
����������
�������

Citation: Shen, Z.; Howard N.;

Nunez-Yanez, J. Big–Little Adaptive

Neural Networks on Low-Power

Near-Subthreshold Processors. J. Low

Power Electron. Appl. 2022, 12, 28.

https://doi.org/10.3390/

jlpea12020028

Academic Editor: Weidong Kuang

Received: 10 March 2022

Accepted: 12 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

Big–Little Adaptive Neural Networks on Low-Power
Near-Subthreshold Processors
Zichao Shen 1,* , Neil Howard 2 and Jose Nunez-Yanez 1

1 Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB, UK; j.l.nunez-yanez@bristol.ac.uk
2 Sensata Systems, Interface House, Swindon SN4 8SY, UK; njhoward.mobile@gmail.com
* Correspondence: zs16916@bristol.ac.uk

Abstract: This paper investigates the energy savings that near-subthreshold processors can obtain
in edge AI applications and proposes strategies to improve them while maintaining the accuracy of
the application. The selected processors deploy adaptive voltage scaling techniques in which the
frequency and voltage levels of the processor core are determined at the run-time. In these systems,
embedded RAM and flash memory size is typically limited to less than 1 megabyte to save power.
This limited memory imposes restrictions on the complexity of the neural networks model that can
be mapped to these devices and the required trade-offs between accuracy and battery life. To address
these issues, we propose and evaluate alternative ‘big–little’ neural network strategies to improve
battery life while maintaining prediction accuracy. The strategies are applied to a human activity
recognition application selected as a demonstrator that shows that compared to the original network,
the best configurations obtain an energy reduction measured at 80% while maintaining the original
level of inference accuracy.

Keywords: near-subthreshold processor; energy efficient; edge computing; neural network; adaptive
computing

1. Introduction

Over the past few decades, the rapid development of the Internet of Things (IoT) and
deep learning has increased the demand for deploying deep neural networks (DNNs) to
low-power devices [1]. Due to high latency and privacy issues, cloud computing tasks
are gradually being transferred to the edge in areas such as image recognition and natural
language processing [2]. The limitations in memory size and computing power mean that
large neural networks with millions of parameters cannot be easily deployed on edge
devices such as microcontroller units (MCUs), which in many cases have less than one
megabyte of flash memory capacity [1,2]. Memory is kept low to save costs and reduce
power usage since power gating memory blocks that are not in use is not a feature available
in these devices.

Maximizing device usage time is an important goal and, focusing on this objective,
we investigate an adaptive ‘big–little’ neural network system which consists of a big
network and multiple little networks to achieve energy-saving inference by limiting the
number of big network executions without degrading accuracy. We call this organization
‘big–little’ since it draws inspiration from the ‘big–little’ technology popularized by ARM
that combines complex and light processors in a single SoC. Our big network has better
accuracy but with a longer inference time, while the little networks have a faster inference
speed. Most of the time, the big network remains in sleeping mode and it is only activated
when the little network determines that it cannot handle the work at the required level of
confidence.

In this research, we focus on establishing and deploying the complete adaptive neural
network system on the edge device. We investigate how to manage the primary and

J. Low Power Electron. Appl. 2022, 12, 28. https://doi.org/10.3390/jlpea12020028 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12020028
https://doi.org/10.3390/jlpea12020028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-4809-5905
https://orcid.org/0000-0002-5153-5481
https://doi.org/10.3390/jlpea12020028
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12020028?type=check_update&version=1

J. Low Power Electron. Appl. 2022, 12, 28 2 of 24

secondary networks to have a faster, more accurate, and more energy-efficient performance
using a human activity recognition (HAR) application as a popular example of an edge
application. The contribution of this research is summarized below:

• We evaluate state-of-the-art near-threshold processors with adaptive voltage scaling
and compare them to a standard edge processor.

• We optimize a popular edge application targeting a human activity recognition (HAR)
model based on TensorFlow for MCU deployment using different vendor toolchains
and compilers.

• We propose novel ‘big–little’ strategies suitable for adaptive neural network systems
achieving fast inference and energy savings.

• We made our work open source at https://github.com/DarkSZChao/Big-Little_NN_
Strategies (accessed on 9 March 2022) to further promote work in this field.

This paper is organized as follows. In Section 2, we present an overview of the state-of-
the-art hardware for low-power edge AI, frameworks and relevant algorithmic techniques.
Then, an initial evaluation in terms of performance and energy cost in near-threshold MCUs
and standard MCUs was carried out in Section 3. In Section 4, we propose and evaluate
three different configurations of adaptive neural network systems with different features
and performance characteristics. Section 5 describes and demonstrates the implementation
steps needed to target the selected low-power MCUs. The results obtained in terms of
speed, accuracy and energy are presented in Section 6. Finally, the conclusions and future
work are discussed in Section 7.

2. Background and Related Work

In this section, we present an overview of current state-of-the-art hardware with power
profiles in the order of 1 watt or less for edge AI and then algorithmic techniques and
frameworks optimized to target this hardware.

2.1. Hardware for Low-Power Edge AI

The high demand for AI applications at the edge has resulted in a significant increase
in hardware optimized for low-power levels. For example, Google has delivered a light
version of the Tensor Processing Unit (TPU) called Edge TPU which is able to provide power-
efficient inference at 2 trillion MAC operations per second per watt (2TMAC/s/W) [3]. This
state-of-the-art device is able to execute mobile version models such as MobileNet V2 at
almost 400 FPS. The Cloud TPU focuses on training complex models, while the Edge TPU is
designed to perform inference in low-power systems. Targeting significantly lower power
than the Edge TPU, Ambiq released the Apollo family of near-threshold processors based
on the 32-bit ARM Cortex-M4F processor. These devices can reach much lower energy
usage measured at only 6 µA/MHz at 3.3 V under the working mode, and 1 µA/MHz at
3.3 V under sleep mode. The Apollo3 device present in the SparkFun board has 1 MB of
flash memory and 384 KB of low-leakage RAM [4]. Similarly, Eta Compute has targeted
energy-efficient endpoint AI solutions with the ECM3532 processor. This device is based
on an ARM Cortex-M3 32-bit CPU and a separate CoolFlux DSP to speed up machine
learning operations in an energy-efficient manner. The ECM3532 available in the AI vision
board consumes less than 5 µA/MHz in normal working mode and 1 µA/MHz in sleep
mode. According to Eta Compute, its implementation of self-timed continuous voltage
and frequency scaling technology (CVFS) achieves a power profile of just 1 mW [5,6]. A
characteristic of these near-threshold devices is that voltage scaling is applied to the core
but it is not applied to the device’s SRAM/flash due to the limited margining possible in
memory cells.

Both Apollo3 and ECM3532 are based on the popular ARM architecture but, lately, the
open-source instruction set architecture RISC-V has also received significant attention in
this field. For example, GAP8 developed by GreenWaves Technologies features an 8-core
compute cluster of RISC-V processors and an additional CNN accelerator [7]. The compute
cluster is coupled with an additional ultra-low power MCU with 30 µW state-retentive

https://github.com/DarkSZChao/Big-Little_NN_Strategies
https://github.com/DarkSZChao/Big-Little_NN_Strategies

J. Low Power Electron. Appl. 2022, 12, 28 3 of 24

sleep power for control and communication functions. For CNN inference (90 MHz, 1.0 V),
GAP8 delivers an energy efficiency of 600 GMAC/s/W and a worst-case power envelope
of 75 mW [7].

