
Citation: Thanh, T.L.; Tri, L.T.;

Hoang, T. A Methodology to Design

Static NCL Libraries. J. Low Power

Electron. Appl. 2022, 12, 31. https://

doi.org/10.3390/jlpea12020031

Academic Editor: Andrea Acquaviva

Received: 20 December 2021

Accepted: 20 March 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

A Methodology to Design Static NCL Libraries
Toi Le Thanh 1,2,3 , Lac Truong Tri 1,2 and Trang Hoang 1,2,*

1 Department of Electronics Engineering, Faculty of Electricals and Electronics Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000,
Vietnam; lttoi.sdh19@hcmut.edu.vn or toilt@hufi.edu.vn (T.L.T.); ttlac.sdh20@hcmut.edu.vn (L.T.T.)

2 Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District,
Ho Chi Minh City 700000, Vietnam

3 Department of Electronics Engineering, Faculty of Electricals and Electronics Engineering, Ho Chi Minh City
University of Food Industry (HUFI), 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District,
Ho Chi Minh City 700000, Vietnam

* Correspondence: hoangtrang@hcmut.edu.vn

Abstract: The Null Convention Logic (NCL) based asynchronous design technique has interested
researchers because this technique had overcome disadvantages of the synchronous technique, such
as noise, glitches, clock skew and power. However, using the NCL-based asynchronous design
method is difficult for university students and researchers because of the lack of standard NCL cell
libraries. Therefore, in this paper, a novel flow is proposed to design NCL cell libraries. These libraries
are used to synthesize NCL-based asynchronous designs. We chose the static NCL cell library to
illustrate the proposed design solution because this library is one of the most basic NCL libraries.
Static NCL cells in this library are designed based on the Process Design Kit 45nm technology
and are implemented by the Virtuoso and the Design Compiler (DC) tool. In addition, the Ocean
script and Electronic Design Automation (EDA) environment are used for supporting designs and
simulations. A complete library of 27 NCL cells was designed to serve for study and research. We
also implemented synthesis for NCL full adders using this library and compared our synthesis results
with the results of other authors. The comparison results indicated that our results were a 20%
improvement on power consumption.

Keywords: NCL cell library; threshold gate; asynchronous method; Null Convention Logic

1. Introduction

Synchronous circuits have played a significant role and have dominated the semicon-
ductor industry [1]. This industry has continuously diminished the wire and transistor
dimension. As a result, billions of transistors are integrated into a single chip, and low
power and high-performance circuits will be created in the following technology genera-
tions. Furthermore, synchronous circuits use a clock signal to synchronize their operations.
Therefore, the semiconductor industry must face clock-related issues, including clock
skew, power consumption, noise, electromagnetic interference, and the complexity of
clock network layout. These issues are considered future technological challenges for the
semiconductor industry [2].

In contrast to synchronous circuit paradigms, asynchronous circuit paradigms syn-
chronize their operations through the local handshake protocol. Therefore, asynchronous
circuitry may eliminate the clock issues mentioned above [3]. Among asynchronous circuit
paradigms, NCL is a quasi-delay-insensitive (QDI) logic paradigm used in commercial
applications and is chosen to design asynchronous circuits [4]. Many studies of NCL-
based asynchronous circuits are implemented, such as the complementary metal-oxide-
semiconductor circuit design of threshold gates with latency [5], of which comparisons of
NCL threshold gate models [3] and some relevant studies can be found in [6–12]. In most of
the studies mentioned above, authors synthesized their designs in one of three approaches.

J. Low Power Electron. Appl. 2022, 12, 31. https://doi.org/10.3390/jlpea12020031 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12020031
https://doi.org/10.3390/jlpea12020031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0003-0861-9724
https://orcid.org/0000-0001-5105-1017
https://doi.org/10.3390/jlpea12020031
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12020031?type=check_update&version=1

J. Low Power Electron. Appl. 2022, 12, 31 2 of 19

The first approach was to use tools to convert synchronous to asynchronous designs [13].
This approach makes it hard to optimize large-scale designs. In the second approach, the
authors used a full-custom design flow to synthesize NCL-based designs. This flow is
not suitable for complex designs. The last approach uses the conventional synchronous
cell library to synthesize NCL-based designs [14]. This approach may prevent the NCL-
based asynchronous designs from achieving optimal power. Therefore, the lack of NCL
asynchronous cell libraries have caused many difficulties in research and development.

In state-of-the-art research, there were several flows suggested to design NCL asyn-
chronous cell libraries [15,16]. These flows are complex, and authors used some of their
own tools—a reason that causes difficulties for researchers who want to continue to inherit
and develop. Therefore, we proposed a simple flow to design the NCL cell library using
only the main commercial tools. Additionally, this flow also helps researchers themselves
to easily create NCL cell libraries.

In this flow, cell schematic designs, cell symbol generation, and cell simulation to
determine leakage power and input capacitance are implemented using Virtuoso. NCL
static cells are designed based on PDK 45nm technology and are chosen as a case study. In
addition, cell characterization is assisted by Ocean script to determine parameters, such
as cell rise delay, cell fall delay, rise transition, fall transition, rise power and fall power.
Thanks to the Ocean script, researchers saved time approaching a new method quickly.

The rest of this paper comprises three sections: Section 2 presents an overview of NCL,
the proposed flow, and cell characterization. Section 3 provides results and discussions.
Finally, Section 4 gives conclusions of our methodology to design the NCL cell library.

2. Materials and Methods
2.1. Null Convention Logic

NCL is an asynchronous logic and latency-insensitive model. To achieve delay insen-
sitivity, NCL circuits must satisfy two rules: input-completeness and observability [17]. In
terms of input-completeness, NCL designs require two following conditions: “The output
may not transition from NULL to a complete set of DATA until the input value is purely
DATA”, and “The output may not transition from the DATA state to a NULL completer
until the input value is completely NULL”. About observability, this requires that there are
no orphans transmitting through a gate. Orphans can be ignored through the isochronic
fork assumption—wire delays are less than gate delays within a component [17]. The
observability condition ensures that any gate transitions are observable at the output. To
satisfy this observability condition, each transition occurring at each gate must transition at
least one of the outputs.

The NCL-based circuit design method does not use a clock signal and is aimed at
asynchronous circuits [5]. These asynchronous circuits always execute correctly, regardless
of component and wire delays [18,19]. To achieve the delay target mentioned above, NCL
circuits utilize dual-rail logic [18]. A conventional logic signal is generated by only one rail,
while two rails form a dual-rail logic signal. Table 1 shows the conversion of a conventional
logic signal to a dual-rail signal [20]. The value ‘11′ is illegal because A0 and A1 rails are
mutually exclusive.

Table 1. Dual-rail signal.

Boolean Logic
Code

Dual-Rail Logic A1 A0

0 DATA0 0 1
1 DATA1 1 0

NULL 0 0
ILLEGAL 1 1

J. Low Power Electron. Appl. 2022, 12, 31 3 of 19

Unlike conventional asynchronous circuits, NCL-based circuits use a set of twenty-
seven threshold gates [18–20]. A general symbol of the thmn threshold gate is illustrated in
Figure 1. Where n is the total number of inputs, m is the threshold value that means at least
m of n inputs must become ‘1’ state before the output becomes ‘1’ state. Another type of
threshold gate is denoted thnmWz1z2 . . . zm. It is a weighted threshold gate, where the
input weights are z1, z2, . . . , and zm. For example, th23w2 is shown in Figure 1b, where
the A input weight and the threshold value are two. Therefore, when the A input becomes
a ‘1’ state, the output will be asserted.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 3 of 20

Table 1. Dual-rail signal.

