltage
across the desired nodes by the corresponding harmonic current at each harmonic frequency.
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This allows us to accurately capture the changes in the device’s output capacitance in
relation to its driving power, thereby enhancing the precision of the design process.
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Figure 1. (a) Simplified model for a PA’s active device and X node notation. (b) X nodes of a
multiple-stage PA. (c) Simplified model for the cascode active device of the proposed PA.

The results of the harmonic balance “loop gain” analysis, performed over a frequency
range of 37–40 GHz, are presented in Figure 2. The figure displays the variation in the
output capacitance Cout of our active device with respect to the input power (Pin) sweep.
It should be mentioned that the active device under test includes all the layout parasitics
imposed by transistors’ via and the interconnects between the common-emitter (CE) and
common-base (CB) HBT of the cascode structure. To ensure stability at the desired frequency
band, ideal conjugate matching is employed at the input of the active device and a 15 Ω
series resistor is inserted to the base of the CE HBT Q1. The results indicate that Cout is
approximately 115 fF at low input power, while, at the operating point where the power
gain is 1-dB compressed ( ∼ 4–5 dBm), Cout is found to be in the range of 120–125 fF.
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The validity of the above results can be straightforwardly confirmed by verifying that
the extracted output capacitance is effectively cancelled out by the required inductance [19]:

Lreq =
1

ω2Cout
(2)

By conducting a swept power load pull analysis at 38 GHz, it was found that
the power contours at the 1dB compression point have a center located at impedance
ZLoad = 13.9 + j22.4 Ω. However, after replacing the rf choke component with an ideal
inductance of approximately 146 pH, the load pull contours are centered around the real
axis at the optimum load ZLoad

′ = 50 + j0 Ω, as depicted in Figure 3 and discussed in [8].
This change in load impedance can be mathematically explained using the established
equations for converting series to parallel impedance:

ZLoad = RS + jXS

YLoad =
1

RP
− j

1
XP

with Cout canc.
=========⇒ YLoad

′ =
1

RP

Q =
XS
RS

=
RP
XP

⇔ ZLoad
′ =

1
YLoad

′ + j0 = RP =
(

Q2 + 1
)
·RS (6)

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 5 of 19 
 

 

The validity of the above results can be straightforwardly confirmed by verifying that 

the extracted output capacitance is effectively cancelled out by the required inductance 

[19]: 

𝐿𝑟𝑒𝑞 =
1

𝜔2𝐶𝑜𝑢𝑡
 (2) 

By conducting a swept power load pull analysis at 38 GHz, it was found that the 

power contours at the 1dB compression point have a center located at impedance 𝑍𝐿𝑜𝑎𝑑 =

13.9 + 𝑗22.4 Ω. However, after replacing the rf choke component with an ideal inductance 

of approximately 146 𝑝𝐻, the load pull contours are centered around the real axis at the 

optimum load 𝑍𝐿𝑜𝑎𝑑
′ = 50 + 𝑗0 Ω , as depicted in Figure 3 and discussed in [8]. This 

change in load impedance can be mathematically explained using the established equa-

tions for converting series to parallel impedance: 

{
  
 

  
 

𝑍𝐿𝑜𝑎𝑑 = 𝑅𝑆 + 𝑗𝑋𝑆
 

𝑌𝐿𝑜𝑎𝑑 =
1

𝑅𝑃
− 𝑗

1

𝑋𝑃

𝑤𝑖𝑡ℎ 𝐶𝑜𝑢𝑡 𝑐𝑎𝑛𝑐.
⇒           𝑌𝐿𝑜𝑎𝑑

′ =
1

𝑅𝑃 

𝑄 =
𝑋𝑆
𝑅𝑆
=
𝑅𝑃
𝑋𝑃

 

(3) 

(4) 

(5) 

⇔𝑍𝐿𝑜𝑎𝑑
′ =

1

𝑌𝐿𝑜𝑎𝑑
′ + 𝑗0 = 𝑅𝑃 = (𝑄

2 + 1) ∙ 𝑅𝑆 (6) 

 

Figure 3. Power contours with and without 𝐶𝑜𝑢𝑡 cancellation. The power step is 0.5 dBm. 

Considering the load Pull analysis as a benchmark for validating the discovery pro-

cess of 𝐶𝑜𝑢𝑡, it is important to highlight that the proposed method based on the loop gain 

analysis of a single harmonic balance (HB) simulation has been found to produce more 

accurate results in comparison to the conventional large-signal s-parameter (LSSP) simu-

lation. This novel method for investigating 𝐶𝑜𝑢𝑡 provides the ability to create a highly 

accurate model of PA classes that are harmonically tuned and highly efficient, such as 

Class F, F−1, and E, as referenced in [20]. 