Other examples of companies exploring the near-threshold regime include Minima
who has been involved in designs demonstrating achievable power savings [8]. Minima
offers ultra-wide dynamic voltage and frequency scaling (DVFS) which is able to scale
frequency and/or operating voltage based on the workload. This approach, combined with
the dynamic margining approach from both Minima and ARM, is able to save energy by
up to 15× to 20× [9]. The interest for adaptive voltage scaling hardware has resulted in a
€100 m European project led by STMicroelectronics to develop the next generation of edge
AI microcontrollers and software using low-power FD-SOI and phase change technology.
This project aims to deliver the chipset and solutions for the automotive and industrial
markets with a very high computing capacity of 10 TOPS per watt, which is significantly
more powerful than existing microcontrollers [10].

2.2. Algorithmic Techniques for Low-Power Edge AI

Over the years, different algorithmic approaches have appeared to optimize inference
on edge devices with a focus on techniques such as quantization, pruning, heterogeneous
models and early termination. The deep quantization of network weights and activations
is a well-known approach to optimize network models for edge deployments [11,12]. Ex-
amples include [13], which uses extremely low precision (e.g., 1-bit or 2-bits) of weights
and activations achieving 51% top-1 accuracy and seven times the speedup in AlexNet [13].
The authors of [14] demonstrate a binarized neural network (BNN) where both weights
and activations are binarized. During the forward pass, a BNN drastically reduces mem-
ory accesses and replaces most arithmetic operations with bit-wise operations. Ref. [14]
has proven that, by using their binary matrix multiplication kernel, the results achieve
32 times the compression ratio and improves performance by seven times with MNIST,
CIFAR-10 and SVHN data sets. However, substantial accuracy loss (up to 28.7%) has
been observed by [15]. The research in [15] has addressed this drawback by deploying
a full-precision norm layer before each Conv layer in XNOR-Net. XNOR-Net applies
binary values to both inputs and convolutional layer weights and it is capable of reducing
the computation workload by approximately 58 times, with 10% accuracy loss in Ima-
geNet [15]. Overall, these networks can free edge devices from the heavy workload caused
by computations using integer numbers, but the loss of accuracy needs to be properly
managed. This reduction in accuracy loss has been improved in CoopNet [16]. Similar
to the concept of multi-precision CNN in [17], CoopNet [16] applies two convolutional
models: a binary net BNN with faster inference speed and an integer net INT8 with
relatively high accuracy to balance the model’s efficiency and accuracy. On low-power
Cortex-M MCUs with limited RAM (≤1 MB), Ref. [16] achieved around three times the
compression ratio and 60% of the speed-up while maintaining an accuracy level higher than
the CIFAR-10, GSC and FER13 datasets. In contrast to CoopNet which applies the same
network structures for primary and secondary networks, we apply a much simpler struc-
ture for secondary networks in which each of them is trained to identify one category in
the HAR task. This optimization results in a configuration that can achieve around 80%
speed-up and energy-saving with a similar accuracy level across all the evaluated MCU
platforms. Based on XNOR-Net, Ref. [18] constructed a pruned–permuted–packed network
that combines binarization with sparsity to push model size reduction to very low limits.
On the Nucleo platforms and Raspberry Pi, 3PXNet achieves a reduction in the model size
by up to 38× and an improvement in runtime and energy of 25× compared to already
compact conventional binarized implementations with a reduction in accuracy of less than
3%. TF-Net is an alternative method that chooses ternary weights and four-bit inputs for
DNN models. Ref. [19] provides this configuration to achieve the optimal balance between
model accuracy, computation performance, and energy efficiency on MCUs. They also
address the issue that ternary weights and four-bit inputs cannot be directly accessed due

J. Low Power Electron. Appl. 2022, 12, 28 4 of 24

to memory being byte-addressable by unpacking these values from the bitstreams before
computation. On the STM32 Nucleo-F411RE MCU with an ARM Cortex-M4, Ref. [19]
achieved improvements in computation performance and energy efficiency of 1.83× and
2.28×, respectively. Thus, 3PXNet/TF-Net can be considered orthogonal to our ‘big–little’
research since they could be used as alternatives to the 8-bit integer models considered in
this research. A related architecture to our approach called BranchyNet with early exiting
was proposed in [20]. This architecture has multiple exits to reduce layer-by-layer weight
computation and I/O costs, leading to fast inference speed and energy saving. However,
due to the existence of multiple branches, it suffers from a huge number of parameters,
which would significantly increase the memory requirements in edge devices.

The configuration of primary and secondary neural networks has been proposed for
accelerating the inference process on edge devices in recent years. Ref. [17,21] constructed
‘big’ and ‘little’ networks with the same input and output data structure. The ‘big’ network
is triggered by their score metric generated from the ‘little’ network. A similar configuration
has also been proposed by [22], but their ‘big’ and ‘little’ networks are trained indepen-
dently. ‘Big’ and ‘little’ networks do not share the same input and output data structure.
Ref. [22] proposed a heterogeneous setup deploying a ‘big’ network on state-of-the-art
edge neural accelerators such as NCS2, with a ‘little’ network on near-threshold processors
such as ECM3531 and Apollo3. Ref. [22] has successfully achieved 93% accuracy and low
energy consumption of around 4 J on human activity classification tasks by switching this
heterogeneous system between ‘big’ and ‘little’ networks. Ref. [22] considers heterogeneous
hardware, whereas our approach uses the ‘big–little’ concept but focuses on deploying
all the models on a single MCU device. In contrast to how [22] deployed ‘big’ and ‘little’
models on the NCS2 hardware accelerator and near-threshold processors separately, we
deploy both neural network models on near-threshold MCU for activity classification tasks.
A switching algorithm is set up to switch between ‘big’ and ‘little’ network models to
achieve much lower energy costs but maintain a similar accuracy level. A related work [23]
has performed activity recognition tasks with excellent accuracy and performance by using
both convolutional and long short-term memory (LSTM) layers. Due to the flash memory
size of MCU, we decided not to use the LSTM layers which have millions of parameters
as shown in [23]. The proposed adaptive system is suitable for real-world tasks such as
human activity classification in which activities do not change at very high speeds. A
person keeps performing one action for a period of time, typically in the order of tens of
seconds [24], which means that to maintain the system at full capacity (using the primary
‘big’ network to perform the inference) is unnecessary. Due to the additional inference time
and computation consumed by the primary network, the fewer the number of times the
primary network gets invoked, the faster the inference process will be and the lower the
energy requirements [16,17,21,22].