Boolean logic
Code

Dual-Rail Logic A1 A0
0 DATA0 0 1
1 DATA1 1 0
 NULL 0 0
 ILLEGAL 1 1

Unlike conventional asynchronous circuits, NCL-based circuits use a set of twenty-
seven threshold gates [18–20]. A general symbol of the thmn threshold gate is illustrated
in Figure 1. Where n is the total number of inputs, m is the threshold value that means at
least m of n inputs must become ‘1’ state before the output becomes ‘1’ state. Another type
of threshold gate is denoted thnmWz1z2…zm. It is a weighted threshold gate, where the
input weights are z1, z2, ..., and zm. For example, th23w2 is shown in Figure 1b, where
the A input weight and the threshold value are two. Therefore, when the A input becomes
a ‘1’ state, the output will be asserted.

Figure 1. The primary threshold gate (a) thmn; (b) Th23w2.

As presented above, NCL-based asynchronous circuits are designed by threshold
gates. The general structure of a static CMOS threshold gate with hysteresis consists of
five function blocks (set, reset, hold data, hold null and an inverter at the output), as
shown in Figure 2. In this structure, the reset block and hold data block are complemen-
tary to each other and have standard structures which are depicted in Figure 3 [4,5]. The
reset block is active when all inputs are in the ‘0’ state, while the hold data block is active
when at least one or more inputs are in the ‘1’ state. Their structures only depend on the
number of cell inputs. Therefore, threshold gates with the same number of inputs will
have the same reset block and hold data block. Similarly, the set block and the hold null
block complement each other, but their actual structures depend on the number of inputs
and the threshold value.

Figure 2. General structure of a static CMOS threshold gate.

Figure 1. The primary threshold gate (a) thmn; (b) Th23w2.

As presented above, NCL-based asynchronous circuits are designed by threshold
gates. The general structure of a static CMOS threshold gate with hysteresis consists of five
function blocks (set, reset, hold data, hold null and an inverter at the output), as shown in
Figure 2. In this structure, the reset block and hold data block are complementary to each
other and have standard structures which are depicted in Figure 3 [4,5]. The reset block is
active when all inputs are in the ‘0’ state, while the hold data block is active when at least
one or more inputs are in the ‘1’ state. Their structures only depend on the number of cell
inputs. Therefore, threshold gates with the same number of inputs will have the same reset
block and hold data block. Similarly, the set block and the hold null block complement each
other, but their actual structures depend on the number of inputs and the threshold value.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 3 of 20

Table 1. Dual-rail signal.

Boolean logic
Code

Dual-Rail Logic A1 A0
0 DATA0 0 1
1 DATA1 1 0
 NULL 0 0
 ILLEGAL 1 1

Unlike conventional asynchronous circuits, NCL-based circuits use a set of twenty-
seven threshold gates [18–20]. A general symbol of the thmn threshold gate is illustrated
in Figure 1. Where n is the total number of inputs, m is the threshold value that means at
least m of n inputs must become ‘1’ state before the output becomes ‘1’ state. Another type
of threshold gate is denoted thnmWz1z2…zm. It is a weighted threshold gate, where the
input weights are z1, z2, ..., and zm. For example, th23w2 is shown in Figure 1b, where
the A input weight and the threshold value are two. Therefore, when the A input becomes
a ‘1’ state, the output will be asserted.

Figure 1. The primary threshold gate (a) thmn; (b) Th23w2.

As presented above, NCL-based asynchronous circuits are designed by threshold
gates. The general structure of a static CMOS threshold gate with hysteresis consists of
five function blocks (set, reset, hold data, hold null and an inverter at the output), as
shown in Figure 2. In this structure, the reset block and hold data block are complemen-
tary to each other and have standard structures which are depicted in Figure 3 [4,5]. The
reset block is active when all inputs are in the ‘0’ state, while the hold data block is active
when at least one or more inputs are in the ‘1’ state. Their structures only depend on the
number of cell inputs. Therefore, threshold gates with the same number of inputs will
have the same reset block and hold data block. Similarly, the set block and the hold null
block complement each other, but their actual structures depend on the number of inputs
and the threshold value.

Figure 2. General structure of a static CMOS threshold gate.

Figure 2. General structure of a static CMOS threshold gate.

Similar to the general structure of the static threshold gate, a general structure of the
semi-static threshold gate comprises three function blocks (reset block, set block, and a
weak feedback inverter at the output) [3,5]. In this structure, when both set and reset blocks
are off, the logic level on node Y will be remained by this inverter. In addition, this weak
inverter will be influenced by noise on node Y if it is too small.

J. Low Power Electron. Appl. 2022, 12, 31 4 of 19J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 4 of 20

Figure 3. General structure of reset block and hold data block: (a) reset block; (b) hold data block.

Similar to the general structure of the static threshold gate, a general structure of the
semi-static threshold gate comprises three function blocks (reset block, set block, and a
weak feedback inverter at the output) [3,5]. In this structure, when both set and reset
blocks are off, the logic level on node Y will be remained by this inverter. In addition, this
weak inverter will be influenced by noise on node Y if it is too small.

In many applications related to real-time computing, such as signal processing, the
flow of the input data is continuous at the minimum speed. In these cases, a feedback
mechanism is not essential to maintain the state information. Therefore, the weak
feedback inverter can be removed from the semi-static structure. As a result, a new
paradigm is formed and is called dynamic threshold gates [3].

2.2. The Proposed Flow Chart to Design Standard NCL Cell Libraries
In this section, we present the proposed flow chart to design NCL cell libraries. This

flow comprises ten steps depicted in Figure 4. Firstly, the cell specification analysis step is
implemented to form the basis for the schematic circuit design step. The next step is to
create the cell symbol to carry out the testbench circuit. This circuit is simulated to check
the cell operations. If the cell operation test results are not good, we will go back to the
schematic circuit design step. Otherwise, we will go to the simulation step at the corners.
This step is implemented to measure leakage power and the input capacitance.

Pin capacitance can be specified in all inputs and outputs. In most cases, it is only
determined at input pins. Thus, the cell output capacitance is equal to zero [21]. The input
capacitance value is computed by Equation (1), which represents the relationship of ca-
pacitance, voltage, and current. 𝐼 = 𝐶 𝑑𝑉𝑑𝑡 (1)

By providing pulse voltage to the input pin and measuring the current at the same
point, we will calculate the input capacitance value by Equation (2):

𝐶 = 𝐼(𝑡)𝑑𝑡𝑑𝑉 (2)

where I is the current at an input pin, and it is created by charging and discharging the
charge through the input capacitance.

Most normal cells only consume power when the output changes. However, other
powers are dissipated as the cells are supplied with the voltage but are not active because
the leakage current is not equal to zero. The sub-threshold current or the tunneling current

Figure 3. General structure of reset block and hold data block: (a) reset block; (b) hold data block.

In many applications related to real-time computing, such as signal processing, the
flow of the input data is continuous at the minimum speed. In these cases, a feedback
mechanism is not essential to maintain the state information. Therefore, the weak feedback
inverter can be removed from the semi-static structure. As a result, a new paradigm is
formed and is called dynamic threshold gates [3].

2.2. The Proposed Flow Chart to Design Standard NCL Cell Libraries

In this section, we present the proposed flow chart to design NCL cell libraries. This
flow comprises ten steps depicted in Figure 4. Firstly, the cell specification analysis step
is implemented to form the basis for the schematic circuit design step. The next step is to
create the cell symbol to carry out the testbench circuit. This circuit is simulated to check
the cell operations. If the cell operation test results are not good, we will go back to the
schematic circuit design step. Otherwise, we will go to the simulation step at the corners.
This step is implemented to measure leakage power and the input capacitance.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 5 of 20

through the gate oxide of MOS devices generates the leakage [21]. The leakage power is
determined according to Equation (3): 𝑃 = 𝐼 𝑉 (3)

Figure 4. The proposed NCL cell library design flow chart.