4. Proposed Quasi-Inverse Class F Power Amplifier 

Figure 4 depicts the proposed single-stage, second-harmonically tuned, 37–40 GHz, 

quasi-F−1 power amplifier. The circuit features a cascode topology as the selected active 

device, a simple but effective cascode current mirror serving as a bias network, and a T-

type input-matching network. Additionally, the PA schematic incorporates an output har-

monically tuned load to achieve an optimal 50 Ω fundamental impedance and an open-

Figure 3. Power contours with and without Cout cancellation. The power step is 0.5 dBm.

Considering the load Pull analysis as a benchmark for validating the discovery process
of Cout, it is important to highlight that the proposed method based on the loop gain analysis
of a single harmonic balance (HB) simulation has been found to produce more accurate
results in comparison to the conventional large-signal s-parameter (LSSP) simulation. This
novel method for investigating Cout provides the ability to create a highly accurate model
of PA classes that are harmonically tuned and highly efficient, such as Class F, F−1, and E,
as referenced in [20].

4. Proposed Quasi-Inverse Class F Power Amplifier

Figure 4 depicts the proposed single-stage, second-harmonically tuned, 37–40 GHz,
quasi-F−1 power amplifier. The circuit features a cascode topology as the selected active
device, a simple but effective cascode current mirror serving as a bias network, and a
T-type input-matching network. Additionally, the PA schematic incorporates an output
harmonically tuned load to achieve an optimal 50 Ω fundamental impedance and an
open-circuit second harmonic load. Both the input and output ports are terminated with a
50 Ω impedance.
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The quasi-F−1 PA was designed and fabricated in Infineon’s 130 nm SiGe BiCMOS
process. The process includes high-speed NPN HBTs with a unity gain frequency of
fT = 250 GHz and a maximum frequency of oscillation fmax = 370 GHz. The breakdown
voltages of the provided HBTs are BVCEO = 1.8 V and BVCBO = 5.3 V. The layer stackup
profile includes six copper metal layers and a 1.0 µm aluminum layer serving as the top
metal. In the following subsections, each part of the circuit is analyzed in both schematic
and physical layout levels.

It is worth mentioning that the design steps that followed for the present work form
a robust methodology for designing and fabricating harmonically tuned PAs in various
technology nodes for potential performance improvements. For instance, scaling down
to a smaller technology node, such as 90 nm SiGe BiCMOS process, can offer improved
response in terms of higher cutoff frequency, lower noise figure, and increased power
density. This can translate into higher overall performance (output power and power gain)
and efficiency for the PA. However, there are also some potential trade-offs to consider,
such as increased device mismatch and increased power dissipation. On the one hand,
device mismatch can be a significant issue when scaling down to a smaller technology
node, as the smaller devices can exhibit greater variation in their electrical characteristics.
This can lead to reduced gain, higher noise figure, and decreased linearity in the PA. On
the other hand, smaller devices can lead to higher power density, which, in turn, can result
in higher temperatures and increased power dissipation and reliability issues.

4.1. Supply Voltage Vcc

Aiming for a maximum output power at the saturation point of 20 dBm on a 50 Ω
load, which is considered as the input impedance of SISO transmitter antenna, the required
voltage amplitude at the fundamental is:

Psat =
Vrms@ f und

2

RLoad
⇔ Vf und =

√
Psat·RLoad·2 ≈ 3.16 V (7)

According to [13], the maximum PA efficiency is achieved when the voltage amplitude
at second harmonic is V2nd ≈ 0.354·Vf und and is given by:

nmax = 0.816·
(

1− Vknee
VCC

)
(8)
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where Vknee is the knee voltage of the active device and VCC the supply voltage. After
taking a 700 mV knee voltage margin into consideration due to cascode configuration of
our active device, Equation (8) implies that, in maximizing Vcc, the maximum efficiency
increases too. Consequently, a 3.3 V supply voltage is selected, since, as it is imposed from
the particular technology rules, it is the maximum allowable supply voltage for safe and
reliable operation.