2.3. Frameworks for Low-Power Edge AI

Over the last few years, a number of frameworks have appeared to ease the de-
ployment of neural network models on edge devices with limited resources. In [25], a
framework is provided called FANN-on-MCU specifically for the fast deployment of
multi-layer perceptrons (MLPs) on low-power MCUs. This framework supports not only
the very popular ARM Cortex-M series MCUs, but also the RISC-V parallel ultra-low
power (PULP) processors. The results in [25] show that the PULP-based ‘Mr.Wolf’ SoC
can reach up to 7.1× the speedup with respect to a single core implementation and 13.5×
the speedup over the ARM Cortex-M4. Moreover, by using FANN-on-MCU, a relatively
big neural network with 103,800 MAC operations can be executed within 17.6 ms with
an energy consumption of 183 µJ on a Nordic nRF52832 MCU with one ARM Cortex-M4.
The same neural network applied on ‘Mr.Wolf’ with eight RISC-V-based RI5CY cores
takes less than 1ms to consume around 50 µJ [25]. Similar to FANN-on-MCU, Ref. [26]
delivers a fast deployment on the MCU framework called the neural network on micro-
controller (NNoM) which supports more complex model topologies such as ResNet and

J. Low Power Electron. Appl. 2022, 12, 28 5 of 24

DenseNet from Keras. A user-friendly API and high-performance backend selections
have been built for embedded developers to deploy Keras models on low-power MCU
devices. There are also deployment frameworks developed by commercial companies
targeting low-power edge devices. For example, Google focuses on low-power edge
AI with the popular TensorFlow Lite framework [27]. Coupled with the model training
framework TensorFlow, Google can provide a single solution from neural network model
training to model deployment on edge devices. STM32Cube.AI from STMicroelectron-
ics [28] is also an AI deployment framework but it is only designed around the STM
family devices such as STM32 Nucleo-L4R5ZI and STM32 Nucleo-F411RE. Eta Compute
has created the TENSAIFlow deployment framework to provide performance and effi-
ciency optimizations for Eta-series MCU products such as ECM3531 and ECM3532 [29]. In
our methodology, the lack of support for certain devices in some frameworks means
that we have combined tools from different vendors. We have applied frameworks
from [26,27,29] for model deployments on MCUs such as ECM3532 and STM32L4 (see
Section 5 for details).

3. Low-Power Microcontroller Evaluation

Four commercially available microcontroller devices designed for energy-efficient
applications from STMicroelectronics, Ambiq and Eta Compute are considered in this
comparison. Table 1 shows the technical details of these four MCUs. Three of them
(STM32L4R5ZI, Apollo2 Blue and SparkFun Edge (Apollo3 Blue)) are based on the Cortex-
M4 microarchitecture with floating-point units (FPU) [4,30,31], while the ECM3532 is based
on the Cortex-M3 microarchitecture with a ‘CoolFlux’ 16-bit DSP [5]. The 32-bit ARM
Cortex-M3 and M4 are comparable microarchitectures both having a three-stage pipeline
and implementing the Thumb-2 instruction set with some differences in the number of
instructions available. For example, additional 16/32-bit MAC instructions and single-
precision FPU are only available on the Cortex M4.

The STM32 Nucleo-144 development board with the STM32L4R5ZI MCU is used as
a comparison point; the main difference between this STM device and the other three is
the power optimization method. The core supply voltage of 1 V for the STM device is
significantly higher than the core voltage for the near-threshold devices of Ambiq and
Eta Compute at only around 0.5 V. Theoretically, the sub-threshold core supply voltage
can be as low as 0.3 V which should be more power-efficient. However, at 0.3 V, the
transistor switching time will be longer, which leads to a higher leakage current. The
leakage can exceed 50% of the total power consumption for a threshold voltage level of
around 0.2 V [32]. Therefore, in practice, choosing near-threshold voltage points instead of
sub-threshold voltage points has been shown to be a more energy-efficient solution [32]. In
order to optimize the energy usage based on the task requirements, STM32L4 uses standard
dynamic voltage and frequency scaling (DVFS) with predefined pair sets of voltage and
frequency, while the devices from Ambiq and Eta Compute apply adaptive voltage scaling
(AVS) which is able to determine the voltage at a given frequency to handle the tasks at
run-time using a feedback loop [33].

Comparing the datasheets, the STM32L4 has the highest clock frequency which results
in an advantage in processing speed. Ambiq and Eta Compute’s near-threshold devices
only require about half of the core supply voltage of STM32L4. All considered processors
are equipped with limited flash sizes from 0.5 MB to 1 MB and a size of around 300 KB
SRAM. That means that the neural network model deployed must be small enough to
fit within the limited memory size. Therefore, we use the TensorFlow framework and
TensorFlow Lite converter to create a simple pre-trained CNN model designed for human
activity recognition (HAR) from UCI [34] (as shown in Figure 1) to perform the initial
energy evaluation of the four MCU devices.

J. Low Power Electron. Appl. 2022, 12, 28 6 of 24

Table 1. Low-power MCU comparison.

Devices Manufacturer Architecture
Embedded Memory

(Flash/SRAM/-
Cache)

Clock Frequency Core Voltage Sleeping Mode
Current

Work Mode
Current

Power Scaling
Capabilities

STM32L4R5ZI STMicroelectronics 32-bit Cortex-M4
CPU with FPU 1 MB/320 KB up to 120 MHz 1.05 V <5 µA with RTC 110 µA/MHz

Dynamic voltage scaling
with two main voltage

ranges

Apollo2 Blue Ambiq 32-bit Cortex-M4
CPU with FPU 1 MB/256 KB/16 KB up to 48 MHz 0.5 V <3 µA with RTC 10 µA/MHz SPOT (Subthreshold Power

Optimized Technology)

SparkFun Edge
(Apollo3 Blue) Ambiq 32-bit Cortex-M4

CPU with FPU 1 MB/384 KB/16 KB
up to 96 MHz

(with TurboSPOT
Mode)

0.5 V 1 µA with RTC 6 µA/MHz
SPOT (Subthreshold Power

Optimized Technology)
with TurboSPOT

ECM3532 Eta Compute
32-bit Cortex-M3
CPU with 16-bit
‘CoolFlux’ DSP

512 KB/256 KB/0 KB up to 100 MHz 0.55 V 1 µA with RTC 5 µA/MHz

CVFS (Continuous Voltage
Frequency Scaling) with
multiple frequency and

voltage points

InputLayer

input: (?, 128, 9)

output: (?, 128, 9)

InputLayer

input: (?, 128, 9)

output: (?, 128, 9)

M
axP

o
o

lin
g1

D

M
axP

o
o

lin
g1

D

M
axP

o
o

lin
g1

D

Conv1D

input: (?, 128, 9)

Kernel: (3, 9, 4)

output: (?, 128, 4)

Conv1D

input: (?, 128, 9)

Kernel: (3, 9, 4)

output: (?, 128, 4)

Conv1D

input: (?, 64, 4)

output: (?, 64, 8)

Kernel: (3, 4, 8)

Conv1D

input: (?, 64, 4)

output: (?, 64, 8)

Kernel: (3, 4, 8)

Conv1D

input: (?, 32, 8)

output: (?, 32, 16)

Kernel: (3, 8, 16)

Conv1D

input: (?, 32, 8)

output: (?, 32, 16)

Kernel: (3, 8, 16)

M
axP

o
o

lin
g1

D

Conv1D

input: (?, 16, 16)

output: (?, 16, 32)

Kernel: (3, 16, 32)

Conv1D

input: (?, 16, 16)

output: (?, 16, 32)

Kernel: (3, 16, 32)

M
axP

o
o

lin
g1

D

Conv1D

input: (?, 8, 32)

output: (?, 8, 8)

Kernel: (3, 32, 8)

Conv1D

input: (?, 8, 32)

output: (?, 8, 8)

Kernel: (3, 32, 8)

Flatten

input: (?, 4, 8)

output: (?, 32)

Flatten

input: (?, 4, 8)

output: (?, 32)

Dense

input: (?, 32)

output: (?, 6)

Dense

input: (?, 32)

output: (?, 6)

Convolutional operations

Figure 1. Convolutional neural network for the initial performance and energy evaluation of the MCU.