To determine the leakage power, we first list all input combinations of that cell and
then compute the leakage power of every case by connecting the voltage supply line to
the ground when inputs are low, or connecting the voltage supply line to VDD when inputs
are high. The leakage power of a standard cell is equal to the average of all cases. Simul-
taneously, with the simulation step at corners, we perform the cell characterization to de-
termine the timing and power models. As ADE does not have options or powerful com-
mands to execute the repetitive tasks, the Ocean script is utilized to assist the cell charac-
terization automatically. Cell characterization is represented in detail in Section 2.3 below.
The parameters mentioned above, including leakage power, input capacitances, timing
model, and power model, will contribute to forming the *.lib file [22]. This file complies
with Synopsys standards. Subsequently, we use the Library Compiler tool of Synopsys to
convert the *.lib file to the *.db file. To do this, read_lib and write_lib commands shall be
used. “Read_lib <your path>/library.lib” command is used to read and compile the library
file. If the compilation is successful, the program returns 1, and the *.db file is created by
using “write_lib library_name -f db -o <your path>/library.db” command [23]. This *.db
file is not only one of the crucial files in the library but also contains the essential param-
eters of cells and is used to synthesize NCL-based asynchronous circuits using the DC tool
of Synopsys.

Figure 4. The proposed NCL cell library design flow chart.

J. Low Power Electron. Appl. 2022, 12, 31 5 of 19

Pin capacitance can be specified in all inputs and outputs. In most cases, it is only
determined at input pins. Thus, the cell output capacitance is equal to zero [21]. The
input capacitance value is computed by Equation (1), which represents the relationship of
capacitance, voltage, and current.

I = C
dV
dt

(1)

By providing pulse voltage to the input pin and measuring the current at the same
point, we will calculate the input capacitance value by Equation (2):

Cinput =

∫ t+∆t
t I(t)dt∫ t+∆t

t dV
(2)

where I is the current at an input pin, and it is created by charging and discharging the
charge through the input capacitance.

Most normal cells only consume power when the output changes. However, other
powers are dissipated as the cells are supplied with the voltage but are not active because
the leakage current is not equal to zero. The sub-threshold current or the tunneling current
through the gate oxide of MOS devices generates the leakage [21]. The leakage power is
determined according to Equation (3):

PLeakage = ∑ ILeakageVDD (3)

To determine the leakage power, we first list all input combinations of that cell and
then compute the leakage power of every case by connecting the voltage supply line
to the ground when inputs are low, or connecting the voltage supply line to VDD when
inputs are high. The leakage power of a standard cell is equal to the average of all cases.
Simultaneously, with the simulation step at corners, we perform the cell characterization
to determine the timing and power models. As ADE does not have options or powerful
commands to execute the repetitive tasks, the Ocean script is utilized to assist the cell
characterization automatically. Cell characterization is represented in detail in Section 2.3
below. The parameters mentioned above, including leakage power, input capacitances,
timing model, and power model, will contribute to forming the *.lib file [22]. This file
complies with Synopsys standards. Subsequently, we use the Library Compiler tool of
Synopsys to convert the *.lib file to the *.db file. To do this, read_lib and write_lib commands
shall be used. “Read_lib <your path>/library.lib” command is used to read and compile
the library file. If the compilation is successful, the program returns 1, and the *.db file is
created by using “write_lib library_name -f db -o <your path>/library.db” command [23].
This *.db file is not only one of the crucial files in the library but also contains the essential
parameters of cells and is used to synthesize NCL-based asynchronous circuits using the
DC tool of Synopsys.

Finally, the synthesis step is carried out to check if the cell library works properly.
In this step, we will write a piece of RTL code and synthesize it at the gate level. If the
synthesis results are good (i.e., the design can be synthesized successfully) the NCL cell
library will be completed. The complete library comprises 27 cells.

To illustrate the proposed flow, we choose any one of twenty-seven cells in the library,
for instance, the th22 cell. As represented in Section 2.1, reset and hold data blocks are in
standard forms and only depend on the total number of inputs. Therefore, the reset block
is formed by two PMOS transistors in series, and the hold data block is formed by two
NMOS transistors in parallel. To construct the schematic circuits of the set block and hold
the null block, we conduct an analysis of their function. The set block is only active when
both A and B input goes to the high level. For this condition, the switching expression of
the set block also describes the function of this threshold gate, represented by Equation (4).
The hold null block complements the set block, so the switching expression of this block
is obtained by complementing Equation (4), and this result is shown in Equation (5). The

J. Low Power Electron. Appl. 2022, 12, 31 6 of 19

circuits to implement set and hold null blocks by using NMOS transistor networks and
PMOS transistor networks are illustrated in Figure 5. The remaining steps will be continued
in Section 2.3.

F(A, B) = AB (4)

F(A, B) = A + B (5)

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 6 of 20

Finally, the synthesis step is carried out to check if the cell library works properly. In
this step, we will write a piece of RTL code and synthesize it at the gate level. If the syn-
thesis results are good (i.e., the design can be synthesized successfully) the NCL cell li-
brary will be completed. The complete library comprises 27 cells.

To illustrate the proposed flow, we choose any one of twenty-seven cells in the li-
brary, for instance, the th22 cell. As represented in Section 2.1, reset and hold data blocks
are in standard forms and only depend on the total number of inputs. Therefore, the reset
block is formed by two PMOS transistors in series, and the hold data block is formed by
two NMOS transistors in parallel. To construct the schematic circuits of the set block and
hold the null block, we conduct an analysis of their function. The set block is only active
when both A and B input goes to the high level. For this condition, the switching expres-
sion of the set block also describes the function of this threshold gate, represented by
Equation (4). The hold null block complements the set block, so the switching expression
of this block is obtained by complementing Equation (4), and this result is shown in Equa-
tion (5). The circuits to implement set and hold null blocks by using NMOS transistor
networks and PMOS transistor networks are illustrated in Figure 5. The remaining steps
will be continued in Section 2.3. 𝐹(𝐴, 𝐵) = 𝐴𝐵 (4) 𝐹(𝐴, 𝐵) = �̅� + 𝐵 (5)

Figure 5. Threshold gate th22.

2.3. NCL Cell Characterization
Cell characterization is one of the most important steps in the flow because, in this

step, cell timing models and power models are determined to form the library. We per-
form characterization for all cells, and the quantities of cell fall delay, cell rise delay, fall
transition, rise transition, rise power, fall power, input capacitance and leakage power. In
this section, 27 cells will use the same load capacitance Cload (1.4 fF, 2.54 fF, 4.61 fF, 8.37 fF,

GND

Q9

A

Q11B

Q8

BB
Q10

Q3

A

Q7

Q1

Q6

Q2

Hold data block

Q4

A

Hold Null block

Q12

Vcc

Z

A

Q5

Set block

Reset block

B

Figure 5. Threshold gate th22.

2.3. NCL Cell Characterization

Cell characterization is one of the most important steps in the flow because, in this
step, cell timing models and power models are determined to form the library. We perform
characterization for all cells, and the quantities of cell fall delay, cell rise delay, fall transition,
rise transition, rise power, fall power, input capacitance and leakage power. In this section,
27 cells will use the same load capacitance Cload (1.4 fF, 2.54 fF, 4.61 fF, 8.37 fF, 15.2 fF,
27.6 fF, 50.0 fF) and the same fall time and rise time of the input Vpulse waveform (0.01 ns,
0.0192 ns, 0.0368 ns, 0.0707 ns, 0.136 ns, 0.261 ns, 0.5 ns) to realize cell characterization. Cload
and slope values are determined based on Equation (6) and Elmore delay, respectively [24].
We measured Cload and slope values with different drive strengths to get a range that cells
can fall into.

Cload = (Wn × Ln × Cox) + (Wp × Lp × Cox) (6)

where:
Cox: Gate oxide capacitance;
Wn: width of the NMOS transistor;
Ln: length of the NMOS transistor;
Wp: width of the PMOS transistor;
Lp: length of the PMOS transistor.
To simulate all the cases, we must carry out the tasks manually because there are

no options and powerful commands in the graphic user interface to carry out repetitive
tasks, which is one of the greatest drawbacks of the ADE. In addition, there is no approach
to characterize a normal cell automatically. Hence, in this subsection, Ocean language is

J. Low Power Electron. Appl. 2022, 12, 31 7 of 19

utilized to assist automatically implementing simulations within Cadence because it is
one of the powerful script languages. The structure of the .ocn file includes three main
parts: part 1 is to assign the Cload and slope values to the two arrays, respectively; part 2 is
to create loops for simulating 49 cases; and the last part is to measure rise transition, fall
transition, cell rise delay, cell fall delay, rise power and fall power based on Figures 6–8 and
Equation (7).

