
Citation: Martinoli, V.; Tourneur, E.;

Teglia, Y.; Leveugle, R. CCALK:

(When) CVA6 Cache Associativity

Leaks the Key. J. Low Power Electron.

Appl. 2023, 13, 1. https://doi.org/

10.3390/jlpea13010001

Academic Editors: Teresa Cervero,

Kevin Martin, Mario Kovač and

Maurizio Martina

Received: 27 October 2022

Revised: 19 December 2022

Accepted: 23 December 2022

Published: 27 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

CCALK: (When) CVA6 Cache Associativity Leaks the Key
Valentin Martinoli 1,2,*, Elouan Tourneur 1 , Yannick Teglia 1 and Régis Leveugle 2

1 Thales DIS, 13600 La Ciotat, France
2 University Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering University Grenoble Alpes), TIMA,

38000 Grenoble, France
* Correspondence: valentin.martinoli@external.thalesgroup.com

Abstract: In this work, we study an end-to-end implementation of a Prime + Probe covert channel on
the CVA6 RISC-V processor implemented on a FPGA target and running a Linux OS. We develop the
building blocks of the covert channel and provide a detailed view of its behavior and effectiveness.
We propose a realistic scenario for extracting information of an AES-128 encryption algorithm
implementation. Throughout this work, we discuss the challenges brought by the presence of a
running OS while carrying out a micro architectural covert channel. This includes the effects of
having other running processes, unwanted cache evictions and the OS’ timing behavior. We also
propose an analysis of the relationship between the data cache’s characteristics and the developed
covert channel’s capacity to extract information. According to the results of our experimentations, we
present guidelines on how to build and configure a micro architectural covert channel resilient cache
in a mono-core mono-thread scenario.

Keywords: hardware security; micro architecture; covert channel; cache; timing side-channels;
RISC-V; CVA6; Linux

1. Introduction

Recent CPUs embed optimization mechanisms that are exploited by micro architectural
attacks to cause information leakages (e.g., [1] taking advantage of out-of-order execution).
The root cause of micro architectural covert channels is the competitive access to shared
and limited hardware resources. According to these principles, we implemented a micro
architectural covert channel capable of extracting information through the L1 data cache of
the CVA6, a 64-bit open-source application class RISC-V processor. We applied this covert
channel in a realistic scenario targeting a software implementation of the AES algorithm
on a FPGA instantiation of the CVA6 running a Linux OS. We discussed the experimental
results we obtained and their limitations. We showed the different challenges of adapting
such a covert channel to a given hardware-software scenario. Moreover, we showed the
implications of the operating system on the attack. We concluded that micro architectural
covert channels are practical and therefore a real threat on a RISC-V platform in a realistic
context, especially when using open-source materials.

We made the following contributions:

1. Proposing an implementation of an access-driven, cache-based, micro architectural
covert channel on the CVA6 platform embedding a Linux OS;

2. Showing the root cause of the covert channel on the considered platform as well as
its limitations;

3. Applying the covert channel to a realistic use-case on an AES implementation to show
it is practical and could be exploited in a real-life scenario;

4. Showing the impact that the hardware-software environment has on the covert chan-
nel and their relationship with the level of vulnerability of a given cache structure.

J. Low Power Electron. Appl. 2023, 13, 1. https://doi.org/10.3390/jlpea13010001 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea13010001
https://doi.org/10.3390/jlpea13010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-3838-3102
https://orcid.org/0000-0001-8664-412X
https://doi.org/10.3390/jlpea13010001
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea13010001?type=check_update&version=1

J. Low Power Electron. Appl. 2023, 13, 1 2 of 18

Section 2 details the type of covert channel used and the processor architecture.
Section 3 summarizes the implementation of the attack and analyses results. Section 4
shows results when the attack is applied to AES, before the conclusions.

2. Background
2.1. Micro Architectural Cache Covert Channels

Covert channels are specific methods used to create a capability to transfer information
between entities (e.g., processes) that are not allowed to communicate according to the
security policy. These unwanted communication channels are hidden from the access
control mechanisms of operating systems, even when intended to be secure. The addi-
tion in the most recent high-end CPUs of many optimization mechanisms has led to the
complexification of the underlying micro architecture. Consequently, several covert chan-
nel possibilities have been uncovered relying on micro architectural elements (e.g., cache
memories, internal buffers. . .).

Traditionally, covert channels are known to enable an attacker to transfer information
between processes that are isolated from each other, according to the running security
policy. However, the recent development of the micro architectural attacks such as Fore-
shadow [1], the more recent MDS (Micro Architectural Data Sampling) attacks [2–4] and
Meltdown [5] conducted to a new type of covert channel. All of these attacks are concluded
by micro architectural covert channels that can transfer information from microarchitec-
tural structures, to the architectural world where it can be observed. Thus, studying covert
channels in an effort to mitigate them is valuable, as protecting a system from this threat
would result in the inability for an attacker to extract secret information. Indeed, in a
resilient system against covert channels, the attacker could still gather the information at
the micro architectural level. However, they would then be unable to observe it, as the
gathered data would remain in the micro architectural structures, without any possibility
to retrieve it. The access-driven cache-based mechanism proved to be the most commonly
used type of micro architectural covert channel in the recent attacks. The caches are an ideal
target because they are shared among different processes. In theory, all caches (instruction,
data) of all levels (1, 2, and even 3 when it exists) are subject to these threats; however,
the L1 data cache has been the favored one in the literature as it is also the easiest to
exploit since it is closer to the CPU. Moreover, it is also the most easily accessible micro
architectural structure. There are many cache covert channel variants in the literature such
as Prime + Probe [6], Flush + Reload [7], Flush + Flush [8], Prime + Abort [9].

The sole purpose of a cache is to provide increased performances. However, it can
be exploited as a side channel in a malicious way to cross security boundaries between
processes. All of the variants cited above are relying on the ability for an attacker to
infer whether a specific cache line has been evicted or not. Using the principle of micro
architectural covert channels, this capacity can then be exploited to deduce information
about the secret to be extracted. The access-driven cache-based covert channels are often
compared to time-driven covert channels as the leakage also originates from timings
considerations. However, access-driven cache-based covert channels are focusing on the
cache’s behavior and leverages it more precisely. Time-driven covert channels focus on
evaluating the overall execution time, whereas access-driven covert channels rely on the
ability to detect whether a cache line has been evicted or not using timing measurements.

Previous works [10,11] by Wistoff et al. considered the micro architectural cache covert
channel threat on CVA6. These works focus on the development of the fence.t instruction
as a mitigation to these attacks. This instruction introduces the possibility to clear the
leaky micro architectural elements and cause a context switching. These works proposed
an analysis of a toolkit Prime + Probe covert channel on an FPGA emulated CVA6 core
running a seL4 [12] microkernel. While Wistoff et al. focus on developing a mitigation to
toolkit cache covert channel attacks, this paper proposes an implementation from scratch
and details the challenges and methodology of implementing such a covert channel on a

J. Low Power Electron. Appl. 2023, 13, 1 3 of 18

specific core. It also studies the beneficial and unbeneficial factors and conditions for an
attacker to carry out such an attack successfully.

2.2. The CVA6 Core and Its Data Cache Structure

CVA6 is an open-source core that has been developed by ETH Zürich and University
of Bologna [13]. It is an application-class 64-bit processor, implementing the RISC-V
Instruction Set Architecture [14]. The RTL (Register-Transfer Level) description is written
in System Verilog. This core was chosen as a target for our experimentations because it
is Linux-capable, and can run the M, S, and U privilege modes. As part of its hardware
package, the CVA6 embeds a Translation Lookaside Buffer (TLB) and tightly integrated
data and instruction caches. The core was optimized for performance, reaching frequencies
up to 1.7 GHz, but security was not the focus of the design. Its pipeline was made of six
stages as shown in Figure 1. The CVA6 was almost totally in-order; however, the write-back
happened out-of-order inside the execution stage. More details about the CVA6 core are
available online [15].

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 3 of 18

specific core. It also studies the beneficial and unbeneficial factors and conditions for an

attacker to carry out such an attack successfully.

2.2. The CVA6 Core and Its Data Cache Structure

CVA6 is an open-source core that has been developed by ETH Zürich and University

of Bologna [13]. It is an application-class 64-bit processor, implementing the RISC-V In-

struction Set Architecture [14]. The RTL (Register-Transfer Level) description is written in

System Verilog. This core was chosen as a target for our experimentations because it is

Linux-capable, and can run the M, S, and U privilege modes. As part of its hardware pack-

age, the CVA6 embeds a Translation Lookaside Buffer (TLB) and tightly integrated data

and instruction caches. The core was optimized for performance, reaching frequencies up

to 1.7 GHz, but security was not the focus of the design. Its pipeline was made of six stages

as shown in Figure 1. The CVA6 was almost totally in-order; however, the write-back

happened out-of-order inside the execution stage. More details about the CVA6 core are

available online [15].

Figure 1. Representation of the CVA6 6-stage pipeline [15].