It should be noticed that the AD’s collector will experience a maximum of approxi-
mately 7.2 V of sinusoidal peaking. This peak will not cause any issues, as the base node of
the selected AD will be terminated with a finite resistance through a DC bias network, pro-
viding a path for discharging the base to ground and preventing base charge accumulation.
This, in turn, will avoid early collector impact ionization. The breakdown voltage of the
active device will realistically be limited by BVCBO, which is exceptionally high in the case
of a cascode topology composed of SiGe HBTs. Furthermore, the supply voltage is fed into
our circuit via an aluminum pad, while diode circuits provide the required ESD protection.

4.2. Cascode Topology

The cascode topology has been selected as the main amplifying core for its numer-
ous advantages. One of the key factors that motivated this choice was the higher gain
and reduction in the Miller’s effect, which enhances the stability of the active device, as
highlighted in references [18,21].

The size of Q1,2 has been carefully selected to deliver an output power of more than
18 dBm when biased in a deep class AB point, also known as the “sweet spot” [10]. This
bias point allows the HBT to produce a maximum current at the first harmonic, similar to
when it is biased in a class A point, while also reducing the maximum collector current
of the third harmonic [18]. The bases of Q1,2 are biased at approximately 0.81 V and
1.65 V, respectively, resulting in a cascode branch that conducts approximately 12 mA of
quiescent collector current. The effective emitter length of the selected double-emitter HBTs
(CBEBEBC) is 6 bl · 2 · 2.8 µm, resulting in a current density of approximately 11.5 mA/µm2

at maximum fT = 250 GHz when the active device is driven close to 1 dB compression
point (OP1dB = 18.6 dBm). The described biasing leads to the AD conducting IDC = 52 mA
at 1 dB compression point, maintaining a power gain of around 16 dB at 38 GHz.

It is worth mentioning that the intrinsic interconnects of the HBTs can be proven
crucial not only to efficiency, but also to the optimal impedance matching at the input and
output of our AD. Thus, the via interconnects were EM simulated and their effects were
taken into consideration for an accurate modeling of the HBTs.

4.3. Bias Circuit

The proposed bias network is depicted in Figure 4 with a dot line. It is a simple yet
effective current mirror that consists of the transistors Qb1, Qb2, TaN resistors Rbias, R1−4,
MIM capacitors C1,2, and a large inductor Lbias. The size of the included HBTs and
resistors determine the dc voltages used for biasing of the cascode AD. More specifically,

Rbias = 875 Ω while R1,3
R2,4

=
le, Q1,2

le, Qb1,b2
= 15, generating the aforementioned dc voltages

0.81 V and 1.65 V at the bases of Q1, Q2, respectively. Furthermore, a large octagonal
inductor Lbias realized in top metal isolates the bias circuit from the active device and
the rf path, while the decoupling capacitors C1 = 5 pF and C2 = 1 pF provide a low
impedance path to the ground at the Ka-band.

It is noteworthy to highlight that a parasitic extraction process has been conducted on
all elements contributing to the direct current path, including HBTs and resistors, while
components contributing to the rf path have been EM simulated.

4.4. Output-Matching Network

The implementation of the proposed OMN is based on [15] and adopts a harmonically
tuned circuitry, offering a transparent current path for the first harmonic as well as an
effective short circuit of the second harmonic.
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The identification of the parasitic capacitance Cp of the active device is vital for
determining the optimal values of the components that form the output network. This
capacitance can be derived and authenticated through the techniques described in Section 2
with ease. Cancelling out the parasitic capacitance Cp via the inductor Lp1, the optimum
load impedance is transferred close to the real axis of the Smith Chart.

Upon the completion of the parasitic capacitance Cp extraction process, the calculation
of the optimal inductances and capacitances of the output-matching network becomes a
matter of simple procedure. At the fundamental operating frequency f0, the short-circuit
termination located at one end of the quarter-wavelength line (λ⁄4) transforms into an open
circuit at its opposite end. As a result, the OMN transforms into a series configuration
consisting of the shunt Lp1-Cp tank in conjunction with Ls = Ls1 + Ls2 and Cs, thereby
constituting a dual f0 resonator (as depicted in Figure 5a). It is worth noting that the
inductor Lp2 cancels out the parasitic capacitance CPAD = 60 fF that is inherent to the
output rf pad. Moreover, the inductor Lp1 resonates out the parasitic capacitance Cp, while
the series resonator Ls-Cs provides a clear pathway for the transmission of the fundamental
component of the current from the generator device (Q1, Q2) to the 50 Ω load.
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Figure 5. Schematic of the load network at (a) the fundamental f0 and (b) the second harmonic.