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 8 of 20

Figure 6. Transition time at output pin. (a) Rise transition. (b) Fall transition.

Figure 7. Cell rise delay. (a) Timing arc is negative unate. (b) Timing arc is positive unate.

Figure 8. Cell fall delay. (a) Timing arc is negative unate. (b) Timing arc is positive unate.

Figure 6. Transition time at output pin. (a) Rise transition. (b) Fall transition.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 8 of 20

Figure 6. Transition time at output pin. (a) Rise transition. (b) Fall transition.

Figure 7. Cell rise delay. (a) Timing arc is negative unate. (b) Timing arc is positive unate.

Figure 8. Cell fall delay. (a) Timing arc is negative unate. (b) Timing arc is positive unate.

Figure 7. Cell rise delay. (a) Timing arc is negative unate. (b) Timing arc is positive unate.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 8 of 20

Figure 6. Transition time at output pin. (a) Rise transition. (b) Fall transition.

Figure 7. Cell rise delay. (a) Timing arc is negative unate. (b) Timing arc is positive unate.

Figure 8. Cell fall delay. (a) Timing arc is negative unate. (b) Timing arc is positive unate.
Figure 8. Cell fall delay. (a) Timing arc is negative unate. (b) Timing arc is positive unate.

J. Low Power Electron. Appl. 2022, 12, 31 8 of 19

The general structure of the .ocn file:
loadlist = list (“L1” “L2” “L3” . . . “Ln”);
slopelist = list (“S1” “S2” “S3” . . . “Sn”);
foreach (slopevar slopelist
foreach (loadvar loadlist
“Measure cell rise delay, cell fall delay, . . . ”
);
);
where:

Ln: load value
Sn: slope value
Besides the Ocean script, the calculator of Virtuoso is also used to perform cell charac-

terization. The parameters mentioned above, such as fall time and rise time of the input
voltage, and load capacitance must be determined clearly in the *.ocn file to run the sim-
ulation 49 times and calculate the timing and the dynamic power models, including fall
transition, rise transition, cell rise delay, and cell fall delay. We do not use the Ocean script
to assist in measuring the leakage power and the input capacitance because it is used to
measure a range of values. The testbench circuit of the th22 gate is shown in Figure 9.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 9 of 20

Figure 9. The testbench circuit

Dynamic power consists of rise power and fall power. Rise power is calculated in
case the output changes from low to high. Similarly, fall power is calculated in case the
output changes from high to low. The dynamic power is determined by Equation (7),
where V0 is the power supply. 𝑃 = 𝑉𝑑𝑑𝑇 ∗ 𝑖(“/ / ”)(𝑡). 𝑑𝑡 (7)

3. Results and Discussions
In this section, results of the processes in Section 2 are presented and discussed, in-

cluding the cell function test, cell characterization and test synthesis for RTL code. In ad-
dition, we also make comparisons between our synthesis results and the results of other
authors.

3.1. Function Test Results
In our proposed flow, it is necessary to check the function of the cell because if all

possible combinations of the inputs are not fully checked, it can cause the results after
performing cell characterization to be wrong. The simulation results, to test its function,
are shown in Figures 10–12. Theoretically, when all inputs transition to low, the output
will become low and when two inputs transition to high, the th22 gate output will become
high. Figures (from Figures 10–12) indicate that the circuit works correctly.

V2
V1 = 0
V2 = 0

V0

DC = 1.25

V1

TF = s lope

V1 = 0
V2 = 1.25

B
Th22

A
Z

C1
load

Figure 9. The testbench circuit.

The cell timing models are utilized to provide accurate timing for various cell cases in
the design environment. Hence, non-linear delay paradigms are utilized to create a *.lib file
because these paradigms are precise even if utilized for the submicron technology [21]. The
timing models are computed for every timing arc of the cell. Delays and timing are table
models. These paradigms must be determined clearly for all the cells in the library. The
transition time at the output pin and the hysteresis via the cell for different combinations of
the input transition time at the cell input and total output capacitance at the cell output pin
is captured by the table models [21]. Figures 6–8 show calculating time values of the timing
models (delay and transition time). The percentages (30%, 70%, 10%, 90%) are threshold
values, which are specified clearly in the liberty file [25].

Dynamic power consists of rise power and fall power. Rise power is calculated in case
the output changes from low to high. Similarly, fall power is calculated in case the output
changes from high to low. The dynamic power is determined by Equation (7), where V0 is
the power supply.

Pdynamic =
VDD

T
∗

∫ t+∆t

t
i(“/V0/PLUS”)(t).dt (7)

3. Results and Discussions

In this section, results of the processes in Section 2 are presented and discussed,
including the cell function test, cell characterization and test synthesis for RTL code. In
addition, we also make comparisons between our synthesis results and the results of
other authors.

J. Low Power Electron. Appl. 2022, 12, 31 9 of 19

3.1. Function Test Results

In our proposed flow, it is necessary to check the function of the cell because if all
possible combinations of the inputs are not fully checked, it can cause the results after
performing cell characterization to be wrong. The simulation results, to test its function,
are shown in Figures 10–12. Theoretically, when all inputs transition to low, the output will
become low and when two inputs transition to high, the th22 gate output will become high.
Figures (from Figures 10–12) indicate that the circuit works correctly.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 10 of 20

Figure 10. Function test results of th22 with A connected VDD and B supplied Vpulse.

Figure 11. Function test results of th22 with A supplied Vpulse and B connected VDD.

Figure 10. Function test results of th22 with A connected VDD and B supplied Vpulse.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 10 of 20

Figure 10. Function test results of th22 with A connected VDD and B supplied Vpulse.

Figure 11. Function test results of th22 with A supplied Vpulse and B connected VDD. Figure 11. Function test results of th22 with A supplied Vpulse and B connected VDD.

J. Low Power Electron. Appl. 2022, 12, 31 10 of 19J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 11 of 20

Figure 12. Function test results of th22 with A and B supplied Vpulse.

3.2. Cell Characterization Results
To implement cell characterization, Ocean script is used to assist in measuring 49

cases as mentioned in Section 2.3. Figure 13 is the simulation result of those 49 cases (with
Pin A supplied Vpulse, pin B connected to VDD). Similarly, Figure 14 shows the simulation
results for the case (with Pin A supplied Vpulse, pin B connected to GND). With the sup-
port of Ocean script, the parameters, such as cell fall, cell rise, rise transition, fall transition,
rise power and fall power are implemented quickly and accurately. These parameters are
shown in Tables 2–7, where the unit of timing parameters is in ns and the power is in pW.

Figure 13. The simulation result with Pin A supplied Vpulse and pin B connected to VDD.

Figure 12. Function test results of th22 with A and B supplied Vpulse.

3.2. Cell Characterization Results

To implement cell characterization, Ocean script is used to assist in measuring 49 cases
as mentioned in Section 2.3. Figure 13 is the simulation result of those 49 cases (with Pin A
supplied Vpulse, pin B connected to VDD). Similarly, Figure 14 shows the simulation results
for the case (with Pin A supplied Vpulse, pin B connected to GND). With the support
of Ocean script, the parameters, such as cell fall, cell rise, rise transition, fall transition,
rise power and fall power are implemented quickly and accurately. These parameters are
shown in Tables 2–7, where the unit of timing parameters is in ns and the power is in pW.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 11 of 20

Figure 12. Function test results of th22 with A and B supplied Vpulse.