J. Low Power Electron. Appl. 2022, 12, 28 7 of 24

The energy board X-NUCLEO-LPM01A from STMicroelectronics is used to evaluate
the performance and energy consumption measuring the current used by the target board
under a given supply voltage of 3.3 V (lower core voltages are regulated internally in the
device). The power consumption of the four tested boards is shown in Figure 2. STM32L4
operates at a much higher power level which is around six times that of the near-threshold
processors. The near-threshold processors Apollo2, Apollo3 and ECM offer significantly
lower power, consuming less than 5 mW at the normal frequency of 48MHz and around
10 mW in the burst mode of 96 MHz. The reason why SparkFun Edge (Apollo3) consumes
more power than Apollo2 is that the Apollo3 core is highly integrated into the SparkFun
Edge board with peripheral sensors and ports which cannot be disabled during the power
evaluation. Therefore, the peripheral devices on SparkFun Edge (Apollo3) are responsible
for a component of the power consumption, which leads to a higher power than Apollo2 at
each frequency level. Apollo2 and ECM3532 share a similar level of power consumption
at 24 and 48 MHz. Apollo2 does not support running at a frequency higher than 48 MHz;
therefore, there is no value for Apollo2 at the 96 MHz frequency point.

Figure 3 shows the execution time of the four tested processors for one inference of the
pre-trained CNN model in Figure 1. Apollo2 is the slowest one and finishes inference using
the longest amount of time at above 100 ms at 24 MHz frequency and around 50 ms at
48 MHz. The SparkFun Edge board (Apollo3) reduces the execution time by approximately
40% compared to Apollo2. It can even drop below 20 ms when operating in burst mode
(96 MHz). STM32L4 is the second fastest among all devices due to its higher core supply
voltage in Table 1 which enables faster transistor switching and processing speed. ECM3532
has the lowest execution times which are 28 ms at 24 MHz, 15 ms at 48 MHz and 8 ms
at 96 MHz. The TENSAIFlow compiler is responsible for significant optimization in the
ECM3532 device.

Figure 4 indicates the energy consumption values observed using the X-NUCLEO-
LPM01A energy measurement board. Since the power consumption of the standard MCU
STM32L4 in Figure 2 is six times higher compared to the near-threshold MCUs and there is
no obvious advantage in processing speed at the same frequency, STM32L4 is the worst
device in terms of energy consumption for all operating frequencies from 24 to 96 MHz.
SparkFun Edge (Apollo3) is slightly higher than Apollo2 at 24 and 48 MHz due to the
energy consumed by the peripheral equipment on board. ECM3532 achieves the minimum
energy consumption at normal frequency points (24 and 48 MHz) in the energy test because
it has better results in both power and time evaluations. However, when operating in the
96 MHz burst mode, ECM3532 requires more power to obtain a higher processing speed,
resulting in a slight increase in energy consumption, and the same situation can be seen for
the SparkFun Edge board.

Overall, compared to the STM32L4 reference point all three near-threshold MCUs
have a significant advantage in power and energy consumption which is around 80%
to 85% lower. Although the near-threshold MCUs are comparable with the standard
MCU STM32L4 in terms of inference time, their lower core voltage supplies (Table 1)
result in lower power (Figure 2) at the same frequency level. Therefore, in our model
inference evaluation, the near-threshold MCU devices can achieve better results in energy
consumption compared to STM32L4 at 24, 48 and 96 MHz. Thanks to the additional
model optimization obtained with the TENSAIFlow compiler provided by Eta Compute,
ECM3532 offers a good balance between performance and energy efficiency to reach a
lower execution time, enabling the lowest energy consumption for model inference from 24
to 96 MHz. In contrast, Apollo2, with a relatively slow processing speed, needs more time
for model inference, which leads to higher values in energy consumption at 24 and 48 MHz.
Due to the energy consumed by the inaccessible peripheral equipment on SparkFun Edge
(Apollo3), this device consumes higher energy than Apollo2 (Figure 4).

J. Low Power Electron. Appl. 2022, 12, 28 8 of 24

22.8

37.7

1.6
2.7

4.3 5.4

12.5

1.0
3.4

7.9

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

0 20 40 60 80 100 120 140

P
o

w
e

r
(m

W
)

Frequency(MHz)

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

956

792
743 743

174

147

291

172 200

27 50
63

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

En
e

rg
y

(u
J)

Frequency(MHz)

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

42

21

11 9

111

55

67

32

16

28

15

8
0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Ti
m

e
 (

m
s)

Frequency(MHz)

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

Figure 2. MCU initial evaluation in terms of power consumption.

22.8

37.7

1.6
2.7

4.3 5.4

12.5

1.0
3.4

7.9

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

0 20 40 60 80 100 120 140

P
o

w
e

r
(m

W
)

Frequency(MHz)

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

956

792
743 743

174

147

291

172 200

27 50
63

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

En
e

rg
y

(u
J)

Frequency(MHz)

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

42

21

11 9

111

55

67

32

16

28

15

8
0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Ti
m

e
 (

m
s)

Frequency(MHz)

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

Figure 3. MCU initial evaluation in terms of time cost.

J. Low Power Electron. Appl. 2022, 12, 28 9 of 24

22.8

37.7

1.6
2.7

4.3 5.4

12.5

1.0
3.4

7.9

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

0 20 40 60 80 100 120 140

P
o

w
e

r
(m

W
)

Frequency(MHz)

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

956

792
743 743

174

147

291

172 200

27 50
63

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

En
e

rg
y

(u
J)

Frequency(MHz)

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

42

21

11 9

111

55

67

32

16

28

15

8
0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Ti
m

e
 (

m
s)

Frequency(MHz)

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

Figure 4. MCU initial evaluation in terms of energy consumption.

4. Adaptive Neural Network Methodology

To create the adaptive neural network system, we employ Python version 3.6.8 and
TensorFlow 1.15 with its dependencies installed on a desktop PC with Intel(R) Core (TM)
i7-10850H CPU 2.70 GHz, NVIDIA GeForce MX250 GPU, and 16 GB RAM. There are
several framework alternatives to train the neural networks, such as PyTorch and Caffe.
Due to the reasons of MCU compatibility and stability, our approach uses TensorFlow 1.15
to train the primary and secondary network models. After that, we use TensorFlow Lite and
NNoM Converter to convert the models using single-precision floating-points (FP32) to the
unsigned integer 8-bit (UINT8) format which can be deployed on the MCUs.