By default, the data cache is a 32 KB 8-way set-associative cache. It contains 256 sets,

each composed of 8 ways of 16 bytes. The terms ways and cache lines are equivalent. For

the remainder of the document, the term “way” is therefore used. Its default filling policy

is write-through no write-allocate.

Write-through means that the cache controller updates the cache and the main

memory synchronously upon every write access request to a memory block. When a piece

of data does not reside in the main memory, the no-write-allocate policy consists of writ-

ing the data only in the main memory and not in the cache. It implies that a piece of data

is loaded into the cache exclusively on read misses. With these policies, a write operation

of a given data not already allocated in the data cache causes this piece of data to be writ-

ten in the main memory only. When this piece of data is accessed for a read operation, as

it has been allocated in the main memory, but not in the cache, it will cause a cache miss.

This will result in the data finally being brought inside the data cache, according to the

no-write-allocate policy. Moreover, the write-through policy also implies that upon writ-

ing the data inside the data cache, the cache controller also updates the value of the data

inside the main memory so that it is always coherent with the data cache.

It is worth noting that cache addresses in the CVA6 core are physical, and not virtual.

Consequently, the number of bits required to address the data cache varies with the

cache’s size, as there is a need to address each possible cache block individually. When

Figure 1. Representation of the CVA6 6-stage pipeline [15].

By default, the data cache is a 32 KB 8-way set-associative cache. It contains 256 sets,
each composed of 8 ways of 16 bytes. The terms ways and cache lines are equivalent. For
the remainder of the document, the term “way” is therefore used. Its default filling policy
is write-through no write-allocate.

Write-through means that the cache controller updates the cache and the main memory
synchronously upon every write access request to a memory block. When a piece of data
does not reside in the main memory, the no-write-allocate policy consists of writing the
data only in the main memory and not in the cache. It implies that a piece of data is
loaded into the cache exclusively on read misses. With these policies, a write operation of a
given data not already allocated in the data cache causes this piece of data to be written
in the main memory only. When this piece of data is accessed for a read operation, as it
has been allocated in the main memory, but not in the cache, it will cause a cache miss.
This will result in the data finally being brought inside the data cache, according to the
no-write-allocate policy. Moreover, the write-through policy also implies that upon writing
the data inside the data cache, the cache controller also updates the value of the data inside
the main memory so that it is always coherent with the data cache.

It is worth noting that cache addresses in the CVA6 core are physical, and not virtual.
Consequently, the number of bits required to address the data cache varies with the cache’s
size, as there is a need to address each possible cache block individually. When referring to
a cache hit, we consider a request to a data that has already been allocated in a memory

J. Low Power Electron. Appl. 2023, 13, 1 4 of 18

block inside the data cache. A cache miss is considered to be a request to a piece of data
that has no allocated memory block inside the data cache.

Regarding the eviction policy, the CVA6 uses an LFSR (Linear-Feedback Shift Register)
to select the specific cache line index to evict. This 8-bit parametric LFSR allows selecting
which cache line has to be evicted based on a pseudo-random basis. When a cache miss
occurs, the LFSR is used if all the cache lines are unavailable for a given set (i.e., already
containing data). Otherwise, if there are some invalid cache lines (e.g., containing outdated
data, or no data at all), the line with the lowest index having its validity bit equal to zero
is selected. More details about the CVA6′s data cache implementation are available in the
literature [16].

3. Building a Covert Channel on the FPGA-Instantiated CVA6 Running Linux
3.1. Initial Threat Model

The applicative scenario we chose is detailed here. The victim application we targeted
ran computations implying a secret value. We considered that it is isolated from other
processes for security purposes preventing any eavesdropping by software means. We
considered this victim application to be compromised either by a library containing a Trojan
or a buggy implementation causing leakages at the micro architectural level. This strong
hypothesis is legitimate as the recent Ripple20 series of vulnerabilities [17] has shown it: a
series of critical vulnerability was discovered in a widely used TCP/IP library deployed
in a vast range of applications. We consider an attacker that is aware of this leakage and
willing to recover the secret used by the victim process. The secret information is recovered
using the micro architectural leakage, crossing the security boundaries introduced by the
logical isolation.

The technical target consists in a mono-core and mono thread scenario. The mono-
core scenario first adds some difficulty for a potential attacker as they cannot take ad-
vantage of high-end optimization mechanisms (out-of-order execution, Simultaneous
Multi-Threading. . .) to gather information. These mechanisms are widely used in mi-
cro architectural attacks to recover data from a neighboring process located on another
logical core. More generally, a simpler core design implies a restricted number of attack
paths available. It also reduces the available covert channel techniques that are applicable,
as several of them require the use of the mechanisms named above. However, even if a
multi-core scenario causes a greater attack surface, the exploited hardware resources are
shared among several cores. This implies a significantly higher amount of perturbation
for the attacker trying to leak data from these resources. In the specific case of caches, the
previous logic still applies with a variation induced by the cache’s size. Even if there is
more contention in a multi-core system, if the cache’s size is sufficient, there might be no
additional contention compared to a mono-core system.

In a mono threaded use-case, the execution time is shared only by a single processing
thread. It results in more time for the attacker to leverage a covert channel and less chances
of being interrupted during the attack.

The victim runs on a CVA6 that runs an operating system (OS) on top of which runs
the victim within a first domain, considered to be trusted. This victim program is assumed
to be compromised by a Trojan trying actively to leak the secret information from the
victim application.

The attacker itself is contained in a second untrusted security domain. They time-
share the core with the victim application and run a spy program that tries to recover
the information leaked by the Trojan. The threat model is summarized in Figure 2. Both
the victim and the attacker applications run in the user land. Indeed, CVA6 does enable
the use of timestamp instructions in user mode. It might not be the case for other CPUs
where developing kernel modules would therefore be required to access those necessary
instructions in order to carry out a time or access-driven cache covert channel.

J. Low Power Electron. Appl. 2023, 13, 1 5 of 18
J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 5 of 18

Figure 2. Chosen threat model for the micro architectural covert channel with a running OS.

3.2. Experimental Setup

We now detail the setup we used during our experimentations. For the hardware

configuration, we chose to work with the default version of CVA6, as directly available

from the Open Hardware Group’s Github repository [15]. More specifically, this meant

that the core we worked on used 64-bit addresses, and had the default cache configuration

corresponding to the one introduced in Section 2.2.

We instantiated this CVA6 on a Genesys 2 FPGA platform from Digilent [18], as there

were a lot of tools and configurations available to work with. The Digilent Genesys 2

board was based on the latest Kintex-7™ Field Programmable Gate Array (FPGA) from

Xilinx and is a high-speed FPGA. We communicated with the FPGA platform using a

Linux computer through SSH and using the Ethernet port available on the Genesys 2

board.

For the software configuration, we relied on the toolchain contained in the Open

Hardware Group’s Github repository to compile and synthetize the RTL into an exploit-

able bitstream and memory configuration file. We then used the Xilinx’s Vivado Design

Suite [19] to instantiate the results of the synthesis on the FPGA board. We then selected

a Linux OS, generating our own Linux image using the toolchain available on CVA6-SDK

Github repository [20]. It was based on a pre-built image directly available on the same

repository, but we slightly modified it to fit our specific needs, adding support for SSH

communication. The Linux image is lightweight, and we chose not to add any tool or pro-

cess that could hinder our experimentations. The Linux image is then embedded in a

standard 64 Gb SD Card and inserted inside the Genesys 2. The OS will then be loaded at

each reset of the FPGA board.

3.3. First Experimentations on Information Transmission and Statistical Analysis

To carry out a micro-architectural covert channel, it is beneficial to have a good pic-

ture of the targeted cache architecture and its mechanisms. A first advantage for an at-

tacker targeting an open-source core is the availability of the sources of the targeted data

cache. The reverse engineering efforts are considerably sped up in an open-source sce-

nario, even if this effort remains not negligible. In our case, we leveraged the work done

in [16] where the authors detailed both the cache structure and its implementation.

We further carried out several preliminary experiments in order to identify a poten-

tial encoding technique e.g., a specific method to place the secret information inside the

data cache in order to transmit it. Our initial idea was to propose an implementation of

the Prime + Probe covert channel, therefore we began by observing the cache misses. A

simple application causing cache eviction by filling an array structure was used as a

Figure 2. Chosen threat model for the micro architectural covert channel with a running OS.

3.2. Experimental Setup

We now detail the setup we used during our experimentations. For the hardware
configuration, we chose to work with the default version of CVA6, as directly available
from the Open Hardware Group’s Github repository [15]. More specifically, this meant
that the core we worked on used 64-bit addresses, and had the default cache configuration
corresponding to the one introduced in Section 2.2.

We instantiated this CVA6 on a Genesys 2 FPGA platform from Digilent [18], as there
were a lot of tools and configurations available to work with. The Digilent Genesys 2 board
was based on the latest Kintex-7™ Field Programmable Gate Array (FPGA) from Xilinx and
is a high-speed FPGA. We communicated with the FPGA platform using a Linux computer
through SSH and using the Ethernet port available on the Genesys 2 board.