At the second harmonic frequency, the quarter-wavelength line transforms into a
short circuit, thereby disconnecting the PA from the output load. This transformation is
effectively depicted in Figure 5b and results in the conversion of the load network into a
parallel second harmonic resonator composed of Lp1 in conjunction with Ls1 and Cp, thereby
providing the active device’s transistors with an extremely high impedance (Z2 = ∞) at
the second harmonic. Table 2 provides a concise summary of the values of the passive
components of the OMN utilized in this study, as well as the corresponding Q-factors
at the fundamental. High Q-factors of the passive components are desirable in order to
minimize the resistive losses of the output path and, thus, moderate the PA’s efficiency
degradation. For that purpose, T-line inductors constitute both f0 and 2f0 resonators, since
their quality factors are significantly higher (typical ~30–35) compared to on-chip spiral
inductors (typical ~20–25).

Table 2. Passive values and Q-factors of the components of the output-matching network (OMN).

Cp LP1 LS1 LS2 CS LP2

Value @ f0 120 fF 146 pH 49 pH 97 pH 120 fF 290 pH
Q-factor @ f0 - 32.2 36 34.8 17.5 26

Figure 6 demonstrates the 3D final layout view of the proposed output-matching
network. In order to reduce the resistive losses and the capacitive coupling to ground,
the top metal (M6) is used for the inductors and the signal path of the λ/4 transmission
line, while the reference plane of the transmission line is realized in M4. Finally, the whole
structure is EM simulated and phenomena such as capacitive coupling to ground, cross-talk,
and mutual inductance have been taken into consideration.
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4.5. Input-Matching Network

The designed input-matching network (IMN) shown in Figure 4 is a simple T-type
network consisting of a 200 µm open stub and a 410 µm series transmission line, as well
as an MIM capacitor Cin = 110 fF. The above matching network achieves a narrowband
matching around 38 GHz between the source load and the main amplifier. The final 3D
view of the proposed IMN is presented in Figure 7. As previously, the 50 Ω transmission
lines are realized with M6 and M4 and the whole network is EM simulated.
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5. Intrinsic Voltage and Current Waveforms

The intrinsic collector current and voltage waveforms in the time domain, after the
compensation of parasitic capacitance Cout, provide valuable insights into the performance
of the active device when it is connected to a harmonically tuned load. The schematic
model utilized to obtain the voltage and current waveforms at the output of the cascode
topology is presented in Figure 8, as a direct access to the intrinsic current source node of
the provided HBT model was not available. Our model consists of a multitone voltage
source, which models the magnitude and phase components of the voltage (extracted from
a harmonic balance analysis) at the collector node of the common base HBT Q2 and an ideal
capacitor, Cout, that represents the behavior of the AD’s output parasitic capacitance over
frequency. As Cout changes by less than 4% at higher harmonics, a constant capacitance of
Cout = 120 fF was selected to simplify the model.
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Figure 8. Simplified model for the extraction of the time-domain collector voltage and current waveforms.

An ammeter placed between the voltage source and the parallel combination of Cout
and OMN, measures the intrinsic current of our active topology. Moreover, in order
to produce an accurate representation of the two waveforms, it is necessary to add the
V—I DC components, as they have been extracted from a harmonic balance simulation
of the proposed PA. It should be clarified that the active device constitutes the provided
PDK transistor models along with the EM models that represent the metal interconnects
for the performed harmonic balance simulation. The time-domain collector current and
voltage waveforms at the 1 dB gain compression point operating at 38 GHz are displayed
in Figure 9c and correspond to a PAE performance of approximately 40%. The strong
presence of the second harmonic in the intrinsic collector voltage waveform (Figure 9a)
results in a waveform that can be approximated as half-sinusoidal, while the weak and
moderate presence of the second and third components of the current waveform results in
an approximately square waveform (Figure 9b). These waveform shapes imply reduced
V–I overlap and, therefore, improved efficiency.
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6. Simulation and Measurement Results

Figure 10 depicts a photograph of the bare die chip. The total area of the fabricated chip
is 0.605× 0.712 mm2, including all pads. In order to assess the performance of the designed
quasi-inverse class F power amplifier, probe station measurements were conducted. A
VNA analyzer was used for measuring PA’s response during small-signal excitation, while
the large-signal measurements were carried out using an rf signal generator and a power
meter. It should be mentioned that the rf cable loss was thoroughly characterized over the
frequency range of interest and any necessary adjustments were made to account for this
loss through de-embedding.