We consider human activity recognition using the UCI data set [34] as our raw data
set. This application is a demonstrator which assumes that the activity will remain constant
for a short period of time before being replaced by the next activity. To save energy via a
reduction in execution time, we propose the adaptive neural network system which is able
to disable the primary model and activate a secondary model when the activity remains
unchanged. Therefore, we aim at achieving both latency and energy reductions without
affecting prediction accuracy.

The UCI-HAR data set uses a body accelerometer, body gyroscope, and total accelerom-
eter with three axes to provide body information for six actions (SITTING, STANDING,
LAYING, WALKING, WALKING_UPSTAIRS, and WALKING_DOWNSTAIRS) performed
by a group of 30 volunteers. All the data have been sampled in fixed-width sliding win-
dows of 128 sampling points and they have been randomly partitioned into two sets, with
70% of data samples used for training and 30% used for testing. Therefore, we have a
training data shape of (7352, 128, 3, 3), and a testing data shape of (2947, 128, 3, 3). We have
evaluated the accuracy as shown in Figure 5 by applying the test data from these three
sensors to the secondary network. The total accelerometer sensor shows the best overall
accuracy. Thus, this sensor is selected for the secondary network inference. The training
and testing data sets from UCI-HAR use floating-point values with a wide range so that
before training the model, all the data have been rescaled to quantized integer values with
a range of [−128, 127]. In the following sections, these actions are referred to as follows:

• Activity I = WALKING

J. Low Power Electron. Appl. 2022, 12, 28 10 of 24

• Activity II = WALKING_UPSTAIRS
• Activity III = WALKING_DOWNSTAIRS
• Activity IV = SITTING
• Activity V = STANDING
• Activity VI = LAYING

In principle, if the system uses the ‘big’-only configuration, then the accuracy will be
higher. The challenge is to reduce the ‘big’ activation count without reducing accuracy. To
achieve this, we propose the three alternative configurations shown below:

• ‘Big’-only (original method)
• ‘Big’ + six ‘little’
• ‘Big’ + ‘dual’
• ‘Big’ + distance.

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Activity Ⅰ Activity Ⅱ Activity Ⅲ Activity Ⅳ Activity Ⅴ Activity Ⅵ Overall

Body Accelerometer Body Gyroscope Total Accelerometer

Figure 5. The test accuracy of three sensors on the secondary network. The total accelerometer sensor
which achieves the highest overall accuracy is chosen for the secondary network.

4.1. ‘Big’ + Six ‘Little’ Configuration

The main idea is to deploy an adaptive system that consists of one ‘big’ (output of six
classes) and six ‘little’ (output of two classes for each) network models in the MCU devices.
As shown in Figure 6, once the ‘big’ network provides a category and stores it in the register,
the corresponding ‘little’ network will be triggered to infer the next incoming activity. The
‘little’ network is responsible for detecting whether this current activity belongs to the
previous category provided by the ‘big’ network. For example, after the first activity is
detected as SITTING by triggering the ‘big’ network, the second incoming activity data
will be processed by the ‘little’ network, which is able to distinguish whether the second
one is still SITTING or not. Once the next incoming activity is not SITTING anymore, the
‘big’ network will be switched back on again. Otherwise, the ‘little’ network remains active
to save power and inference time. Therefore, we have six ‘little’ networks which are equal
to the number of categories classified in the ‘big’ network.

Figure 7 shows the model topologies for both ‘big’ and ‘little’ networks, while Table 2
shows the parameter details of the network layers. Since we are using all three sensors’
data from the UCI-HAR data set to classify six activities, the ‘big’ network has three inputs,
resulting in around 9000 parameters in total. Convolutional 1D layers and max-pooling
layers from Keras are stacked together to form the three ‘big’ branches in Figure 7. Then,
the outputs from these branches are converged by a concatenate layer followed by a dense
layer that has six neurons for six categories. The data shape of each sensor is (7352, 128, 3)
which means we have 7352 data samples with a length of 128 for each axis. The data set is
labelled from 0 to 5 to represent each activity for the training and testing processes in the
‘big’ network.

J. Low Power Electron. Appl. 2022, 12, 28 11 of 24

Time

‘Little’
Processing

‘Big’
Processing

System Output

Input Data

Run ‘Big’ for first data

Trigger ‘Little’ for
incoming data

Encounter different
activity, ‘Big’ triggered

Trigger another ‘Little’
for incoming data again

Activity Ⅰ Activity Ⅱ

‘Little’ for Activity

Ⅱhas been triggered

‘Little’ for Activity

Ⅰhas been triggered

Data

‘Big’

‘Little’ for
Activity Ⅰ

‘Little’ for
Activity Ⅱ

‘Little’ for
Activity Ⅲ

‘Little’ for
Activity Ⅳ

‘Little’ for
Activity Ⅴ

‘Little’ for

Activity Ⅵ

Activity changes?

Data Reader

System Output

Register
(past activity label)

NO

YES

Output current activity

Is first data?

NOYES

Which ‘Little’ will be triggered is
controlled by Register

Update Register

First data directly goes through ‘Big’,

the rest go through ‘Little’ first.

Process next data

Figure 6. The processing steps (left) and the flow chart (right) for the ‘big’ + six ‘little’ configuration
of the adaptive neural network system. In the left figure, dark blue and brown represent two ‘little’
network models corresponding to the input activities. In the right figure, the dotted line means only
one ‘little’ network model of six is invoked at a time.

InputLayer

input: (?, 128, 3)

output: (?, 128, 3)

InputLayer

input: (?, 128, 3)

output: (?, 128, 3)

M
axP

o
o

lin
g1

D

M
axP

o
o

lin
g1

D

M
axP

o
o

lin
g1

D

Conv1D

input: (?, 128, 3)

Kernel: (3, 3, 4)

output: (?, 128, 4)

Conv1D

input: (?, 128, 3)

Kernel: (3, 3, 4)

output: (?, 128, 4)

Conv1D

input: (?, 64, 4)

output: (?, 64, 8)

Kernel: (3, 4, 8)

Conv1D

input: (?, 64, 4)

output: (?, 64, 8)

Kernel: (3, 4, 8)

Conv1D

input: (?, 32, 8)

output: (?, 32, 16)

Kernel: (3, 8, 16)

Conv1D

input: (?, 32, 8)

output: (?, 32, 16)

Kernel: (3, 8, 16)

M
axP

o
o

lin
g1

D

Conv1D

input: (?, 16, 16)

output: (?, 16, 32)

Kernel: (3, 16, 32)

Conv1D

input: (?, 16, 16)

output: (?, 16, 32)

Kernel: (3, 16, 32)

M
axP

o
o

lin
g1

D

Conv1D

input: (?, 8, 32)

output: (?, 8, 8)

Kernel: (3, 32, 8)

Conv1D

input: (?, 8, 32)

output: (?, 8, 8)

Kernel: (3, 32, 8)

Flatten

input: (?, 4, 8)

output: (?, 32)

Flatten

input: (?, 4, 8)

output: (?, 32)

Dense

input: (?, 96)

output: (?, 6)

Dense

input: (?, 96)

output: (?, 6)

Convolutional operations

InputLayer

input: (?, 128, 3)

output: (?, 128, 3)

InputLayer

input: (?, 128, 3)

output: (?, 128, 3)

Convolutional operations

InputLayer

input: (?, 128, 3)

output: (?, 128, 3)