For the software configuration, we relied on the toolchain contained in the Open
Hardware Group’s Github repository to compile and synthetize the RTL into an exploitable
bitstream and memory configuration file. We then used the Xilinx’s Vivado Design Suite [19]
to instantiate the results of the synthesis on the FPGA board. We then selected a Linux
OS, generating our own Linux image using the toolchain available on CVA6-SDK Github
repository [20]. It was based on a pre-built image directly available on the same repository,
but we slightly modified it to fit our specific needs, adding support for SSH communication.
The Linux image is lightweight, and we chose not to add any tool or process that could
hinder our experimentations. The Linux image is then embedded in a standard 64 Gb SD
Card and inserted inside the Genesys 2. The OS will then be loaded at each reset of the
FPGA board.

3.3. First Experimentations on Information Transmission and Statistical Analysis

To carry out a micro-architectural covert channel, it is beneficial to have a good picture
of the targeted cache architecture and its mechanisms. A first advantage for an attacker
targeting an open-source core is the availability of the sources of the targeted data cache.
The reverse engineering efforts are considerably sped up in an open-source scenario, even
if this effort remains not negligible. In our case, we leveraged the work done in [16] where
the authors detailed both the cache structure and its implementation.

We further carried out several preliminary experiments in order to identify a potential
encoding technique e.g., a specific method to place the secret information inside the data
cache in order to transmit it. Our initial idea was to propose an implementation of the
Prime + Probe covert channel, therefore we began by observing the cache misses. A simple
application causing cache eviction by filling an array structure was used as a preliminary
victim. A second application measured the time it takes to access its own data before (when
it was in the cache) and after the victim has been run (when the data has supposedly been
evicted) similarly to the prime and probe steps of the related covert channel. These tests

J. Low Power Electron. Appl. 2023, 13, 1 6 of 18

aimed at two different objectives: confirm our comprehension of the cache’s implementation
and achieve a first level of information transmission via controlled cache evictions.

Based on the same idea as the experiment described above, several tests and variations
of this experimentation have been made in order to establish a correlation between the ac-
tivity we caused with a given code (the victim filling an array with data), and the resulting
evictions. These experiments included filling different sizes and types of array structures
(smaller than the cache, same size as the cache, bigger than the cache for example) for
causing different cache eviction patterns. We then measured where the evictions happened
inside the cache using the second application. The understanding of the hardware imple-
mentation of the data cache was a valuable input for these first experiments. We started
out by running a skeleton of Prime + Probe covert channel consisting of an attacker process
(or spy process) filling the cache with its own data (Prime step) and a second process (or
victim process, containing the Trojan) trying to cause evictions equal to a given secret value
that was hardcoded inside it. We then proceeded to timing measurements inside the spy
process (that carried out the Prime step) using the RDCYCLE RISC-V instruction [21] in
order to observe the different cache evictions caused by the victim process and its Trojan.

The spy process also generated a log file containing all of its measurements that we
statistically analyzed thoroughly after using Python scripts. This statistical analysis over a
large number of experimentations is a mandatory step compared to a BareMetal context
as the OS causes multiple unwanted cache evictions because of the concurrent processes
that are running. Considering multiple experimentations and subtracting the results of
the experimentation without the victim process running (normal activity only with the OS
running) enabled us to reduce the impact of this unwanted “noise” in our measurements,
and observe only the useful evictions caused by the Trojan contained in the victim process.

After these experiments, we were able to observe a difference between the cases in
which the victim process creates evictions and the other cases. Recognizable patterns
caused by the victim process’ activity (generating cache evictions) showed that it was
possible to transmit information, even if the OS adds some “noise” that could hinder
the transmission. In this specific case, the information transmitted consists in the binary
decomposition of the secret value, encoded in the amount of cache evictions caused by
the victim application containing the Trojan. The secret value’s binary decomposition is
transformed into a specific cache contention pattern (further details about the contention
pattern are given in Section 3.4). The Trojan then causes the corresponding cache evictions
to match this pattern that is then recovered by the attacker during the prime phase of the
covert channel. More cache evictions than a fixed threshold (determined during preliminary
experimentations to differentiate the cache hits from cache misses) imply a value of 1, less
evictions than the threshold means the recovery of a 0.

It also enabled us to create a set of analysis tools to minimize the impact of the OS on
the observed traces and visualize the results of our minimal Prime + Probe covert channel.
The next step consisted in establishing a covert channel, enabling us to transmit a given
value through the data cache.

3.4. Implementation of a Basic Tailored Covert Channel on the CVA6

To build a micro architectural cache covert channel, it is mandatory to be able to
recover a precise value hidden by the Trojan inside the data cache. According to the
previously presented observations, and the understanding of the data cache’s structure, we
built a covert channel on the CVA6 capable of transmitting up to 256 bits of information
with the default data cache configuration.

Applying the same code structure as in Section 3.3 inspired by the Prime + Probe tech-
nique, Figure 3 gives the pseudocode of the improved version of our initial covert channel.

J. Low Power Electron. Appl. 2023, 13, 1 7 of 18

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 7 of 18

Applying the same code structure as in Section 3.3. inspired by the Prime + Probe

technique, Figure 3. gives the pseudocode of the improved version of our initial covert

channel.

Considering the characteristics of the data cache, the spy process builds an extraction

array fitting the cache’s structure. This array contained 2048 cells of 16 bytes, analogously

to the CVA6′s data cache. This array was used to fill the cache during the Prime step, made

by the spy process. As the cache used a no-write-allocate policy, it is necessary to cause a

read-miss on every element of the extraction array in order to bring them inside the data

cache. To this end, we sequentially allocated and then read back each cell of the array.

Once the cache was filled, the spy process created a thread running the victim and

the Trojan it contains. We discuss the realism and the applicability in a real-life context of

this scenario in a later section. For this iteration of the experimentations, the victim simply

consisted in an addition and the secret was the result of the operation, or even just a hard

coded value acting as a secret to be extracted. The rest of the victim code is composed of

the Trojan that will cause targeted evictions inside the data cache. In order for the evictions

to be effective and transmit the desired value, it is required to take into consideration the

structure and behaviour of the data cache.

We noticed that working with the cache sets produced the expected results, and was

easier to implement than working at the cache way granularity, mainly because of the

pseudo-random eviction policy. The secret value was transmitted bit by bit, meaning that

a cache miss was interpreted as a value of 1, whereas a cache hit was interpreted as a value

of 0 (because the spy’s value was not evicted).

Figure 3. Pseudocode for our Prime + Probe micro architectural covert channel; the spy function is

the main one and calls the victim function containing the Trojan.
Figure 3. Pseudocode for our Prime + Probe micro architectural covert channel; the spy function is
the main one and calls the victim function containing the Trojan.

Considering the characteristics of the data cache, the spy process builds an extraction
array fitting the cache’s structure. This array contained 2048 cells of 16 bytes, analogously
to the CVA6′s data cache. This array was used to fill the cache during the Prime step, made
by the spy process. As the cache used a no-write-allocate policy, it is necessary to cause a
read-miss on every element of the extraction array in order to bring them inside the data
cache. To this end, we sequentially allocated and then read back each cell of the array.

Once the cache was filled, the spy process created a thread running the victim and
the Trojan it contains. We discuss the realism and the applicability in a real-life context of
this scenario in a later section. For this iteration of the experimentations, the victim simply
consisted in an addition and the secret was the result of the operation, or even just a hard
coded value acting as a secret to be extracted. The rest of the victim code is composed of
the Trojan that will cause targeted evictions inside the data cache. In order for the evictions
to be effective and transmit the desired value, it is required to take into consideration the
structure and behaviour of the data cache.

We noticed that working with the cache sets produced the expected results, and was
easier to implement than working at the cache way granularity, mainly because of the
pseudo-random eviction policy. The secret value was transmitted bit by bit, meaning that a
cache miss was interpreted as a value of 1, whereas a cache hit was interpreted as a value
of 0 (because the spy’s value was not evicted).

The Trojan proceeded similarly to the spy process during the Prime step and was
allocated then read again cells in another array (called “Trojan’s extraction array”) with

J. Low Power Electron. Appl. 2023, 13, 1 8 of 18

the exact same dimensions as the cache. However, the Trojan did not fill every cell of the
array, but only the cells with indexes that corresponded to a value to be extracted equal
to 1. It ignored cells with indexes corresponding to a value to be extracted equal to 0.
The main idea was that filling specific regions (bit of the secret equal to 1) of the Trojan’s
extraction array directly translated in a cache miss for the spy inside the corresponding
cache sets inside the data cache while for the untouched regions (bit of the secret equal to 0)
it translated in a cache hit. Figure 4 represents the situation and shows the corresponding
evictions caused by the Trojan’s action.

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 8 of 18

The Trojan proceeded similarly to the spy process during the Prime step and was

allocated then read again cells in another array (called “Trojan’s extraction array”) with

the exact same dimensions as the cache. However, the Trojan did not fill every cell of the

array, but only the cells with indexes that corresponded to a value to be extracted equal

to 1. It ignored cells with indexes corresponding to a value to be extracted equal to 0. The

main idea was that filling specific regions (bit of the secret equal to 1) of the Trojan’s ex-

traction array directly translated in a cache miss for the spy inside the corresponding cache

sets inside the data cache while for the untouched regions (bit of the secret equal to 0) it

translated in a cache hit. Figure 4 represents the situation and shows the corresponding

evictions caused by the Trojan’s action.