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 9. Simulated frequency-domain collector: (a) voltage and (b) current. (c) Time domain volt-

age and current waveforms. 

6. Simulation and Measurement Results 

Figure 10 depicts a photograph of the bare die chip. The total area of the fabricated 

chip is 0.605 × 0.712 mm2, including all pads. In order to assess the performance of the 

designed quasi-inverse class F power amplifier, probe station measurements were con-

ducted. A VNA analyzer was used for measuring PA’s response during small-signal exci-

tation, while the large-signal measurements were carried out using an rf signal generator 

and a power meter. It should be mentioned that the rf cable loss was thoroughly charac-

terized over the frequency range of interest and any necessary adjustments were made to 

account for this loss through de-embedding. 

 

Figure 10. Bare die chip photograph. 

Figure 11 displays the small-signal s-parameter measurement and simulation results 

of the proposed power amplifier. It should be noted that PA’s dc operating conditions 

during small-signal measurement and simulations were a 3.3 V supply voltage (𝑉𝑐𝑐) as 

well as a 2.1 V  bias voltage (𝑉𝑏𝑖𝑎𝑠 ). The above dc conditions result in almost 35 mW 

power consumption under dc operation. Furthermore, the s-parameter results indicated 

that the measured 𝑆21  parameter exceeded 13 dB  over the frequency range of 37–40 

GHz, reaching a peak value of 15.6 dB at 37 GHz, while the 𝑆11 parameter remained less 

than −10 dB over the frequency range of 38–40 GHz. Further broadening of input reflec-

tion coefficient is possible using more complex matching networks at the expense of area 

consumption. Moreover, Figure 11 depicts a moderate discrepancy between the 𝑆22 

measurement and simulation results over the frequency range 30–37 GHz. That inaccu-

racy is caused by calibration error due to the defective calibration substrate used in the s-

parameter measurement. However, the aforementioned difference between the 𝑆22 meas-

urement and simulation results becomes negligible over the frequency range of our 

Figure 10. Bare die chip photograph.

Figure 11 displays the small-signal s-parameter measurement and simulation results of
the proposed power amplifier. It should be noted that PA’s dc operating conditions during
small-signal measurement and simulations were a 3.3 V supply voltage (Vcc) as well as a
2.1 V bias voltage (Vbias). The above dc conditions result in almost 35 mW power consump-
tion under dc operation. Furthermore, the s-parameter results indicated that the measured
S21 parameter exceeded 13 dB over the frequency range of 37–40 GHz, reaching a peak
value of 15.6 dB at 37 GHz, while the S11 parameter remained less than −10 dB over the
frequency range of 38–40 GHz. Further broadening of input reflection coefficient is possible
using more complex matching networks at the expense of area consumption. Moreover,
Figure 11 depicts a moderate discrepancy between the S22 measurement and simulation
results over the frequency range 30–37 GHz. That inaccuracy is caused by calibration error
due to the defective calibration substrate used in the s-parameter measurement. However,
the aforementioned difference between the S22 measurement and simulation results be-
comes negligible over the frequency range of our interest (37–40 GHz). Additionally, the
PA demonstrates stability throughout the entire frequency range, as depicted in Figure 12
through the k-factor measurement.

Regarding the large-signal measurement, as depicted in Figure 13, the proposed quasi-
inverse class F power amplifier demonstrates remarkable performance, with a large-signal
power gain of more than 14 dB at its operating frequency of 38 GHz. Additionally, the
output 1 dB compression point, represented by OP1dB, is approximately 17.6 dBm, while
the saturated output power Psat is around 19 dBm and the maximum PAE reaches 33%.
It should be noted that the linear response of the proposed Ka-band PA is essential for
maintaining high signal fidelity and minimizing interference, distortion, or nonlinear
effects in wireless communication systems. Further improvement of the linearity of the
presented PA is possible if a linearization technique is applied. Some of the commonly used
linearization techniques in mm-wave PAs include predistortion, feedback, feedforward,
digital predistortion, and envelope tracking [18].



J. Low Power Electron. Appl. 2023, 13, 23 12 of 19

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 12 of 19 
 

 

interest (37–40 GHz). Additionally, the PA demonstrates stability throughout the entire 

frequency range, as depicted in Figure 12 through the k-factor measurement. 