3.2. Cell Characterization Results
To implement cell characterization, Ocean script is used to assist in measuring 49

cases as mentioned in Section 2.3. Figure 13 is the simulation result of those 49 cases (with
Pin A supplied Vpulse, pin B connected to VDD). Similarly, Figure 14 shows the simulation
results for the case (with Pin A supplied Vpulse, pin B connected to GND). With the sup-
port of Ocean script, the parameters, such as cell fall, cell rise, rise transition, fall transition,
rise power and fall power are implemented quickly and accurately. These parameters are
shown in Tables 2–7, where the unit of timing parameters is in ns and the power is in pW.

Figure 13. The simulation result with Pin A supplied Vpulse and pin B connected to VDD. Figure 13. The simulation result with Pin A supplied Vpulse and pin B connected to VDD.

J. Low Power Electron. Appl. 2022, 12, 31 11 of 19
J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 12 of 20

Figure 14. The simulation result with Pin A supplied Vpulse and pin B connected to GND.

Table 2. Cell rise delay.

C (fF)
1.4 2.54 4.61 8.37 15.2 27.6 50.0

T (ns)
0.0100 0.031719 0.034713 0.039622 0.048466 0.063802 0.091584 0.142036
0.0192 0.035519 0.038487 0.043428 0.052211 0.067709 0.095355 0.145774
0.0368 0.042939 0.045776 0.050817 0.059452 0.074892 0.102274 0.153379
0.0707 0.056999 0.059810 0.064762 0.073485 0.089004 0.117078 0.167156
0.1360 0.080912 0.083845 0.088798 0.097410 0.112959 0.140649 0.191456
0.2610 0.120889 0.123863 0.128831 0.137477 0.152992 0.180382 0.229623
0.5000 0.187969 0.191297 0.196570 0.205400 0.220554 0.248453 0.298070

Figure 14. The simulation result with Pin A supplied Vpulse and pin B connected to GND.

Table 2. Cell rise delay.

C (fF)
1.4 2.54 4.61 8.37 15.2 27.6 50.0

T (ns)

0.0100 0.031719 0.034713 0.039622 0.048466 0.063802 0.091584 0.142036
0.0192 0.035519 0.038487 0.043428 0.052211 0.067709 0.095355 0.145774
0.0368 0.042939 0.045776 0.050817 0.059452 0.074892 0.102274 0.153379
0.0707 0.056999 0.059810 0.064762 0.073485 0.089004 0.117078 0.167156
0.1360 0.080912 0.083845 0.088798 0.097410 0.112959 0.140649 0.191456
0.2610 0.120889 0.123863 0.128831 0.137477 0.152992 0.180382 0.229623
0.5000 0.187969 0.191297 0.196570 0.205400 0.220554 0.248453 0.298070

Table 3. Rise transition.

C (fF)
1.4 2.54 4.61 8.37 15.2 27.6 50.0

T (ns)

0.0100 0.014191 0.017611 0.023507 0.034664 0.055245 0.093438 0.162108
0.0192 0.014231 0.017607 0.023582 0.034607 0.054907 0.092951 0.162408
0.0368 0.014317 0.017439 0.023722 0.034508 0.055121 0.093275 0.160903
0.0707 0.014551 0.017747 0.023710 0.035047 0.055584 0.092349 0.162379
0.1360 0.015606 0.018867 0.024525 0.035743 0.056056 0.093671 0.160805
0.2610 0.017896 0.021076 0.026662 0.037100 0.056643 0.093562 0.160940
0.5000 0.021648 0.024589 0.029991 0.039966 0.059128 0.094819 0.160774

J. Low Power Electron. Appl. 2022, 12, 31 12 of 19

Table 4. Cell fall delay.

C (fF)
1.4 2.54 4.61 8.37 15.2 27.6 50.0

T (ns)

0.0100 0.040239 0.042706 0.046741 0.053411 0.064899 0.084751 0.120116
0.0192 0.043811 0.046269 0.050280 0.057040 0.068285 0.088151 0.123954
0.0368 0.050510 0.052918 0.056919 0.063691 0.074968 0.094818 0.130357
0.0707 0.063376 0.065755 0.069815 0.076515 0.087776 0.107599 0.142960
0.1360 0.086937 0.089327 0.093424 0.100122 0.111618 0.131466 0.167641
0.2610 0.127368 0.129957 0.134214 0.141081 0.152620 0.172618 0.208160
0.5000 0.196405 0.199268 0.203878 0.211073 0.222948 0.243133 0.279049

Table 5. Fall transition.

C (fF)
1.4 2.54 4.61 8.37 15.2 27.6 50.0

T (ns)

0.0100 0.012919 0.015210 0.019491 0.027197 0.041450 0.067562 0.115309
0.0192 0.012907 0.015205 0.019663 0.027368 0.041394 0.067405 0.114845
0.0368 0.012835 0.015253 0.019609 0.027360 0.041525 0.067584 0.115338
0.0707 0.012921 0.015414 0.019568 0.027387 0.041563 0.067599 0.115411
0.1360 0.013734 0.016063 0.020303 0.028008 0.042103 0.067605 0.115320
0.2610 0.015538 0.017841 0.022038 0.029759 0.043457 0.068085 0.115567
0.5000 0.018421 0.021066 0.025241 0.032553 0.046080 0.070092 0.116487

Table 6. Fall power.

C (fF)
1.4 2.54 4.61 8.37 15.2 27.6 50.0

T (ns)

0.0100 −0.000976 −0.000986 −0.000996 −0.001010 −0.001025 −0.001038 −0.001044
0.0192 −0.000949 −0.000962 −0.000975 −0.000991 −0.001005 −0.001017 −0.001025
0.0368 −0.000922 −0.000932 −0.000954 −0.000969 −0.000985 −0.001001 −0.001010
0.0707 −0.000905 −0.000919 −0.000920 −0.000946 −0.000949 −0.000961 −0.000989
0.1360 −0.000902 −0.000907 −0.000912 −0.000926 −0.000945 −0.000965 −0.000967
0.2610 −0.000889 −0.000889 −0.000898 −0.000910 −0.000927 −0.000946 −0.000961
0.5000 −0.000905 −0.000909 −0.000916 −0.000926 −0.000940 −0.000958 −0.000976

Table 7. Rise power.

C (fF)
1.4 2.54 4.61 8.37 15.2 27.6 50.0

T (ns)

0.0100 −0.000926 −0.001105 −0.001442 −0.002045 −0.003127 −0.005081 −0.008588
0.0192 −0.000909 −0.001097 −0.001433 −0.002036 −0.003118 −0.005068 −0.008578
0.0368 −0.000900 −0.001086 −0.001420 −0.002022 −0.003105 −0.005057 −0.008568
0.0707 −0.000885 −0.001072 −0.001405 −0.002007 −0.003090 −0.005045 −0.008558
0.1360 −0.000892 −0.001078 −0.001408 −0.002001 −0.003088 −0.005047 −0.008559
0.2610 −0.000902 −0.001083 −0.001405 −0.002012 −0.003096 −0.005039 −0.008560
0.5000 −0.000950 −0.001131 −0.001459 −0.002059 −0.003141 −0.005093 −0.008610

At the end of Section 3.2, Monte Carlo simulations under mismatch variations of
cell rise, cell fall, rise transition, fall transition, rise power and fall power are shown in
Figures 15–20. These simulations are implemented with a 50pF load and 500ps slope.
The simulation results are good because of the similarity to the Gauss distribution with a
standard deviation of ±3 sigma.

J. Low Power Electron. Appl. 2022, 12, 31 13 of 19

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 14 of 20

0.0368 −0.000900 −0.001086 −0.001420 −0.002022 −0.003105 −0.005057 −0.008568
0.0707 −0.000885 −0.001072 −0.001405 −0.002007 −0.003090 −0.005045 −0.008558
0.1360 −0.000892 −0.001078 −0.001408 −0.002001 −0.003088 −0.005047 −0.008559
0.2610 −0.000902 −0.001083 −0.001405 −0.002012 −0.003096 −0.005039 −0.008560
0.5000 −0.000950 −0.001131 −0.001459 −0.002059 −0.003141 −0.005093 −0.008610

At the end of subsection 3.2, Monte Carlo simulations under mismatch variations of
cell rise, cell fall, rise transition, fall transition, rise power and fall power are shown in
Figures 15–20. These simulations are implemented with a 50pF load and 500ps slope. The
simulation results are good because of the similarity to the Gauss distribution with a
standard deviation of ±3 sigma.