InputLayer

input: (?, 128, 3)

output: (?, 128, 3)

Convolutional operations

Concatenate

input: [(?, 32), (?, 32), (?, 32)]

output: (?, 96)

Concatenate

input: [(?, 32), (?, 32), (?, 32)]

output: (?, 96)

MaxPooling1D

MaxPooling1D

MaxPooling1D

InputLayer
input: (?, 128, 3)

output: (?, 128, 3)
InputLayer

input: (?, 128, 3)

output: (?, 128, 3)

Conv1D
input: (?, 128, 3)
Kernel: (3, 3, 4)

output: (?, 128, 4)
Conv1D

input: (?, 128, 3)
Kernel: (3, 3, 4)

output: (?, 128, 4)

Conv1D
input: (?, 64, 4)
Kernel: (3, 4, 4)

output: (?, 64, 4)
Conv1D

input: (?, 64, 4)
Kernel: (3, 4, 4)

output: (?, 64, 4)

Conv1D
input: (?, 32, 4)
Kernel: (3, 4, 2)

output: (?, 32, 2)
Conv1D

input: (?, 32, 4)
Kernel: (3, 4, 2)

output: (?, 32, 2)

Flatten
input: (?, 16, 2)

output: (?, 32)
Flatten

input: (?, 16, 2)

output: (?, 32)

Dense
input: (?, 32)

output: (?, 2)
Dense

input: (?, 32)

output: (?, 2)

Figure 7. ‘Big’ (left) and ‘little’ (right) model structures in Keras.

Each ‘little’ network only classifies two categories by using several convolutional 1D
layers and max-pooling layers with 184 parameters in total. Therefore, based on the results
in Figure 5, only the total accelerometer sensor which achieves the best overall accuracy is
selected as the input for the ‘little’ network. The output of the ‘little’ network is a dense
layer with two neurons for two categories as seen in Table 2. Due to the limited size of the
UCI-HAR data set [34], we have less than 2000 data elements for each activity category.
Therefore, we use all of them and convert the data labels from six categories to two for
training the ‘little’ model. Particularly, for each ‘little’ model, the labels of corresponding
activity are set to number 1, while the others are set to number 0. Finally, we can generate
the models in the Keras format.

J. Low Power Electron. Appl. 2022, 12, 28 12 of 24

Table 2. ‘Big’ (left) and ‘little’ (right) model parameter details. The pooling layers are hidden. For
more info, see Figure 7.

Model: ‘Big’ Model: ‘Little’

Layer (Type) Output Shape Param# Layer (Type) Output Shape Param#

model_input1 [(None, 128, 3)] 0 model_input [(None, 128, 3)] 0
model_input2 [(None, 128, 3)] 0 conv1d (None, 128, 4) 40
model_input3 [(None, 128, 3)] 0 conv1d_1 (None, 64, 4) 52

conv1d (None, 128, 4) 40 conv1d_2 (None, 32, 2) 26
conv1d_5 (None, 128, 4) 40 model_output (None, 2) 66
conv1d_10 (None, 128, 4) 40
conv1d_1 (None, 64, 8) 104
conv1d_6 (None, 64, 8) 104
conv1d_11 (None, 64, 8) 104
conv1d_2 (None, 32, 16) 400
conv1d_7 (None, 32, 16) 400
conv1d_12 (None, 32, 16) 400
conv1d_3 (None, 16, 32) 1568
conv1d_8 (None, 16, 32) 1568
conv1d_13 (None, 16, 32) 1568
conv1d_4 (None, 8, 8) 776
conv1d_9 (None, 8, 8) 776
conv1d_14 (None, 8, 8) 776
concatenate (None, 96) 0

model_output (None, 6) 582

Total params: 9246 Total params: 184

4.2. ‘Big’ + ‘Dual’ Configuration

The ‘big’ + ‘dual’ configuration is an alternative method of the adaptive neural network
system. We replace the six ‘little’ models with one small neural network called ‘dual’.
Compared to the ‘big’ + six ‘little’ model, this one only consists of one primary and one
secondary network model instead of one + six networks. In order to replace six ‘little’
networks designed for six categories with only one ‘dual’ network, the data sample for
the previous activity is required to be stored in a register and compared with the current
activity data sample as shown in Figure 8. Then, the ‘dual’ network can recognize these
patterns to distinguish whether the current activity changes or not. For example, the first
activity is classified as STANDING by the ‘big’ network, and the second activity of SITTING
is compared with the one previously stored by the ‘dual’ network. If the ‘dual’ network
detects these two activities are not the same, the ‘big’ network will be triggered for further
inferences. Otherwise, the ‘dual’ network keeps active for time and energy saving as shown
in Figure 8.

The ‘big’ network is the same as the one introduced in the previous configuration,
while the secondary ‘dual’ network has been reconstructed as shown in Figure 9 and Table 3.
In the same way as for the ‘little’ network, the single input data from the total accelerometer
sensor are selected for the ‘dual’ network. Therefore, the input data shape of the ‘dual’
network becomes (1, 128, 3, 2), which contains two adjacent input data samples. As there is
a significant increase in the input data shape, the number of parameters increases from 184
in the ‘little’ network to 300 in the ‘dual’ network.

J. Low Power Electron. Appl. 2022, 12, 28 13 of 24

Time

‘Dual’
Processing

‘Big’
Processing

System Output

Input Data

Run ‘Big’ for first data

Trigger ‘Dual’ for
incoming data

Encounter different
activity, ‘Big’ triggered

Trigger ‘Dual’ for
incoming data again

Activity Ⅰ Activity Ⅱ

‘Dual’ has been
triggered

‘Dual’ has been
triggered

Data

‘Big’

‘Dual’ Activity changes?

Data Reader

System Output

Register
(past activity label)

NO

YES

Output current activity

Is first data?

NOYES

Update Register

First data directly goes through ‘Big’,
the rest with previous data as a pair

go through ‘Dual’ first.

Register
(past activity data)

Process next data

Update Register at

each round

Figure 8. The processing steps (left) and the flow chart (right) for the ‘big’ + ‘dual’ configuration of
the adaptive neural network system. In the left figure, the two input data blocks represent a pair of
adjacent data samples required by the ‘dual’ network. In the right figure, registers store the previous
data and label for the current process in the ‘dual’ network.

MaxPooling1D

MaxPooling1D

MaxPooling1D

InputLayer
input: (?, 384, 2)

output: (?, 384, 2)
InputLayer

input: (?, 384, 2)

output: (?, 384, 2)

Conv1D
input: (?, 384, 2)
Kernel: (3, 2, 4)

output: (?, 384, 4)
Conv1D

input: (?, 384, 2)
Kernel: (3, 2, 4)

output: (?, 384, 4)

Conv1D
input: (?, 192, 4)
Kernel: (3, 4, 4)

output: (?, 192, 4)
Conv1D

input: (?, 192, 4)
Kernel: (3, 4, 4)

output: (?, 192, 4)

Conv1D
input: (?, 96, 4)
Kernel: (3, 4, 2)

output: (?, 96, 2)
Conv1D

input: (?, 96, 4)
Kernel: (3, 4, 2)

output: (?, 96, 2)

Flatten
input: (?, 48, 2)

output: (?, 96)
Flatten

input: (?, 48, 2)

output: (?, 96)

Dense
input: (?, 96)

output: (?, 2)
Dense

input: (?, 96)

output: (?, 2)

Figure 9. ‘Dual’ model structures in Keras.