Figure 4. Detail of the correspondences between the value to encode, the extraction array’s struc-

tures, the cache sets where evictions occur, and the state of the CVA6′s data cache.

In practice, the Trojan therefore fills its extraction array at specific locations to cause

evictions in the corresponding cache set. Given that we wanted to extract a value equal to

1 as the first bit in the secret’s value decomposition, the Trojan therefore filled its array

cells having indexes that verify:

𝐼𝑛𝑑𝑒𝑥 ≡ 𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑_𝑠𝑒𝑡 𝑚𝑜𝑑(𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑒𝑡𝑠)

Hence, in the default cache configuration we studied throughout this article, and for

the first bit of the binary decomposition (thus we target the set number 0) this translates

to:

𝐼𝑛𝑑𝑒𝑥 ≡ 0 𝑚𝑜𝑑(256)

The value written inside the cells does not matter at all, as only the cache eviction is

useful for the covert channel. Each time the Trojan fills one of the cells, it causes a corre-

sponding eviction inside the set having an index equal to the second term of the previous

equation. For our example, the eviction was caused in the set 0. There were 8 possible

ways to be replaced inside each set, and we could not easily predict, or choose which one

was evicted. This is the reason for choosing a “cache set encoding” technique instead of

working at cache line granularity that proved to be harder since the choice is made

pseudo-randomly by the LFSR. We had no guarantee however that the evictions caused

inside a given set will occur on different cache ways. It might happen that the way 0 inside

the set 0 is evicted twice for example (as an example, when filling Array [0* Total_num-

ber_of_sets] and Array [2* Total_number_of_sets]). Overall, and on several repetitions of

the covert channel, we are capable of distinguishing data sets where “a lot” (will be quan-

tified in the next section) of evictions occurred, caused by the Trojan, compared to data

Figure 4. Detail of the correspondences between the value to encode, the extraction array’s structures,
the cache sets where evictions occur, and the state of the CVA6’s data cache.

In practice, the Trojan therefore fills its extraction array at specific locations to cause
evictions in the corresponding cache set. Given that we wanted to extract a value equal to
1 as the first bit in the secret’s value decomposition, the Trojan therefore filled its array cells
having indexes that verify:

Index ≡ Targeted_set mod(Total_number_o f _sets)

Hence, in the default cache configuration we studied throughout this article, and for
the first bit of the binary decomposition (thus we target the set number 0) this translates to:

Index ≡ 0 mod(256)

The value written inside the cells does not matter at all, as only the cache eviction
is useful for the covert channel. Each time the Trojan fills one of the cells, it causes a
corresponding eviction inside the set having an index equal to the second term of the
previous equation. For our example, the eviction was caused in the set 0. There were
8 possible ways to be replaced inside each set, and we could not easily predict, or choose
which one was evicted. This is the reason for choosing a “cache set encoding” technique
instead of working at cache line granularity that proved to be harder since the choice is
made pseudo-randomly by the LFSR. We had no guarantee however that the evictions
caused inside a given set will occur on different cache ways. It might happen that the
way 0 inside the set 0 is evicted twice for example (as an example, when filling Array
[0* Total_number_of_sets] and Array [2* Total_number_of_sets]). Overall, and on several
repetitions of the covert channel, we are capable of distinguishing data sets where “a lot”
(will be quantified in the next section) of evictions occurred, caused by the Trojan, compared
to data sets where no evictions were caused and the spy’s data are still intact, leading to
the reconstruction of the secret value.

J. Low Power Electron. Appl. 2023, 13, 1 9 of 18

This reconstruction was made possible by the spy process’ measurements during
the Probe step. Once the Trojan filled its extraction array according to the secret’s binary
decomposition, we ran the spy process again. It measured the time it takes to access again
to all of its data. We were then capable to distinguish data that have been evicted from
data that have not been evicted, using the RDCYCLE instruction. Indeed, some cells inside
the spy’s array experienced a higher access time compared to the others; thus, they were
evicted from the cache. Using these measurements and our Python script that processed
the logs generated by the spy process, we reconstructed the secret value to be extracted.
Experimental results proving that our attack implementation was practical on a simple
applicative example are given in the next section.

To summarize, the main aspect of this covert channel consisted in translating the
binary decomposition of the secret value to a corresponding contention inside the matching
data sets. Having a value of 1 to extract at a given index, called p, in the binary decom-
position, meant that we wanted to create contention inside the cache set number p. For
that purpose, the Trojan fills all of the cells in Trojan_table that will cause evictions inside
the set number p. By experimenting, we found out that these cells are the ones verifying:
Index ≡ p mod(Total_number_o f _sets). Filling these cells with Trojan’s data caused an
eviction of the Spy’s data inside the set number p. These data were previously allocated
inside the cache during the Prime phase. Therefore, when the Spy Probes its data again to
verify the time it takes to access it, it can conclude about the sets that contain contention
or not by looking at the amount of cache misses for every cache set. According to the
evictions caused by the Trojan’s activity, a high number of cache misses for the set number
p is identified. This means that the Spy process will experience a higher access time for all
the cells of Spy_table verifying: Index ≡ p mod(Total_number_o f _sets).

3.5. Example and Experimental Results on a Simple Victim

For this section, let us take a schoolbook victim to apply the previously presented
covert channel. Our considered victim therefore only performed an addition on 40 bits
to simplify the understanding of this toy example. The secret to be extracted was the
result of this addition. We now applied the code presented in Figure 3 to this new victim.
For demonstration purposes, we gathered 2000 samples for an easier visualization (in
practice we need much less samples to extract a secret value). Let us consider that the
result of the addition is 672726424737. This corresponded to the binary decomposition:
1001110010100001100111101001110010100001 (40 bits in total). As detailed in the previous
section, our covert channel proceeded as follows:

1. The spy code Primed the data cache with any data, as the value itself did not matter.
This is agnostic from the victim’s behavior and was therefore held for whatever
process involving a secret value. Changing the cache’s characteristics (number of sets,
cache’s size, associativity) and the cache’s filling policy would require to only change
this part of the covert channel;

2. The victim made its addition. The Trojan was run as it was contained in the victim. It
decomposed the result of the addition in binary. For each bit, it would, or would not,
replace some values inside its array (named Trojan_table in Figure 3). The leftmost bit
(i.e., at position p = 0) being a 1, the Trojan filled its array at all the following indexes:
0, 256, 512, 768, 1024, 1280, 1536, 1792. All these 8 indexes verified Index ≡ 0 mod 256,
where 256 was the total number of sets and 0 the position of the value to leak in the
binary decomposition. This operation then caused 8 cache misses in the set number
0. The next 1 in the binary decomposition was the bit at position p = 3. The Trojan
therefore replaced its array at all indexes verifying Index ≡ 3 mod 256. Therefore, it
filled the following indexes: 3, 259, 515, 771, 1027, 1283, 1539, and 1795. This caused
8 evictions inside the set number 3 (starting from set number 0). The Trojan repeated
these steps for the whole binary decomposition of the secret value to extract;

3. The spy Probed its array and measured the time it took to access every cell. It also
generated the logs.

J. Low Power Electron. Appl. 2023, 13, 1 10 of 18

This experiment produced the results given in Figure 5. In the figure, we represented
the number of cache misses at every index in Spy_table cumulated over the 2000 iterations
of the covert channel. We can clearly see 8 patterns corresponding to the 8 ways of the
targeted set that represent the Trojan’s activity. Those patterns highlight the associativity
of the data in the default cache configuration we are studying. The patterns were very
similar and carried the same information about the secret to be extracted. In fact, these
patterns directly correspond to the evictions done by the Trojan at the cells verifying
Index ≡ p mod Total_number_o f _sets. Each pattern contained one “peak” corresponding
to one of the eight possible values verifying the equation for a given value of p. If we
considered the previous example, the Trojan replaced the indexes 3, 259, 515, 771, 1027, 1283,
1539, and 1795 (for p = 3). This means that one of the 8 patterns had a peak corresponding to
the eviction caused on the index number 3, and another pattern had the peak for the index
259. What is important to note here is that these peaks, however, had the same position
inside all of the 8 patterns: the third position. This is because they were all related to an
eviction caused in the cache set number 3 corresponding to the fourth bit (i.e., at index
number 3) in the binary decomposition of the secret value.

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 10 of 18

Trojan repeated these steps for the whole binary decomposition of the secret value to

extract;

3. The spy Probed its array and measured the time it took to access every cell. It also

generated the logs.