Figure 15. The Monte Carlo simulation of cell rise.

Figure 16. The Monte Carlo simulation of rise transition.

Figure 15. The Monte Carlo simulation of cell rise.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 14 of 20

0.0368 −0.000900 −0.001086 −0.001420 −0.002022 −0.003105 −0.005057 −0.008568
0.0707 −0.000885 −0.001072 −0.001405 −0.002007 −0.003090 −0.005045 −0.008558
0.1360 −0.000892 −0.001078 −0.001408 −0.002001 −0.003088 −0.005047 −0.008559
0.2610 −0.000902 −0.001083 −0.001405 −0.002012 −0.003096 −0.005039 −0.008560
0.5000 −0.000950 −0.001131 −0.001459 −0.002059 −0.003141 −0.005093 −0.008610

At the end of subsection 3.2, Monte Carlo simulations under mismatch variations of
cell rise, cell fall, rise transition, fall transition, rise power and fall power are shown in
Figures 15–20. These simulations are implemented with a 50pF load and 500ps slope. The
simulation results are good because of the similarity to the Gauss distribution with a
standard deviation of ±3 sigma.

Figure 15. The Monte Carlo simulation of cell rise.

Figure 16. The Monte Carlo simulation of rise transition. Figure 16. The Monte Carlo simulation of rise transition.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 15 of 20

Figure 17. The Monte Carlo simulation of cell fall.

Figure 18. The Monte Carlo simulation of fall transition.

Figure 19. The Monte Carlo simulation of rise power.

Figure 17. The Monte Carlo simulation of cell fall.

J. Low Power Electron. Appl. 2022, 12, 31 14 of 19

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 15 of 20

Figure 17. The Monte Carlo simulation of cell fall.

Figure 18. The Monte Carlo simulation of fall transition.

Figure 19. The Monte Carlo simulation of rise power.

Figure 18. The Monte Carlo simulation of fall transition.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 15 of 20

Figure 17. The Monte Carlo simulation of cell fall.

Figure 18. The Monte Carlo simulation of fall transition.

Figure 19. The Monte Carlo simulation of rise power. Figure 19. The Monte Carlo simulation of rise power.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 16 of 20

Figure 20. The Monte Carlo simulation of fall power.

3.3. The Synthesis Results of The RTL Code
In this section, we use the full adder model [26] as an example for testing the library

that we generated based on our proposed flow. This model comprises two th23 gates and
two th34w2 gates, as shown in Figure 21, and its output equations are as follows:

Cout1 = A1B1 + A1Cin1 + B1Cin1 (8)

Cout0 = A0B0 + A0Cin0 + B0Cin0 (9)

S1 = A0B0Cin1 + A0B1Cin0 + A1B0Cin0 + A1B1Cin1

= Cout0A1 + Cout0B1 + Cout0Cin1 + A1B1Cin1
(10)

S0 = A0B0Cin0 + A0B1Cin1 + A1B0Cin1 + A1B1Cin0

= Cout1A0 + Cout1B0 + Cout1Cin0 + A0B0Cin0
(11)

Since Cout is not input-complete with any inputs, S must be input-complete with all
inputs [17] which means the equations for S must be in canonical form. Equations (10) and
(11) show that the S output has all the inputs (A, B, and Cin) in each product term. There-
fore, the full adder satisfies the input-complete condition.

In Figure 21, the two Th23 gates are connected to the two Th34w2 output gates, and the
outputs for the Th23 gates are Cout1 and Cout0. The Cout1 includes the product terms of the
inputs (A, B, Cin) with rail1, and Cout0 includes the product terms of the inputs (A, B, Cin)
with rail0. When inputs are asserted, the Th23 gates are asserted, and the Cout is asserted.
Similar to the Cout output, S0 includes the product terms of the inputs (A0, B0, Cin0 and Cout1),
and S1 includes the product terms of the inputs (A1, B1, Cin1 and Cout0). If Cout output is
asserted, and only one of the three inputs is asserted, the S output will be asserted. For
instance, if the inputs (A, B, Cin) are DATA0, DATA1, and DATA0, respectively, the Th23
gates are asserted. As a result, Cout and S are DATA0 and DATA1, respectively. Therefore,
the circuit shown in Figure 21 satisfies the observability conditions.

Figure 20. The Monte Carlo simulation of fall power.

J. Low Power Electron. Appl. 2022, 12, 31 15 of 19

3.3. The Synthesis Results of The RTL Code

In this section, we use the full adder model [26] as an example for testing the library
that we generated based on our proposed flow. This model comprises two th23 gates and
two th34w2 gates, as shown in Figure 21, and its output equations are as follows:

Cout
1 = A1B1 + A1Cin

1 + B1Cin1 (8)

Cout
0 = A0B0 + A0Cin

0 + B0Cin0 (9)

S1 = A0B0Cin
1 + A0B1Cin

0 + A1B0Cin
0 + A1B1Cin

1

= Cout
0A1 + Cout

0B1 + Cout
0Cin

1 + A1B1Cin
1 (10)

S0 = A0B0Cin
0 + A0B1Cin

1 + A1B0Cin
1 + A1B1Cin

0

= Cout
1A0 + Cout

1B0 + Cout
1Cin

0 + A0B0Cin
0 (11)

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 17 of 20

Figure 21. NCL full adder.

We synthesize this by using the Design Compiler. The typical parameters of the li-
brary are temperature (25 °C), voltage (1.25 V), and process (ff). The netlist file after syn-
thesis is shown in Figure 22.

Figure 22. The netlist file after synthesis.

The synthesis results of area, power and delay depicted in Figure 23–25, respectively,
show that the NCL-based design is synthesized successfully. Based on our proposed so-
lution, many other cells can be made to create a full set of NCL cell libraries. This work
has a substantial contribution to researching and developing the asynchronous circuits
based on NCL.

Figure 23. The area report result.

Figure 21. NCL full adder.

Since Cout is not input-complete with any inputs, S must be input-complete with all
inputs [17] which means the equations for S must be in canonical form. Equations (10) and (11)
show that the S output has all the inputs (A, B, and Cin) in each product term. Therefore,
the full adder satisfies the input-complete condition.

In Figure 21, the two Th23 gates are connected to the two Th34w2 output gates, and the
outputs for the Th23 gates are Cout

1 and Cout
0. The Cout

1 includes the product terms of the
inputs (A, B, Cin) with rail1, and Cout

0 includes the product terms of the inputs (A, B, Cin)
with rail0. When inputs are asserted, the Th23 gates are asserted, and the Cout is asserted.
Similar to the Cout output, S0 includes the product terms of the inputs (A0, B0, Cin

0 and
Cout

1), and S1 includes the product terms of the inputs (A1, B1, Cin
1 and Cout

0). If Cout
output is asserted, and only one of the three inputs is asserted, the S output will be asserted.
For instance, if the inputs (A, B, Cin) are DATA0, DATA1, and DATA0, respectively, the Th23
gates are asserted. As a result, Cout and S are DATA0 and DATA1, respectively. Therefore,
the circuit shown in Figure 21 satisfies the observability conditions.

We synthesize this by using the Design Compiler. The typical parameters of the library
are temperature (25 ◦C), voltage (1.25 V), and process (ff). The netlist file after synthesis is
shown in Figure 22.

J. Low Power Electron. Appl. 2022, 12, 31 16 of 19

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 17 of 20

Figure 21. NCL full adder.

We synthesize this by using the Design Compiler. The typical parameters of the li-
brary are temperature (25 °C), voltage (1.25 V), and process (ff). The netlist file after syn-
thesis is shown in Figure 22.