Regarding the large-signal measurement, as depicted in Figure 13, the proposed 

quasi-inverse class F power amplifier demonstrates remarkable performance, with a large-

signal power gain of more than 14 dB at its operating frequency of 38 GHz. Additionally, 

the output 1 dB compression point, represented by 𝑂𝑃1𝑑𝐵, is approximately 17.6 dBm, 

while the saturated output power 𝑃𝑠𝑎𝑡 is around 19 dBm and the maximum 𝑃𝐴𝐸 reaches 

33%. It should be noted that the linear response of the proposed Ka-band PA is essential 

for maintaining high signal fidelity and minimizing interference, distortion, or nonlinear 

effects in wireless communication systems. Further improvement of the linearity of the 

presented PA is possible if a linearization technique is applied. Some of the commonly 

used linearization techniques in mm-wave PAs include predistortion, feedback, feedfor-

ward, digital predistortion, and envelope tracking [18].  

 

Figure 11. Small-signal s-parameters measurement and simulation results. 

 

Figure 12. Stability k-factor measurement. 

Figure 11. Small-signal s-parameters measurement and simulation results.

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 12 of 19 
 

 

interest (37–40 GHz). Additionally, the PA demonstrates stability throughout the entire 

frequency range, as depicted in Figure 12 through the k-factor measurement. 

Regarding the large-signal measurement, as depicted in Figure 13, the proposed 

quasi-inverse class F power amplifier demonstrates remarkable performance, with a large-

signal power gain of more than 14 dB at its operating frequency of 38 GHz. Additionally, 

the output 1 dB compression point, represented by 𝑂𝑃1𝑑𝐵, is approximately 17.6 dBm, 

while the saturated output power 𝑃𝑠𝑎𝑡 is around 19 dBm and the maximum 𝑃𝐴𝐸 reaches 

33%. It should be noted that the linear response of the proposed Ka-band PA is essential 

for maintaining high signal fidelity and minimizing interference, distortion, or nonlinear 

effects in wireless communication systems. Further improvement of the linearity of the 

presented PA is possible if a linearization technique is applied. Some of the commonly 

used linearization techniques in mm-wave PAs include predistortion, feedback, feedfor-

ward, digital predistortion, and envelope tracking [18].  

 

Figure 11. Small-signal s-parameters measurement and simulation results. 

 

Figure 12. Stability k-factor measurement. Figure 12. Stability k-factor measurement.

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 13. Large-signal measurement and simulation results at 38 GHz. 

Examining Figure 14, which plots the 𝑂𝑃1𝑑𝐵 and 𝑃𝐴𝐸 over the frequency range of 

37–40 GHz, it becomes evident that the PA maintains high performance, with 𝑂𝑃1𝑑𝐵 

greater than 16 dBm and 𝑃𝐴𝐸 higher than 30% throughout the entire band of interest. 

Other crucial specifications determined through our measurements include the 𝐼𝑃1𝑑𝐵 , 

which is approximately 9 dBm, and the AM-to-PM conversion, which is less than 13° for 

all the swept input powers (−20~8 dBm). The AM-to-PM conversion holds its maximum 

of 13° when the proposed PA operates in saturation. Efficiency (%) at 3 dB and 6 dB power 

back-off have been extracted from the results of the performed large-signal measurements 

at 38 GHz and they are highlighted in Figure 15. In particular, the designed quasi-inverse 

class F power amplifier achieves a 3 dB back-off collector’s efficiency of around 27.8% and 

a 6 dB back-off efficiency of 19.3%. Finally, the dc current drawn by our active device 

versus the output power deliver to the load is plotted in Figure 16. It should be mentioned 

that the dc current consumption under no input excitation is around 10 mA (𝑃𝑑𝑐 =

33 mW), while the designed PA draws 52 mA dc current when the output power reaches 

1 dB compression point. Further improvement of the quiescent power consumption 𝑃𝑑𝑐 

is possible by reducing the bias voltage 𝑉𝑏𝑖𝑎𝑠 of the common-emitter HBT driving our 

active module close to a class B operating point. However, such a modification leads to a 

reduction in the achievable power gain. 

 

Figure 14. Measurement and simulation results of 𝑂𝑃1𝑑𝐵 and 𝑃𝐴𝐸 over frequency. 

Figure 13. Large-signal measurement and simulation results at 38 GHz.