Table 3. ‘Dual’ model parameter details. The pooling layers are hidden. For more info, see Figure 9.

Model: ‘Dual’

Layer (Type) Output Shape Param#

model_input [(None, 384, 2)] 0
conv1d (None, 384, 4) 28

conv1d_1 (None, 192, 4) 52
conv1d_2 (None, 96, 2) 26

model_output (None, 2) 194

Total params: 300

4.3. ‘Big’ + Distance Configuration

Finally, we consider whether the wake-up module in the adaptive system can be
replaced by a simpler algorithm instead of using neural networks such as ‘little’ and ‘dual’
networks. This configuration, which is similar to the second configuration, replaces the
‘dual’ network model with a distance calculator measuring the difference in the distance
between two adjacent input samples. In order to pick up on an activity change, a distance

J. Low Power Electron. Appl. 2022, 12, 28 14 of 24

calculator using Minkowski distance and Mahalanobis distance is applied to trigger the
‘big’ network when the difference in distance reaches a pre-set threshold value as shown in
Figure 10.

D(x, y) =

(
n

∑
i=1
|xi − yi|p

)1/p

(1)

Time

Distance
Calculating

‘Big’
Processing

System Output

Input Data

Run ‘Big’ for first data

Trigger Distance Calculating
for incoming data

Encounter different
activity, Distance exceeds
threshold, ‘Big’ triggered

Activity Ⅰ Activity Ⅱ

Distance is calculating

Trigger Distance Calculating
for incoming data again

Distance is calculating

Data

‘Big’

Distance
Calculator

Distance exceeds
threshold?

Data Reader

System Output

Register
(past activity label)

NO

YES

Output current activity

Is first data?

NOYES

Update Register

First data directly goes through ‘Big’, the
rest with previous data as a pair go

through Distance Calculator first.

Register
(past activity data)

Process next data

Update Register at

each round

Figure 10. The processing steps (left) and the flow chart (right) for the ‘big’ + distance configuration
of the adaptive neural network system. In the left figure, the two input data blocks represent a pair of
adjacent data samples required by the distance calculator. In the right figure, the registers store the
previous data and label for the current process in the distance calculator.

The Euclidean distance is a typical metric that measures the real distance of two points
in N-dimensions. As shown in Equation (1), Minkowski distance is a generalized format of
Euclidean distance. When p = 2, it becomes equivalent to the Euclidean distance, while it
becomes equivalent to the Manhattan distance when p = 1. Moreover, the Mahalanobis
distance measures the distance of a target point P and a mean point of a distribution D.
This distance increases if point P moves away along each principal component axis of D.
The Mahalanobis distance becomes Euclidean distance when these axes are scaled to have
a unit variance [35,36].

The input data shape which is (1, 128, 3, 2) for the ‘dual’ network should be stretched
into (1, 384, 2) where the value two means that two adjacent data samples are required
by the distance calculator. The calculator then measures the Minkowski distance between
these two adjacent data samples following Equation (1) for both cases of p = 1 and
p = 2. Mahalanobis distance requires the covariance matrix of the data set before the
calculation. To wake up the ‘big’ model, multiple thresholds can be selected to achieve
multiple sensitivities. The ‘big’ model is only triggered when the distance between the
previous data sample and the current one is beyond the pre-set threshold. Therefore, a
lower threshold value will reach a higher inference accuracy because the ‘big’ network
will be invoked more frequently. Conversely, a higher threshold value means that the ‘big’
network is invoked fewer times, leading to a shorter inference time.

5. Neural Network Microcontroller Deployment

The neural network models in the Keras format are quantized to the UINT8 format to
reduce the amount of memory needed before MCU deployment. According to Equation (2)
in [37], as shown below, the real value is the input value of the training process in the
range of [−128, 127], while the quantized value is the target value after the quantization,
which is in the UINT8 range of [0, 255]. The mean and the standard deviation values can be
calculated as 128 and 1, respectively. Finally, the model in a quantized format is obtained.

real_value = (quantized_value−mean_value)/std_dev_value (2)

We use the available data samples from UCI-HAR [34] instead of real-time data to
perform a fair comparison across the different platforms. Thus, when the MCU runs the
application, stored data and network models can be accessed correctly. Moreover, the

J. Low Power Electron. Appl. 2022, 12, 28 15 of 24

model-switching algorithm for the adaptive system introduced in Section 4 is achieved
at the C code level instead of the network model layer level. The ‘big’ and ‘little’ models
are capable of being invoked independently, which means the adaptive system is more
flexible and effective at finding the balance between performance and energy consump-
tion. Finally, before flashing the target boards, the application must be compiled to an
executable binary using cross-compilation tools for GCC [38], ARM Compiler [39] and the
TENSAIFlow compiler from Eta Compute [29]. The model deployment process is shown in
Figures 11 and 12.

5.1. STM32L4R5ZI

STM32Cube.AI from STMicroelectronics [28] is a framework designed to optimize
STM devices such as STM32L4. However, due to the limitation of being a proprietary
environment, the switching algorithm between primary and secondary networks cannot be
deployed at the C code level. On the other hand [26], it has been designed with a focus on
general-purpose and flexible deployment on different MCU boards. The NNoM converter
is able to convert the pre-trained model in the Keras format to the C code and its neural
network library can be used to deploy the model. Therefore, the NNoM framework is
selected for model deployment on STM32L4 instead of STM32Cube.AI (see Figure 12).

UCI HAR
Dataset

Trained Model
in .h5

Keras(TensorFlow)

Quantized
Model in .tfliteTensorFlow Lite Converter

Quantized
Model in .c/.h

NNoM Converter

Model in .c/.h

Optimized
Model in .c/.h

Hex Dump Command (xxd)

TENSAIFlow Converter

SparkFun Edge
(Apollo3 Blue)

ECM3532

Apollo2 Blue

STM32L4R5ZI

TensorFlow +
AmbiqSuite SDK
+ SEGGER J-Link

+

TENSAIFlow SDK
+ SEGGER J-Link

+

NNoM + AmbiqSuite
SDK + SEGGER J-Link

NNoM + STM32Cube
SDK + ST-Link

+

+

Figure 11. The map of the steps of neural network model deployment on target MCU boards. Black
frames represent trained models, brown frames represent the library source codes used, while red
ones represent MCU boards.

Device NN Model Training NN Library in C
Underlying Development

Library
Connection

STM32L4R5ZI Keras(TensorFlow) NNoM lib STM32Cube SDK ST-Link

Apollo2 Blue Keras(TensorFlow) NNoM lib AmbiqSuite SDK SEGGER J-Link

SparkFun Edge

(Apollo3 Blue)
Keras(TensorFlow) TensorFlow lib AmbiqSuite SDK SEGGER J-Link

ECM3532 Keras(TensorFlow)
TensorFlow Lite

Converter

TENSAIFlow

Converter
TENSAIFlow lib TENSAIFlow SDK SEGGER J-Link

Conversion of NN Model

NNoM Converter

NNoM Converter

TensorFlow Lite Converter

Figure 12. Comparison of the software used in each deployment phase for different MCUs.