This experiment produced the results given in Figure 5. In the figure, we represented

the number of cache misses at every index in Spy_table cumulated over the 2000 iterations

of the covert channel. We can clearly see 8 patterns corresponding to the 8 ways of the

targeted set that represent the Trojan’s activity. Those patterns highlight the associativity

of the data in the default cache configuration we are studying. The patterns were very

similar and carried the same information about the secret to be extracted. In fact, these

patterns directly correspond to the evictions done by the Trojan at the cells verifying

𝐼𝑛𝑑𝑒𝑥 ≡ 𝑝 𝑚𝑜𝑑 𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑒𝑡𝑠. Each pattern contained one “peak” corresponding

to one of the eight possible values verifying the equation for a given value of p. If we

considered the previous example, the Trojan replaced the indexes 3, 259, 515, 771, 1027,

1283, 1539, and 1795 (for p = 3). This means that one of the 8 patterns had a peak corre-

sponding to the eviction caused on the index number 3, and another pattern had the peak

for the index 259. What is important to note here is that these peaks, however, had the

same position inside all of the 8 patterns: the third position. This is because they were all

related to an eviction caused in the cache set number 3 corresponding to the fourth bit

(i.e., at index number 3) in the binary decomposition of the secret value.

Here we wanted to extract 40 bits of secret data; therefore, we targeted the sets num-

ber 0 to 39. We noticed the presence of an “offset” at the beginning of the trace, but it did

not hinder the analysis in any way. In this figure, every pattern corresponded to the ac-

tivity of one way inside the cache sets from 0 to 39. For example, the pattern number p

represents the amount of cache misses on the way number p inside every cache set from 0

to 39. As we had 8 patterns, we covered all the possible way placements in the figure, as

there were 8 ways in total (corresponding to the value of the associativity) in the configu-

ration we study. The data between each pattern corresponded to the amount of cache

misses inside the rest of the sets, from 40 to 255. In the sets numbers 40 to 255, the Trojan

did not cause any eviction because we only wanted to extract 40 bits therefore we needed

only the first 40 cache sets to encode our secret. One can note that we were capable of

distinguishing the activity at the cache way granularity here. However, we were forced to

cause the Trojan to act at the cache set granularity because of the LFSR. We cannot choose

easily and precisely which way the eviction will occur inside a given cache set, as the

choice was pseudo-random. Predicting the outcome of the LFSR was possible. However,

it implied a longer computation time, thus reducing the overall stealth of the attack.

Figure 5. Experimental results for a simple addition victim with the default cache configuration
(8-way associative 32 KB writethrough no-write-allocate cache with 256 sets). One of the eight
patterns caused by the Trojan’s activity has been circled in red for illustration purposes.

Here we wanted to extract 40 bits of secret data; therefore, we targeted the sets number
0 to 39. We noticed the presence of an “offset” at the beginning of the trace, but it did not
hinder the analysis in any way. In this figure, every pattern corresponded to the activity of
one way inside the cache sets from 0 to 39. For example, the pattern number p represents
the amount of cache misses on the way number p inside every cache set from 0 to 39. As
we had 8 patterns, we covered all the possible way placements in the figure, as there were
8 ways in total (corresponding to the value of the associativity) in the configuration we
study. The data between each pattern corresponded to the amount of cache misses inside
the rest of the sets, from 40 to 255. In the sets numbers 40 to 255, the Trojan did not cause
any eviction because we only wanted to extract 40 bits therefore we needed only the first
40 cache sets to encode our secret. One can note that we were capable of distinguishing
the activity at the cache way granularity here. However, we were forced to cause the
Trojan to act at the cache set granularity because of the LFSR. We cannot choose easily and
precisely which way the eviction will occur inside a given cache set, as the choice was
pseudo-random. Predicting the outcome of the LFSR was possible. However, it implied a
longer computation time, thus reducing the overall stealth of the attack.

When we zoomed in on one of the patterns (the circled one in Figure 5), we obtained
what is represented in Figure 6. Each pattern was made of 40 values, corresponding to the

J. Low Power Electron. Appl. 2023, 13, 1 11 of 18

40 bits we wanted to extract. A threshold was required to differentiate what we considered
as 0 on the trace from what we consider as a 1. We observed that the arithmetic mean of the
extreme values of the whole trace (number of cache misses), or Maxvalue+Minvalue

2 , worked
perfectly for that purpose. Considering the peaks going beyond this value as ones, and the
others as zeros, we recovered a value of 1001110010100001100111101001110010100001. This
corresponds to the result of the victim’s addition; therefore, we recovered the secret value
through the CVA6′s data cache with a running Linux OS.

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 11 of 18

Figure 5. Experimental results for a simple addition victim with the default cache configuration (8-

way associative 32 KB writethrough no-write-allocate cache with 256 sets). One of the eight patterns

caused by the Trojan’s activity has been circled in red for illustration purposes.

When we zoomed in on one of the patterns (the circled one in Figure 5), we obtained

what is represented in Figure 6. Each pattern was made of 40 values, corresponding to the

40 bits we wanted to extract. A threshold was required to differentiate what we consid-

ered as 0 on the trace from what we consider as a 1. We observed that the arithmetic mean

of the extreme values of the whole trace (number of cache misses), or
𝑀𝑎𝑥𝑣𝑎𝑙𝑢𝑒+𝑀𝑖𝑛𝑣𝑎𝑙𝑢𝑒

2
,

worked perfectly for that purpose. Considering the peaks going beyond this value as ones,

and the others as zeros, we recovered a value of

1001110010100001100111101001110010100001. This corresponds to the result of the vic-

tim’s addition; therefore, we recovered the secret value through the CVA6′s data cache

with a running Linux OS.

Figure 6. Zoom in on one of the 8 patterns obtained when applying the covert channel on a simple

addition victim with the standard data cache configuration. The red bars are delimiting the pattern

itself from the rest of the data surrounding it. The green bar is the threshold for considering the

resulting peak as a 0 (under the line) or as a 1 (above the line). A few examples of the bit values

recovered are given on the upper part of the figure.

4. Applying the Previous Covert Channel in a Realistic Scenario

4.1. Proposed Use-Case: Targeting an Encryption Service

Having studied the covert channel’s mechanisms, and a practical example on a very

simple victim, let us study a more realistic use case. We proposed to apply our imple-

mented covert channel on an encryption service. Let us consider a victim that is running

an AES-based encryption service, in a use-case similar to the one of a Trusted Execution

Environment (TEE). Here, the victim proceeds to AES encryptions and decryptions, as

requested per the user. These encryptions use a secret key that will be the targeted secret

value. As per the previously introduced threat model, the victim can only transmit this

key to trusted entities. This means that the user cannot access the secret key, as it is con-

tained in an untrusted domain. Moreover, the user can only interact with the encryption

service through defined functions that only give limited outputs: the cipher text for the

encryption function, and the plain text for the decryption function. Moreover, we consider

that the AES’ implementation is based on an open-source code. This means that a Trojan

might compromise the AES itself, and its future updates. However, as the compromised

AES will run in a given security domain it cannot directly interact outside this domain.

Figure 6. Zoom in on one of the 8 patterns obtained when applying the covert channel on a simple
addition victim with the standard data cache configuration. The red bars are delimiting the pattern
itself from the rest of the data surrounding it. The green bar is the threshold for considering the
resulting peak as a 0 (under the line) or as a 1 (above the line). A few examples of the bit values
recovered are given on the upper part of the figure.

4. Applying the Previous Covert Channel in a Realistic Scenario
4.1. Proposed Use-Case: Targeting an Encryption Service

Having studied the covert channel’s mechanisms, and a practical example on a very
simple victim, let us study a more realistic use case. We proposed to apply our implemented
covert channel on an encryption service. Let us consider a victim that is running an
AES-based encryption service, in a use-case similar to the one of a Trusted Execution
Environment (TEE). Here, the victim proceeds to AES encryptions and decryptions, as
requested per the user. These encryptions use a secret key that will be the targeted secret
value. As per the previously introduced threat model, the victim can only transmit this key
to trusted entities. This means that the user cannot access the secret key, as it is contained
in an untrusted domain. Moreover, the user can only interact with the encryption service
through defined functions that only give limited outputs: the cipher text for the encryption
function, and the plain text for the decryption function. Moreover, we consider that the
AES’ implementation is based on an open-source code. This means that a Trojan might
compromise the AES itself, and its future updates. However, as the compromised AES will
run in a given security domain it cannot directly interact outside this domain. Instead of
considering a legitimate user, we considered a malicious attacker that was aware of the
bug or the Trojan’s presence and tried to leak the secret key using our implementation of a
micro architectural cache covert channel.

4.2. Experimental Setup and the Challenges to Adapt the Covert Channel to the New Victim

This section describes our setup for this experimentation. The implementation of
the covert channel presented in Section 4 is available online on GitHub (https://github.

https://github.com/CCALK-work/CCALK
https://github.com/CCALK-work/CCALK

J. Low Power Electron. Appl. 2023, 13, 1 12 of 18

com/CCALK-work/CCALK (accessed on 4 July 2022)) for reproduction purposes. We
chose to work with the “Tiny-AES” [22] open-source implementation of the AES encryption
algorithm. We chose a key size of 128 bits. The new victim code in this scenario calls
some of the “Tiny-AES” functions when required. We considered that the library itself was
compromised and contained the Trojan. For the application use-case, we still considered
the application in a TEE environment. Therefore, the attacker (spy) still called the victim
process to request for an encryption. The victim then used the library containing the Trojan.
It was still possible to carry out the covert channel in the case that the attacker could not
directly choose the moment the victim would be run. However, this requires more work
for synchronizing the victim and the attacker. As it is not the primary goal of this article,
these aspects will not be detailed further.