Figure 22. The netlist file after synthesis.

The synthesis results of area, power and delay depicted in Figure 23–25, respectively,
show that the NCL-based design is synthesized successfully. Based on our proposed so-
lution, many other cells can be made to create a full set of NCL cell libraries. This work
has a substantial contribution to researching and developing the asynchronous circuits
based on NCL.

Figure 23. The area report result.

Figure 22. The netlist file after synthesis.

The synthesis results of area, power and delay depicted in Figures 23–25, respectively,
show that the NCL-based design is synthesized successfully. Based on our proposed
solution, many other cells can be made to create a full set of NCL cell libraries. This work
has a substantial contribution to researching and developing the asynchronous circuits
based on NCL.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 17 of 20

Figure 21. NCL full adder.

We synthesize this by using the Design Compiler. The typical parameters of the li-
brary are temperature (25 °C), voltage (1.25 V), and process (ff). The netlist file after syn-
thesis is shown in Figure 22.

Figure 22. The netlist file after synthesis.

The synthesis results of area, power and delay depicted in Figure 23–25, respectively,
show that the NCL-based design is synthesized successfully. Based on our proposed so-
lution, many other cells can be made to create a full set of NCL cell libraries. This work
has a substantial contribution to researching and developing the asynchronous circuits
based on NCL.

Figure 23. The area report result. Figure 23. The area report result.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 18 of 20

Figure 24. The power report result.

Figure 25. The delay report result.

The comparison between our work and [20] is given in Table 8. In terms of area of
the designs, the full adders in [20] are much less than our result because the adders P-FA-
L0, P-FA-L1, and P-FA-L2 are strong indication adders that use the common split-end
reset and hysteresis mechanism at the circuit level instead of designing each rail sepa-
rately [20]. These adders share transistors between rails in three configurations, such as
logic block 0 (LB0), logic block 1 (LB1), and logic block 2 (LB2), which results in P-FA-L0,
P-FA-L1, and P-FA-L2 models. The area of the adder P-FA-L2 is the smallest because it
shares the transistors among four rails. As a result, short paths between VDD and GND
through the dP transistors at the DATA state are formed [20]. However, reducing more
areas makes short paths not static and consumes high power. That is why the P-FA-L2
adder’s power consumption is the highest, approximately 1.28 times our result. The
power of P-FA-L0 and P-FA-L1 is lower than ours because transistors are shared between
the rails. Thus, with the delay, there is a significant difference between the results in [20]
and our result because we calculated the delay based on the Design Compiler tool that
helps optimize the design while the adders in [20] were measured by using the Cadence
tool. Another reason would be due to the influence of the technology node; we used the
45nm technology in our work while the adders in [20] were simulated with the 65nm tech-
nology. Therefore, the comparison of delay would only be relative.

Table 8. 1-bit full adder comparison results (without registers).

Design Area (transistor) Power (µW) Delay (ns)
Ours 92 6.17 0.13

P-FA-L0 [20] 74 3.57 137.44
P-FA-L1 [20] 66 3.77 137.9
P-FA-L2 [20] 60 7.93 138.66

Figure 24. The power report result.

J. Low Power Electron. Appl. 2022, 12, 31 17 of 19

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 18 of 20

Figure 24. The power report result.

Figure 25. The delay report result.

The comparison between our work and [20] is given in Table 8. In terms of area of
the designs, the full adders in [20] are much less than our result because the adders P-FA-
L0, P-FA-L1, and P-FA-L2 are strong indication adders that use the common split-end
reset and hysteresis mechanism at the circuit level instead of designing each rail sepa-
rately [20]. These adders share transistors between rails in three configurations, such as
logic block 0 (LB0), logic block 1 (LB1), and logic block 2 (LB2), which results in P-FA-L0,
P-FA-L1, and P-FA-L2 models. The area of the adder P-FA-L2 is the smallest because it
shares the transistors among four rails. As a result, short paths between VDD and GND
through the dP transistors at the DATA state are formed [20]. However, reducing more
areas makes short paths not static and consumes high power. That is why the P-FA-L2
adder’s power consumption is the highest, approximately 1.28 times our result. The
power of P-FA-L0 and P-FA-L1 is lower than ours because transistors are shared between
the rails. Thus, with the delay, there is a significant difference between the results in [20]
and our result because we calculated the delay based on the Design Compiler tool that
helps optimize the design while the adders in [20] were measured by using the Cadence
tool. Another reason would be due to the influence of the technology node; we used the
45nm technology in our work while the adders in [20] were simulated with the 65nm tech-
nology. Therefore, the comparison of delay would only be relative.

Table 8. 1-bit full adder comparison results (without registers).

Design Area (transistor) Power (µW) Delay (ns)
Ours 92 6.17 0.13

P-FA-L0 [20] 74 3.57 137.44
P-FA-L1 [20] 66 3.77 137.9
P-FA-L2 [20] 60 7.93 138.66

Figure 25. The delay report result.

The comparison between our work and [20] is given in Table 8. In terms of area of the
designs, the full adders in [20] are much less than our result because the adders P-FA-L0,
P-FA-L1, and P-FA-L2 are strong indication adders that use the common split-end reset
and hysteresis mechanism at the circuit level instead of designing each rail separately [20].
These adders share transistors between rails in three configurations, such as logic block
0 (LB0), logic block 1 (LB1), and logic block 2 (LB2), which results in P-FA-L0, P-FA-L1,
and P-FA-L2 models. The area of the adder P-FA-L2 is the smallest because it shares the
transistors among four rails. As a result, short paths between VDD and GND through the
dP transistors at the DATA state are formed [20]. However, reducing more areas makes
short paths not static and consumes high power. That is why the P-FA-L2 adder’s power
consumption is the highest, approximately 1.28 times our result. The power of P-FA-L0
and P-FA-L1 is lower than ours because transistors are shared between the rails. Thus,
with the delay, there is a significant difference between the results in [20] and our result
because we calculated the delay based on the Design Compiler tool that helps optimize the
design while the adders in [20] were measured by using the Cadence tool. Another reason
would be due to the influence of the technology node; we used the 45nm technology in our
work while the adders in [20] were simulated with the 65nm technology. Therefore, the
comparison of delay would only be relative.

Table 8. 1-bit full adder comparison results (without registers).

Design Area (transistor) Power (µW) Delay (ns)

Ours 92 6.17 0.13
P-FA-L0 [20] 74 3.57 137.44
P-FA-L1 [20] 66 3.77 137.9
P-FA-L2 [20] 60 7.93 138.66

Finally, our static NCL library is compared with the static NCL library in [15]. We
notice that both works use the static structure of the NCL cells. The library in [15] was
implemented using the author’s own tools and the commercial tools. Hence, if there
are any problems during the installation and the use, it would be difficult for readers to
overcome. Meanwhile, our static NCL library was implemented by commercial tools. The
flow to implement this library would also be simpler than that in [15]. In addition, we
synthesized the 4-bit full adder by using our NCL library and the NCL library in [15]. The
results synthesized by the DC tool are shown in Table 9. In terms of power, the synthesis
result using our library is smaller than that using the library in [15]. The reason for the
difference in power could be that our library was implemented in the pre-layout stage and
the library in [15] was implemented in the post-layout stage. In addition, the synthesis
result of delay using our library is larger than the one using the library in [15] because the
library in [15] was optimized by many of the author’s own tools and implemented in the
post-layout stage.

J. Low Power Electron. Appl. 2022, 12, 31 18 of 19

Table 9. 4-bit full adder comparison results with two different libraries.

Design Power (mW) Delay (ns)

Ours 0.1245 1.13

Using library in [15] 0.1571 0.59

4. Conclusions

In this paper, the methodology to design the NCL cell library was presented via the
proposed flow. All blocks of this flow were explained in detail and some examples were
given. Our proposed flow could be used for research at universities. It not only could
solve the problem of the lack of a standard NCL cell library that is difficult for students
and researchers, but also it could help them save time and effort. The complete cell library
includes 27 cells which were designed using 45 nm CMOS technology and were used
for the synthesis of the NCL-based asynchronous designs by the Design Compiler tool
from Synopsys.