Examining Figure 14, which plots the OP1dB and PAE over the frequency range of
37–40 GHz, it becomes evident that the PA maintains high performance, with OP1dB greater
than 16 dBm and PAE higher than 30% throughout the entire band of interest. Other
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crucial specifications determined through our measurements include the IP1dB, which is
approximately 9 dBm, and the AM-to-PM conversion, which is less than 13◦ for all the
swept input powers (−20~8 dBm). The AM-to-PM conversion holds its maximum of 13◦

when the proposed PA operates in saturation. Efficiency (%) at 3 dB and 6 dB power
back-off have been extracted from the results of the performed large-signal measurements
at 38 GHz and they are highlighted in Figure 15. In particular, the designed quasi-inverse
class F power amplifier achieves a 3 dB back-off collector’s efficiency of around 27.8% and a
6 dB back-off efficiency of 19.3%. Finally, the dc current drawn by our active device versus
the output power deliver to the load is plotted in Figure 16. It should be mentioned that
the dc current consumption under no input excitation is around 10 mA (Pdc = 33 mW),
while the designed PA draws 52 mA dc current when the output power reaches 1 dB
compression point. Further improvement of the quiescent power consumption Pdc is
possible by reducing the bias voltage Vbias of the common-emitter HBT driving our active
module close to a class B operating point. However, such a modification leads to a reduction
in the achievable power gain.
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6.1. Complex Waveform Simulations

Key top-level specifications that arise from the large-signal measurement results of
the fabricated quasi-inverse class F power amplifier and have been presented above are
incorporated in a simulation model in order to examine PA’s response to modulated-signal
excitation. The amplifier’s model is created through Keysight’s Pathwave System Design
tool “SystemVue” that offers an advanced prototyping and design platform for complex
RF systems. It is noteworthy to highlight that the following simulations and modeling
require no extra RF instrumentation, forming an approximation based on the single-tone
large-signal measurement results that have been already performed.

Keeping as reference the large-signal measurement at 38 GHz, the following entries
have synthesized the amplifier’s model:

• Saturation power: Psat = 18.8 dBm;
• Output 1 dB compression point: OP1dB = 17.6 dBm;
• Power gain: G = 14.7 dB;
• Gain compression at saturation: GCSat = 4 dB;
• Center frequency: F = 38 GHz;
• 3 dB bandwidth: BW = 6 GHz.

Concerning PA’s excitation, a pseudo random binary sequence generator along with an
arbitrary digital modulation source generate the modulated signals at a carrier frequency
of 38 GHz. Keeping the input signal’s bandwidth constant at 25 MHz in each test, an
attempt is made to examine PA’s response to QPSK and 16 QAM signals having different
peak-to-average power ratios. It should be noted that, after a raised cosine filtering with
0.2 roll-off factor, the maximum available bandwidth is 30 MHz, while adjacent channel
power ratio (ACPR) is measured at 27 MHz offset from the 38 GHz carrier frequency, as is
depicted in Figure 17. The aforementioned simulation scenarios result in the bit rates of
50 Mbps and 200 Mbps for the QPSK and 16 QAM signals, respectively.

As is highlighted in Figure 18, the increase in average power efficiency entails
increase in the error vector magnitude metric. Moreover, due to the fact that QPSK is the
least PAPR modulation format, the PA’s average power efficiency is slightly higher for a
given EVM. Referring to Figure 19, the resulting EVM at PA’s 1 dB compression point
(OP1dB = 17.6 dBm) is around 6% for the QPSK signal and 8% for the 16 QAM signal,
while, for output powers that correspond to the linear region of the designed PA, the
EVM is lower than 4% for both modulation schemes.
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Based on the information provided in Figure 20, it can be observed that the adjacent
channel power ratio (ACPR) exhibits a value of −40 dBc when the power amplifier (PA)
model is stimulated with QPSK or 16 QAM signals, which have weak peak-to-average
power ratios. It is important to note that, as the average output power of the PA increases,
the ACPR also experiences an increase, which is a commonly expected phenomenon. When
our PA reaches its 1 dB compression point, the ACPR is approximately −25 dBc for both
input excitations. Finally, the ACPR requirement for 3GPP NR carrier [22] is depicted in
Figure 20. The ACPR limit has been set at−26 dBc for the FR2 frequency range 37–52.6 GHz.
As follows, the proposed PA model complies with the ACPR requirements of the 3GPP NR
standards until its output almost reaches the OP1dB.
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6.2. Comparison Table