Changing the victim implied several changes on the covert channel itself. Most of the
changes occurred for the Trojan as it was directly related to the type of victim targeted.
Each victim required a different Trojan tailored for it. More specifically, the Trojan’s code
did not change itself. The changes occurred in the interfacing between the Trojan and the
target victim code. Compared to our previous experimentations, the Trojan now resided
in the “Tiny-AES” library instead of being inserted directly inside the victim, as the secret
key we want to extract is computed on inside the library. More precisely, we inserted
the Trojan inside the “Key-expansion” function, as it uses the key directly in every AES
implementation. In our case the implementation of the “Tiny-AES” requires the victim to
manipulate the key directly as it is an input of the library’s functions. However, placing the
Trojan inside the Key-expansion function should work for any AES implementation as it
always uses the key directly. The new pseudo code for the covert channel was presented in
Figure 7. The Prime(Table[]), Probe(Table[]) functions did not change at all from the previous
pseudo-code presented in Figure 3 and are therefore not presented again. The Trojan(secret)
function only embeds a supplementary module that will decompose the AES’ key in a
binary decomposition.

The transition to an AES victim required several code adaptations, mostly on the
interface between the new victim and the Trojan. The main challenges that arose from this
victim change were: the handling of the Trojan’s activation, and the handling of the current
part of the key to be extracted in the case it was bigger than the maximum extractable size.
Extracting a secret bigger than the maximum chosen extraction size (here we chose 128 bits)
required more work but was possible, as detailed later in this section. It was important to
note that pattern recognition was harder when approaching of the maximum extraction size
for the considered cache configuration (e.g., 256 bits). When extracting secrets of 250 bits
and above, the patterns were not separated by enough values to be distinguished by our
analysis algorithm. For simplification purposes, we chose to stay with a 128-bit extraction
size where the patterns were easier to distinguish.

For the Trojan’s activation, we wanted to avoid triggering the Trojan in case a legitimate
user (therefore not a malicious attacker) uses the library. This would cause an increase in
the computation time and therefore it would make the Trojan easier to spot. To this end, we
chose to use a determined sequence inside the input message. For demonstration purposes,
we chose that a specific sequence of values for the first 10 8-bit integers (equivalent to the
first 80 bits) of the message would activate the Trojan. This sequence was set in the message
at the lines 31 to 33 in Figure 7. The probability that a legitimate user triggers the Trojan
unwillingly is then 2−80. It was still possible to consider a longer activation sequence to
reduce this risk further.

For secrets bigger than 128 bits (the maximum extraction size we chose for easier
pattern recognition) we included a selection mechanism. This mechanism is also based on
the input message. We chose the eleventh 8-bit integer of the message as an indicator of the
part of the secret to be extracted by the Trojan. To extract a bigger secret, we split it into
128-bit parts (for example, as the patterns are easily seen when encoding 128 bits) that we
can extract sequentially. For example, if we took a 512-bit secret, we split it into 4 pieces
of 128 bits. The Trojan would then look at the eleventh 8-bit integer to know which part

https://github.com/CCALK-work/CCALK
https://github.com/CCALK-work/CCALK

J. Low Power Electron. Appl. 2023, 13, 1 13 of 18

of the secret it had to extract at the current iteration. If this integer was equal to two, the
Trojan would then extract the second piece of 128 bits, starting from the bit number 129 of
the secret key. From one iteration to another, the spy code incremented these bits in the
plaintext. With this technique, we could extract a key up to 128 ∗ 256 = 32,768 bits by pieces
of 128 bits. If the secret was bigger than 1024 bits, it was possible to extend the mechanism
to two 8-bit integers (the eleventh and twelfth) or more if required.

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 13 of 18

Figure 7. Pseudocode for the covert channel targeting a “Tiny-AES” implementation of the AES

encryption algorithm.

For the Trojan’s activation, we wanted to avoid triggering the Trojan in case a legiti-

mate user (therefore not a malicious attacker) uses the library. This would cause an in-

crease in the computation time and therefore it would make the Trojan easier to spot. To

this end, we chose to use a determined sequence inside the input message. For demon-

stration purposes, we chose that a specific sequence of values for the first 10 8-bit integers

(equivalent to the first 80 bits) of the message would activate the Trojan. This sequence

was set in the message at the lines 31 to 33 in Figure 7. The probability that a legitimate

user triggers the Trojan unwillingly is then 2−80. It was still possible to consider a longer

activation sequence to reduce this risk further.

For secrets bigger than 128 bits (the maximum extraction size we chose for easier

pattern recognition) we included a selection mechanism. This mechanism is also based on

the input message. We chose the eleventh 8-bit integer of the message as an indicator of

the part of the secret to be extracted by the Trojan. To extract a bigger secret, we split it

into 128-bit parts (for example, as the patterns are easily seen when encoding 128 bits) that

we can extract sequentially. For example, if we took a 512-bit secret, we split it into 4 pieces

of 128 bits. The Trojan would then look at the eleventh 8-bit integer to know which part

of the secret it had to extract at the current iteration. If this integer was equal to two, the

Trojan would then extract the second piece of 128 bits, starting from the bit number 129

of the secret key. From one iteration to another, the spy code incremented these bits in the

plaintext. With this technique, we could extract a key up to 128 ∗ 256 = 32,768 bits by pieces

Figure 7. Pseudocode for the covert channel targeting a “Tiny-AES” implementation of the AES
encryption algorithm.

In practice, our implementation of the Trojan code represented 40 lines of code inserted
inside the “Tiny-AES” library that was composed of approximately 570 lines of code. This
meant that our Trojan increased the size of the library’s code by around 7%. The Trojan’s
code should remain the same for bigger libraries, encompassing several other algorithms
for instance. As the “Tiny-AES” had a small code size, the Trojan would probably be
stealthier when placed in bigger libraries. Moreover, it was possible to improve the stealth
of our Trojan’s implementation, and to reduce its number of lines. However, it was not the
goal of our experimentations, and we did not go any further regarding stealth. This part
was left for future work.

4.3. Experimental Results and Limitations

When we applied out implementation of a micro architectural covert channel on a
“Tiny-AES” implementation having a 128-bit key, we obtained the results given in Figure 8.
We chose to run the covert channel with 2000 samples to improve the accuracy of the key’s

J. Low Power Electron. Appl. 2023, 13, 1 14 of 18

retrieval. The trace was generated by our Python script using the logs produced by the spy
code. The logs contain the time it took the spy to access each cell of Spy_table.

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 14 of 18

of 128 bits. If the secret was bigger than 1024 bits, it was possible to extend the mechanism

to two 8-bit integers (the eleventh and twelfth) or more if required.

In practice, our implementation of the Trojan code represented 40 lines of code in-

serted inside the “Tiny-AES” library that was composed of approximately 570 lines of

code. This meant that our Trojan increased the size of the library’s code by around 7%.

The Trojan’s code should remain the same for bigger libraries, encompassing several other

algorithms for instance. As the “Tiny-AES” had a small code size, the Trojan would prob-

ably be stealthier when placed in bigger libraries. Moreover, it was possible to improve

the stealth of our Trojan’s implementation, and to reduce its number of lines. However, it

was not the goal of our experimentations, and we did not go any further regarding stealth.

This part was left for future work.

4.3. Experimental Results and Limitations

When we applied out implementation of a micro architectural covert channel on a

“Tiny-AES” implementation having a 128-bit key, we obtained the results given in Figure

8. We chose to run the covert channel with 2000 samples to improve the accuracy of the

key’s retrieval. The trace was generated by our Python script using the logs produced by

the spy code. The logs contain the time it took the spy to access each cell of Spy_table.

Analogously to the traces obtained for the simple addition victim, we can observe

the same type of patterns on this trace. As we were still working with the default cache

configuration, we still had 8 distinct patterns that looked very similar, as expected. Here

we could also clearly see the offset’s presence that split one pattern over the figure. We

chose not to correct this offset, as it did not influence the success of the attack at all. The

result of zooming on one of the patterns is given in Figure 9.

Once we generated the trace given in Figure 8, our Python script could recognize the

patterns. As for the simple victim, the script picked the first complete pattern it finds and

set the threshold. It then recovered a binary value. Here, the value recovered was com-

posed of 128 bits just like the secret key. We then compared the value recovered to the

binary decomposition of the key to check the attack’s success.

Figure 8. Trace obtained when carrying out our covert channel on the “Tiny-AES” implementation

of the AES with a 128-bit key and 2000 samples.
Figure 8. Trace obtained when carrying out our covert channel on the “Tiny-AES” implementation of
the AES with a 128-bit key and 2000 samples.