Author Contributions: Conceptualization, methodology, T.L.T. and T.H.; software, data curation, L.T.T.;
investigation, T.L.T. and L.T.T.; writing—original draft preparation, T.L.T.; writing—review and editing,
supervision, T.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We acknowledge the support of time and facilities from Ho Chi Minh City
University of Technology (HCMUT), VNU-HCM for this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nowick, S.M.; Singh, M. Asynchronous design-part 1: Overview and recent advances. IEEE Des. Test 2015, 32, 5–18. [CrossRef]
2. Wu, J. Null Convention Logic Applications of Asynchronous Design in Nanotechnology and Cryptographic Security. Ph.D. Thesis,

the Missouri University of Science and Technology, Rolla, MO, USA, 2012.
3. Haulmark, K.; Khalil, W.; Bouillon, W.; Di, J. Comprehensive comparison of null convention logic threshold gate implementations.

In Proceedings of the 2018 New Generation of CAS (NGCAS), Valletta, Malta, 20–23 November 2018; Volume 1, pp. 37–40.
4. Sakib, A.A.; Smith, S.C. Implementation of Static NCL Threshold Gates Using Emerging CNTFET Technology. In Proceedings of

the 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 23–25 November 2020;
pp. 1–4. [CrossRef]

5. Sobelman, G.E.; Fant, K. CMOS circuit design of threshold gates with hysteresis. In Proceedings of the 1998 IEEE International
Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 31 May–3 June 1998; Volume 2, pp. 61–64.

6. Parsan, F.A.; Smith, S.C. CMOS implementation comparison of NCL gates. In Proceedings of the 2012 IEEE 55th International
Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, USA, 5–8 August 2012; pp. 394–397. [CrossRef]

7. Huy, N.L.; Beckett, P. Null convention logic primitive element architecture for ultralow power high performance portable digital
systems. In Proceedings of the 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Batu Ferringhi, Malaysia,
23–25 August 2017; pp. 167–170.

8. Metku, P.; Kim, K.K.; Kim, Y.B.; Choi, M. Low-Power Null Convention Logic Multiplier Design Based on Gate Diffusion Input
Technique. In Proceedings of the 2018 International SoC Design Conference (ISOCC), Daegu, Korea, 12–15 November 2018;
pp. 233–234. [CrossRef]

9. Metku, P.; Kim, K.K.; Choi, M. Novel area-efficient null convention logic based on cmos and gate diffusion input (Gdi) hybrid. J.
Semicond. Technol. Sci. 2020, 20, 127–134. [CrossRef]

10. Huy, N.L.; Holland, A.S.; Beckett, P. Silicon on insulator null convention logic based asynchronous circuit design for high
performance low power digital systems. In Proceedings of the 2018 2nd International Conference on Recent Advances in Signal
Processing, Telecommunications & Computing (SigTelCom), Ho Chi Minh City, Vietnam, 29–31 January 2018; pp. 111–115.

11. Moreira, M.T.; Beerel, P.A.; Sartori, M.L.L.; Calazans, N.L.V. NCL synthesis with conventional EDA tools: Technology mapping
and optimization. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 1981–1993. [CrossRef]

12. Guazzelli, R.A.; Moreira, M.T.; Calazans, N.L.V. A comparison of asynchronous QDI templates using static logic. In Proceedings
of the 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS), Bariloche, Argentina, 20–23 February 2017;
pp. 1–4.

http://doi.org/10.1109/MDAT.2015.2413759
http://doi.org/10.1109/icecs49266.2020.9294823
http://doi.org/10.1109/mwscas.2012.6292040
http://doi.org/10.1109/isocc.2018.8649885
http://doi.org/10.5573/JSTS.2020.20.1.127
http://doi.org/10.1109/TCSI.2017.2772206

J. Low Power Electron. Appl. 2022, 12, 31 19 of 19

13. Reese, R.B.; Smith, S.C.; Thornton, M.A. Uncle—An RTL Approach to Asynchronous Design. In Proceedings of the 2012 IEEE
18th International Symposium on Asynchronous Circuits and Systems, Kongens Lyngby, Denmark, 7–9 May 2012; pp. 65–72.

14. Oliveira, D.L.; Verducci, O.; Faria, L.A.; Curtinhas, T. A novel K convention logic (NCL) gates architecture based on basic gates. In
Proceedings of the 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON),
Cusco, Peru, 15–18 August 2017; pp. 1–4.

15. Oliveira, C.H.M.; Moreira, M.T.; Guazzelli, R.A.; Calazans, N.L.V. ASCEnD-FreePDK45: An open source standard cell library for
asynchronous design. In Proceedings of the 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS),
Monte Carlo, Monaco, 11–14 December 2016; pp. 652–655.

16. Moreira, M.T.; Calazans, N.L.V. Design of Standard-Cell Libraries for Asynchronous Circuits with the ASCEnD Flow. In Proceedings
of the 2013 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Natal, Brazil, 5–7 August 2013; pp. 217–218.

17. Smith, S.C.; Di, J. Designing Asynchronous Circuits using NULL Convention Logic (NCL). Synth. Lect. Digit. Circuits Syst. 2009,
4, 1–96. [CrossRef]

18. Albert, A.J.; Ramachandran, S. Static implementation of a null convention logic based exponent adder. Int. J. Appl. Eng. Res. 2015,
10, 7601–7614.

19. Caberos, A.; Huang, S.C.; Cheng, F.C. Area-efficient CMOS implementation of NCL gates for XOR-AND/OR dominated circuits.
In Proceedings of the 2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia),
Kuala Lumpur, Malaysia, 31 October–2 November 2017; pp. 37–40.

20. Fawzy, B.G.; Abutaleb, M.M.; Eladawy, M.I.; Ghoneima, M. Strong Indication Full-Adder Circuit for NULL Convention Logic
Automation Flows. In Proceedings of the 2018 18th International Symposium on Communications and Information Technologies
(ISCIT), Bangkok, Thailand, 26–29 September 2018; pp. 416–421.

21. Bhasker, J.; Chadha, R. Static Timing Analysis for Nanometer Designs: A Practical Approach, 2009th ed.; Springer: New York, NY,
USA, 2009.

22. Charafeddine, K.; Ouardi, F. Novel methodology to d etermine leakage power in standard cell library design. Heliyon 2020,
6, e04168. [CrossRef] [PubMed]

23. VLSI Tutorial. Available online: https://personal.utdallas.edu/~{}xxx110230/lc/ (accessed on 7 January 2022).
24. Naresh, A. Design and Characterization of a Standard Cell Library for the FREEPDK45 Process. Master’s Thesis, Oklahoma State

University, Stillwater, OK, USA, December 2010.
25. Synopsys. Liberty User Guides and Reference Manual Suite; Synopsys: Mountain View, CA, USA, 2017; Volume 2, pp. 1069–1072.
26. Vakil, A.; Jayadev, K.P.; Hegde, S.; Koppad, D. Comparitive analysis of null convention logic and synchronous CMOS ripple carry

adders. In Proceedings of the 2017 Second International Conference on Electrical, Computer and Communication Technologies
(ICECCT), Coimbatore, India, 22–24 February 2017; pp. 1–5.

http://doi.org/10.2200/S00202ED1V01Y200907DCS023
http://doi.org/10.1016/j.heliyon.2020.e04168
http://www.ncbi.nlm.nih.gov/pubmed/32577563
https://personal.utdallas.edu/~{}xxx110230/lc/

	Introduction
	Materials and Methods
	Null Convention Logic
	The Proposed Flow Chart to Design Standard NCL Cell Libraries
	NCL Cell Characterization

	Results and Discussions
	Function Test Results
	Cell Characterization Results
	The Synthesis Results of The RTL Code

	Conclusions
	References