Table 3 includes a summary of the various parameters of the designed Ka-band
quasi-inverse class F power amplifier, as they have been extracted from the performed
measurements. Moreover, it provides the specifications of other state-of-the-art Ka-band
power amplifiers integrated in SiGe BiCMOS technologies, making the comparison with
the proposed one feasible. It is noteworthy to highlight that the fabricated PA presented
in this paper exhibits a very good compromise between the maximum output power it
can deliver to the load, the achievable power gain, as well as the maximum PAE. Further
improvement of the PAE and the corresponding power consumption is possible if addi-
tional harmonic tanks are incorporated in the designed output-matching network for a
higher order harmonic component control. The performance metrics of Table 3 demon-
strate that the proposed PA based on the quasi-inverse class F technique is competitive
to other high-efficiency techniques that adopt high-order multi-resonance harmonic filter
loads. A Figure of Merit (FoM) has been introduced by the authors of this article for
performance comparison of the various Ka-band SiGe PAs. The FoM is calculated using
the following formula:

FoM = Psat(dBm) + OP1dB(dBm) + 10 log(PAE(%)) + 20 log(Frequency(GHz))− 10 log(Pdc(mW)) (9)

As is clearly depicted in Table 3, the present work achieves the highest FoM (68)
among state-of-the-art integrated Ka-band SiGe PAs, verifying the effectiveness of the
proposed design and highlighting its potential for future applications in high-frequency
communication systems.
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Table 3. Comparison table of published Ka-band PAs.

References This Work [9] [13] [15] [17] [21] [23] [24] [25]

Technology 130 nm SiGe 130 nm
SiGe

130 nm
SiGe

130 nm
SiGe

130 nm
SiGe

130 nm
SiGe

130 nm
SiGe

130 nm
SiGe

180 nm
SiGe

fT/fmax 250/370 - 180/220 180/220 200/265 - - 180/220 -

Class/Architecture Quasi-F−1 Doherty F−1 F−1 F−1 4-way
comb. F−1 F−1 Digitally

VGA

Stages 1 2 2 2 2 2 × 4 2 1 2

Frequency (GHz) 37–40 37 38 39–42 38 35 28.5 31 25.8–35

Psat (dBm) 18.8 * 17.1 16.5 18 ** 21.2 22.8 17 17.1 11.1 ***

Gain (dB) 14.7 * 17.1 16.5 18 ** 22.1 25.3 20 10.3 16 ***

OP1dB (dBm) 17.6 * 15.5 15 16 ** 17.5 22.6 15.2 15 9.6 ***

PAE (%) 33 * 22.6 38.5 43 ** 30.1 27 43.5 40.7 55.9 ***

Pdc (mW) 33 24.9 25.2 31.5 75 198 30.4 19.8 22.5

Size (mm2) 0.43 (+ 0.2) 1.76 0.51 0.57 + 0.76 + 0.48 + 0.29 0.27
(+ 0.14)

0.72
(+ 0.23)

FoM 68 63.5 64.9 67.4 66.3 67.6 62.9 65 54

* at 38 GHz. ** at 40.5 GHz, *** at 29.5 GHz, + size excluding pads.

7. Conclusions

In this paper, a SiGe BiCMOS power amplifier is successfully implemented and
demonstrated at the Ka-band. The designed PA is based on a quasi-inverse class F tech-
nique that adopts a second-harmonically tuned load providing the required impedances
to the cascode amplifying core. This paper fully discusses the potential and limitations
of the proposed quasi-inverse class F technique, as well as its distinctive feature from the
conventional inverse class F technique. In order for the quasi-inverse class F approach to
be implemented, it is crucial to thoroughly examine and calculate the parasitic compo-
nents of the PA’s main active device. In this work, the cascode configuration is treated as
a single active device, with its output capacitance being identified as a critical parasitic
component. A detailed methodology is described for the discovery of the active device’s
output parasitic capacitance enforcing the accuracy of the main core modeling and en-
abling the designing of the harmonically tuned load. Furthermore, a comprehensive
description of the design steps that were followed for the schematic and physical design
of each part that constitute the proposed PA is presented. Afterwards, a simplified
model for the extraction of time-domain intrinsic voltage and current waveforms is
introduced, enforcing the process for the implementation of the proposed quasi-inverse
class F technique. The major top-level specifications that have been identified based
on the large-signal measurement outcomes of the quasi-inverse class F PA are included
in a simulation model. This model is utilized to analyze the performance of PA when
it is subjected to modulated-signal excitation. According to small- and large-signal
measurements and the comparison table that includes other state-of-the-art Ka-band
PAs, the designed single-stage amplifier achieves one of the highest output powers while
maintaining a high level of efficiency.
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