Analogously to the traces obtained for the simple addition victim, we can observe
the same type of patterns on this trace. As we were still working with the default cache
configuration, we still had 8 distinct patterns that looked very similar, as expected. Here
we could also clearly see the offset’s presence that split one pattern over the figure. We
chose not to correct this offset, as it did not influence the success of the attack at all. The
result of zooming on one of the patterns is given in Figure 9.

J. Low Power Electron. Appl. 2023, 13, x FOR PEER REVIEW 15 of 18

Figure 9. Trace obtained when zooming on one of the 8 patterns visible on the full trace of the covert

channel targeting an AES with 2000 samples.

We achieved in recovering the 128-bit key with a success rate of 97.6%. More pre-

cisely, we were able to recover 97.6% of the secret key for every covert channel we carried

out. The 2.4% error was due to the presence of ways in the cache where there was an

important amount of cache misses, independently of the Trojan’s activity. This was visible

with the presence of some very high peaks outside of any recognizable pattern (some are

also located inside the patterns). This meant that there was some activity that was not

caused by the Trojan nor the spy that evicted the spy’s data before it could access it again.

The work proposed in [23] carried out a Prime + Probe covert channel on CVA6 in a

BareMetal simulation environment. There was no specific mention of such perturbations

except for what the authors named the “CPU deadzone”. The CPU deadzone consists in

a cache area being constantly filled by the CPU when computing. This zone typically con-

tains the running programs’ addresses, intermediate values, etc. It has been named “dead-

zone” because no data can be kept in it for longer than a few cycles as the cache content is

constantly replaced during calculations. In our case, this deadzone does not seem to be

the cause of the phenomenon observed as the indexes affected inside the cache do not

match the author’s observations. Moreover, the number of perturbations observed highly

differs in the case of a running OS. Approximately 8 cache sets are affected by the pertur-

bations in the case of an OS compared to more than 50 for the CPU deadzone. This effect

is therefore specifically due to the presence of the Linux OS.

We interpreted these peaks as the processes related to the OS that are running while

we carry out our attack. However, this could not be demonstrated. We could not ensure

that our covert channel (victim + Trojan + spy) can be run within the timeframe allocated

by the OS. Indeed, some other processes are run in between, after the Prime step, but

before the Probe step. This causes some of the spy’s data to be evicted. These unwanted

peaks are located at some indexes inside the patterns, causing 2.4% of the key being re-

covered incorrectly upon every extraction. Increasing the sample count reduces the im-

pact of these unwanted peaks, and thus increases the success rate of the covert channel.

To illustrate, the covert channel can recover 95% of the key correctly using 10 samples

only. This considerably reduces the computation time for a slight decrease in the success

rate.

Moreover, the covert channel take approximately 1 s when using 10 samples. We

measured that we could run about 40 AES per second on our FPGA board without any

covert channel. When using 10 samples, this corresponds to 10 AES encryptions per sec-

ond, resulting in a noticeable slowdown. Again, we did not focus on making the covert

channel stealthy, and future work could focus on this aspect.

Figure 9. Trace obtained when zooming on one of the 8 patterns visible on the full trace of the covert
channel targeting an AES with 2000 samples.

Once we generated the trace given in Figure 8, our Python script could recognize
the patterns. As for the simple victim, the script picked the first complete pattern it finds
and set the threshold. It then recovered a binary value. Here, the value recovered was
composed of 128 bits just like the secret key. We then compared the value recovered to the
binary decomposition of the key to check the attack’s success.

We achieved in recovering the 128-bit key with a success rate of 97.6%. More precisely,
we were able to recover 97.6% of the secret key for every covert channel we carried out.
The 2.4% error was due to the presence of ways in the cache where there was an important

J. Low Power Electron. Appl. 2023, 13, 1 15 of 18

amount of cache misses, independently of the Trojan’s activity. This was visible with
the presence of some very high peaks outside of any recognizable pattern (some are also
located inside the patterns). This meant that there was some activity that was not caused
by the Trojan nor the spy that evicted the spy’s data before it could access it again. The
work proposed in [23] carried out a Prime + Probe covert channel on CVA6 in a BareMetal
simulation environment. There was no specific mention of such perturbations except for
what the authors named the “CPU deadzone”. The CPU deadzone consists in a cache
area being constantly filled by the CPU when computing. This zone typically contains
the running programs’ addresses, intermediate values, etc. It has been named “deadzone”
because no data can be kept in it for longer than a few cycles as the cache content is
constantly replaced during calculations. In our case, this deadzone does not seem to be the
cause of the phenomenon observed as the indexes affected inside the cache do not match
the author’s observations. Moreover, the number of perturbations observed highly differs
in the case of a running OS. Approximately 8 cache sets are affected by the perturbations in
the case of an OS compared to more than 50 for the CPU deadzone. This effect is therefore
specifically due to the presence of the Linux OS.

We interpreted these peaks as the processes related to the OS that are running while
we carry out our attack. However, this could not be demonstrated. We could not ensure
that our covert channel (victim + Trojan + spy) can be run within the timeframe allocated
by the OS. Indeed, some other processes are run in between, after the Prime step, but before
the Probe step. This causes some of the spy’s data to be evicted. These unwanted peaks
are located at some indexes inside the patterns, causing 2.4% of the key being recovered
incorrectly upon every extraction. Increasing the sample count reduces the impact of these
unwanted peaks, and thus increases the success rate of the covert channel. To illustrate, the
covert channel can recover 95% of the key correctly using 10 samples only. This considerably
reduces the computation time for a slight decrease in the success rate.

Moreover, the covert channel take approximately 1 s when using 10 samples. We
measured that we could run about 40 AES per second on our FPGA board without any
covert channel. When using 10 samples, this corresponds to 10 AES encryptions per second,
resulting in a noticeable slowdown. Again, we did not focus on making the covert channel
stealthy, and future work could focus on this aspect.

4.4. The Impact of the Cache Architecture and Perturbations on the Covert Channel

We carried out some other experimentations focusing on the impacts of the “envi-
ronment” on the covert channel efficiency. We consider that the “environment” is mainly
composed of the data cache’s architecture, and the activity of the OS. These two elements
are the ones having the highest influence on our covert channel.

For the cache architecture, we carried out our covert channel with several changes
in the cache’s parameters. Modifying the cache size implied that we needed to adjust
our arrays to fit the new dimensions. This did not impact the success rate, however. We
also tried to modify the LFSR to see if it impacts the outcomes of the covert channel. We
alternatively changed the polynomial used while keeping the same degree, and changed
the degree. In both cases, we did not notice any modification in the attack’s behavior.
The success rate did not evolve significantly. However, the cache associativity had a very
high impact on the cover-channel’s behavior. Changing the associativity means changing
the amount of values we can extract. The higher the associativity, the more ways each
set would contain. For a fixed cache size, this meant that increasing the associativity
decreased the number of sets, and thus the amount of bits a Trojan can transmit. We had an
increased number of patterns on our traces, but each pattern was composed of fewer values.
The opposite was also true: decreasing associativity with a fixed cache size increased the
number of sets and thus the number of bits that can be extracted. We could still adapt
the attack in several different scenarios. For associativity values of 4, 8, 16, and 32, the
covert channel was still working, provided it was adapted to fit the new environment. The
success rate in these cases did not evolve significantly. We could not try some extreme

J. Low Power Electron. Appl. 2023, 13, 1 16 of 18

cases, such as changing to a direct-mapped cache, or a fully associative cache (meaning that
we have only 1 set composed of as many ways as the cache size requires it) because these
configurations are not supported by the CVA6′s data cache. As a conclusion, we can say
that the cache structure has an impact on the covert channel. However, a simple adaptation
inside the code is sufficient. Cache associativity has more impact on the attack as it directly
modifies the amount of information transmitted. Intuitively, and considering the previous
results, a fully associative cache would be more resilient to our proposed covert channel,
as we would only be able to extract one bit at a time (as there is only one cache set). This
would not make the attack impossible, but less practical and slower.

In an effort to propose an even more realistic approach to the application of our covert
channel, we carried it out in a “noisy” environment. We added some genuine clients
(e.g., also embedding the Trojan but not activating it) running in parallel with a malicious
user. We placed two other clients using the same encryption service as the attacker, with the
same execution priority. These clients are doing AES encryptions in tight and infinite loops,
in order to maximize the perturbations caused. These perturbations were created to amplify
the effect limiting the success rate because of the unwanted peaks appearing in the patterns.
The effects caused by these two genuine clients were observable. They caused a significant
drop in the success rate. This means that we had to increase the amount of samples to
achieve a success rate of 95%. For example, the covert channel without perturbations can
achieve 95% of success rate with only 6 samples. To achieve 95% of success rate with the
perturbations, we needed to use 10 samples instead. Less samples produced a degraded
success rate with the perturbations. Similarly, when adding 3 genuine clients, 15 samples
were needed to achieve 95% of extraction rate. For 4 processes it goes up to 22 samples. The
observed trend and the precise number of samples vary with the type of code implied and
the attack’s implementation itself. To conclude, if some processes are running concurrently
with our covert channel, the perturbations degrade the quality of the extraction, but it is
still possible to account for it by increasing the amount of samples considered.

5. Conclusions and Perspectives

We presented an implementation of an access-driven cache-based micro architectural
covert channel on the RISCV CVA6 core, in a running OS context. This attack is practical
and has been applied to a simple victim consisting of an addition process then to a more
realistic use-case, targeting an implementation of the AES encryption algorithm, with a
128-bit key. The attack’s success rate is around 95% for 10 samples.

We also studied some of the challenges that the presence of an OS imply when carrying
out such a covert channel, such as the presence of other processes running concurrently, or
aspects about the scheduling that have to be considered when developing a covert channel
attack. Moreover, we also showed that the cache’s architecture and dimensioning has an
impact on the ability of these covert channels to extract information, and therefore on the
cache’s level of vulnerability to such threats.

With more knowledge about the target and the victim comes more power for secret
extraction. Open-source implementations of both hardware and software modules come
at the price of new challenges for the designer to propose a secure platform. This paper
proposes a study of the mechanisms involved in a cache covert channel and their limitations
in an effort to help the development of future mitigations against micro architectural
covert channels. These results are applied to a realistic scenario with a cryptographic
implementation to show these threats are practical even though they require a specific
methodology to be adapted from a given processor to another.

A future work is to propose a stealthier version of the Trojan’s implementation to
make the covert channel even more realistic and practical. It is also important to work on
the potential mitigations to such covert channels, as none of the observed perturbations
could completely prohibit the extraction.

J. Low Power Electron. Appl. 2023, 13, 1 17 of 18

Author Contributions: Conceptualization, all authors; methodology, all authors; software, all au-
thors; validation, all authors; formal analysis, all authors; investigation, all authors; resources, all
authors; data curation, V.M. and E.T.; writing—original draft preparation, V.M.; writing—review
and editing, all authors; visualization, all authors; supervision, Y.T. and R.L.; project administration,
Y.T. and R.L.; funding acquisition, Y.T. and R.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Van Bulck, J.; Minkin, M.; Weisse, O.; Genkin, D.; Kasikci, B.; Piessens, F.; Silberstein, M.; Wenisch, T.F.; Yarom, Y.; Strackx, R.

Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution; USENIX Association: Berkeley, CA,
USA, 2018.

2. Canella, C.; Genkin, D.; Giner, L.; Gruss, D.; Lipp, M.; Minkin, M.; Moghimi, D.; Piessens, F.; Schwarz, M.; Sunar, B.; et al. Fallout:
Reading kernel writes from user space. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, London, UK, 11–15 November 2019. [CrossRef]

3. Schwarz, M.; Lipp, M.; Moghimi, D.; Van Bulck, J.; Stecklina, J.; Prescher, T.; Gruss, D. ZombieLoad: Cross-privilege-boundary
data sampling. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK,
11–15 November 2019. [CrossRef]

4. Van Bulck, J.; Moghimi, D.; Schwarz, M.; Lippi, M.; Minkin, M.; Genkin, D.; Yarom, Y.; Sunar, B.; Gruss, D.; Piessens, F. Lvi:
Hijacking transient execution through microarchitectural load value injection. In Proceedings of the 41th IEEE Symp. on Security
and Privacy, San Francisco, CA, USA, 18–21 May 2020; pp. 1399–1417. [CrossRef]

5. Lipp, M.; Schwarz, M.; Gruss, D.; Prescher, T.; Haas, W.; Horn, J.; Mangard, S.; Kocher, P.; Genkin, D.; Yarom, Y.; et al. Meltdown:
Reading kernel memory from user space. In Proceedings of the USENIX Security Symposium, Baltimore, MD, USA, 15–17 August 2018.

6. Allaf, Z.; Adda, M.; Gegov, A. A comparison study on flush+reload and prime+probe attacks on AES using machine learning
approaches. In UK Workshop on Computational Intelligence; Springer: Cham, Switzerland, 2017; pp. 203–213.

7. Yuval, Y.; Katrina, F. Flush+Reload: A High Resolution, Low Noise, L3 Cache Side-Channel Attack; USENIX Association: Berkeley, CA,
USA, 2014.

8. Gruss, D.; Maurice, C.; Wagner, K.; Mangard, S. Flush+flush: A fast and stealthy cache attack. In Proceedings of the 13th
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, San Sebastián, Spain, 7–8 July
2016; Volume 9721, pp. 279–299.

9. Disselkoen, C.; Kohlbrenner, D.; Porter, L.; Tullsen, D. Prime+abort: A timer-free high-precision L3 cache attack using intel TSX.
In Proceedings of the USENIX Security Symposium, Vancouver, BC, Canada, 16–18 August 2017; Volume 17, pp. 51–67.

10. Wistoff, N.; Schneider, M.; Gürkaynak, F.K.; Benini, L.; Heiser, G. Microarchitectural timing channels and their prevention on
an open-source 64-bit RISC-V Core. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Grenoble, France, 1–5 February 2021; pp. 627–632. [CrossRef]

11. Wistoff, N.; Schneider, M.; Gürkaynak, F.K.; Heiser, G.; Benini, L. Systematic Prevention of On-Core Timing Channels by Full
Temporal Partitioning. IEEE Trans. Comput. 2022, 1–11. [CrossRef]

12. The seL4 Microkernel. seL4 Foundation. Available online: https://sel4.systems/ (accessed on 16 December 2022).
13. Zaruba, F.; Benini, L. The cost of application-class processing: Energy and performance analysis of a Linux-ready 1.7GHz 64-bit

RISC-V core in 22-nm FDSOI technology. IEEE Trans. VLSI Syst. 2019, 27, 2629–2640. [CrossRef]
14. RISC-V International. Available online: https://riscv.org (accessed on 4 December 2022).
15. CVA6 Core. ETH Zurich. Available online: https://github.com/openhwgroup/cva6 (accessed on 27 June 2022).
16. Martinoli, V.; Bouagoun, A.; Leveugle, R.; Teglia, Y. CVA6′s Data Cache: Structure and Behavior. 8 February 2022. Available

online: https://arxiv.org/abs/2202.03749 (accessed on 27 June 2022).
17. Ripple20: 19 Zero-Day Vulnerabilities Amplified by the Supply Chain. JSOF. Available online: https://www.jsof-tech.com/

ripple20/ (accessed on 17 September 2020).
18. Digilent reference—Genesys 2. Digilent. Available online: https://digilent.com/reference/programmable-logic/genesys-2/start

(accessed on 27 June 2022).
19. Xilinx Vivado. Xilinx. Available online: https://www.xilinx.com/products/design-tools/vivado.html (accessed on 27 June 2022).
20. CVA6-SDK. Open Hardware Group. Available online: https://github.com/openhwgroup/cva6-sdk (accessed on 27 June 2022).
21. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, 2017. Available online: https://riscv.org/wp-content/uploads/20

17/05/riscv-spec-v2.2.pdf (accessed on 5 December 2022).

http://doi.org/10.1145/3319535.3363219
http://doi.org/10.1145/3319535.3354252
http://doi.org/10.1109/SP40000.2020.00089
http://doi.org/10.23919/DATE51398.2021.9474214
http://doi.org/10.1109/TC.2022.3212636
https://sel4.systems/
http://doi.org/10.1109/TVLSI.2019.2926114
https://riscv.org
https://github.com/openhwgroup/cva6
https://arxiv.org/abs/2202.03749
https://www.jsof-tech.com/ripple20/
https://www.jsof-tech.com/ripple20/
https://digilent.com/reference/programmable-logic/genesys-2/start
https://www.xilinx.com/products/design-tools/vivado.html
https://github.com/openhwgroup/cva6-sdk
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

J. Low Power Electron. Appl. 2023, 13, 1 18 of 18

22. Tiny-AES-c. Available online: https://github.com/kokke/tiny-AES-c (accessed on 27 June 2022).
23. Martinoli, V.; Teglia, Y.; Bouagoun, A.; Leveugle, R. Recovering Information on the CVA6 RISC-V CPU with a Baremetal Micro-

Architectural Covert Channel. In Proceedings of the 2022 IEEE 28th International Symposium on On-Line Testing and Robust
System Design (IOLTS), Torino, Italy, 12–14 September 2022; pp. 1–6. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/kokke/tiny-AES-c
http://doi.org/10.1109/IOLTS56730.2022.9897297

	Introduction
	Background
	Micro Architectural Cache Covert Channels
	The CVA6 Core and Its Data Cache Structure

	Building a Covert Channel on the FPGA-Instantiated CVA6 Running Linux
	Initial Threat Model
	Experimental Setup
	First Experimentations on Information Transmission and Statistical Analysis
	Implementation of a Basic Tailored Covert Channel on the CVA6
	Example and Experimental Results on a Simple Victim

	Applying the Previous Covert Channel in a Realistic Scenario
	Proposed Use-Case: Targeting an Encryption Service
	Experimental Setup and the Challenges to Adapt the Covert Channel to the New Victim
	Experimental Results and Limitations
	The Impact of the Cache Architecture and Perturbations on the Covert Channel

	Conclusions and Perspectives
	References