The STM32Cube SDK version 1.17.0 from STMicroelectronics which contains utility
tools and example projects, is required to drive the STM32L4R5ZI MCU board. Keil uVision
IDE from ARM is chosen to set up a coding environment to support STM32L4. The driver
pack for STM32L4 is required to be installed by the pack installer of Keil. The STM32L4

J. Low Power Electron. Appl. 2022, 12, 28 16 of 24

CN1 port is connected with a desktop PC by using a micro-USB cable. Then, the ST-Link
debugger can be selected under the target debug page and the STM32L4 device can then be
connected and detected by the PC. Alternatively, if the connection is unsuccessful, STM32
ST-LINK Utility from STMicroelectronics can erase the board to avoid software conflicts.

After the NN models are trained by Keras (TensorFlow_v1.15), they are required to be
quantized by applying the NNoM converter command as shown in Listing 1. Then, the
header file containing model weights can be generated by using the function below. Before
building the project, the weight header file, input data file and the files from the NNoM
library should be added by Keil Manage Project Items. Finally, the steps of building and
flashing the project to the development board can be carried out. To observe the output
from the debug viewer, the core clock under the trace page of the target debug setting
should match the operating clock of the device.

Listing 1 NNoM converter Python function for quantized model generation.

generate_model(model, x_test, name=‘weight.h’)

5.2. Apollo2 Blue

AmbiqSuite SDK version 2.2.0 from Ambiq supports the model deployment on
Apollo2 Blue. Keil uVision IDE from ARM is used to set up a coding environment. After
installing the driver pack for Apollo2, the Apollo2 board is connected to the PC by using
a micro-USB cable and selecting J-Link under the target debug page of Keil as shown in
Figure 11. Similar to the case of STM32L4, Apollo2 is not supported by TensorFlow Lite and
TENSAIFlow. Thus, the pre-trained models in Keras format are converted into a quantized
format using the NNoM converter as shown in Listing 1. Then, the model weights and data
header files and the NNoM library should be added into the project by Keil Manage Project
Items. After building and flashing the project to the target board, the Keil debug viewer
can be used to observe the model outputs.

5.3. SparkFun Edge (Apollo3 Blue)

TensorFlow from Google is not only capable of training neural network models, but
also includes TensorFlow Lite to deploy network models on edge devices such as MCUs [27].
The trained network model saved in the Keras format can be converted into the quantized
format using the TensorFlow Lite converter in Listings 2 and 3. The library source code
in C and board SDK files are provided to support the model deployment on MCUs (see
Figure 11). We use TensorFlow Lite to support model deployment for the MCU development
board of SparkFun Edge (Apollo3).

AmbiqSuite SDK version 2.2.0 contains utility tools and drivers from Ambiq to support
SparkFun Edge (Apollo3 Blue). TensorFlow Lite version 1.15 is used to convert Keras models
using floating-point parameters into the TFLite model with UINT8 parameters. As per the
corresponding command lines in Listings 2 and 3, the quantized model files are generated
and ready to be deployed. The TFLite model is converted into a hexadecimal file which
can be read by the TensorFlow Lite library by using hex dump command ‘xxd’. Finally, we
connect Apollo3 to the PC with a micro-USB cable and flash the binary file to the target
board using the flash utility provided by the AmbiqSuite SDK.

Listing 2 TensorFlow Lite converter command lines for ‘big’ model quantization.

tflite_convert \
−−keras_model_file=./Output_Models/${MODELNAME}.h5 \
−−output_file=./Output_Models/${MODELNAME}.tflite \
−−inference_type=QUANTIZED_UINT8 \
−−input_shapes=1,128,3:1,128,3:1,128,3 \
−−input_arrays=model_input1,model_input2,model_input3 \
−−output_arrays=model_output/BiasAdd \
−−default_ranges_min=0 −−default_ranges_max=255 \

J. Low Power Electron. Appl. 2022, 12, 28 17 of 24

−−mean_values=128,128,128 −−std_dev_values=1,1,1 \
−−change_concat_input_ranges=false \
−−allow_nudging_weights_to_use_fast_gemm_kernel=true \
−−allow_custom_ops

Listing 3 TensorFlow Lite converter command lines for ‘little’ model quantization.

tflite_convert \
−−keras_model_file=./Output_Models/${MODELNAME}.h5 \
−−output_file=./Output_Models/${MODELNAME}.tflite \
−−inference_type=QUANTIZED_UINT8 \
−−input_shapes=1,128,3 \
−−input_arrays=model_input \
−−output_arrays=model_output/BiasAdd \
−−default_ranges_min=0 −−default_ranges_max=255 \
−−mean_values=128 −−std_dev_values=1 \
−−change_concat_input_ranges=false \
−−allow_nudging_weights_to_use_fast_gemm_kernel=true \
−−allow_custom_ops

5.4. ECM3532

TENSAIFlow from Eta Compute is a framework designed to deploy pre-trained net-
work models for Eta products such as ECM3531 and ECM3532 [29]. It is highly optimized
for Eta Compute products to achieve the best balance between performance and efficiency.
This framework is not capable of training neural network models such as TensorFlow; it
only provides the model conversion and deployment after training. After the pre-trained
model is converted into a quantized TFLite format by TensorFlow Lite, TENSAIFlow converts
the TFLite model to the C code which can be invoked with the library source code. The
ECM3532 development board is not supported by NNoM or TensorFlow Lite. Therefore,
TENSAIFlow SDK version 2.0.2 contains the TENSAIFlow converter and neural network
library from Eta Compute required to support model deployment on ECM3532. As shown
in Figure 11, the pre-trained model from Keras (TensorFlow_v1.15) is quantized to the UINT8
format by using the TensorFlow Lite converter first (Listings 2 and 3) and converted to the
readable format for the TENSAIFlow library by using the TENSAIFlow converter (Listing 4).
Then, we build the project and flash it to the target ECM3532.

Listing 4 TENSAIFlow converter command lines for model conversion.

./tensaiflow_compile \
−−tflite_file ../model_zoo/${MODELNAME}.tflite \
−−out_path ../../../Applications/${PROJECTNAME}/src/ \
−−weights_path ../../../Applications/${PROJECTNAME}/include/

6. Results and Discussion

The accuracy of the different configurations and the original using the full HAR test
data set is shown in Figure 13. We do not consider different random initialization seeds in
this work but we use the same trained network for the different MCUs to perform a fair
comparison. We also choose the learning rate carefully, using a relatively slow rate and
SGDR to prevent the model from sinking into a locally optimal point instead of the global
one. We use holdout cross validation to divide the whole data set: 70% for the training data
set, 15% for the validation data set and 15% the testing data set.

In Figure 13, the ‘big’-only configuration has 91.3% accuracy but the model has a large
invocation count that will result in significant latency. The ‘big’ + six ‘little’ configuration
reaches a comparable level of accuracy and the number of times the ‘big’ model invoked

J. Low Power Electron. Appl. 2022, 12, 28 18 of 24

is reduced from 2947 to 406, reducing the inference time of the ‘big’ model by two-thirds.
The ‘big’ + ‘dual’ configuration cannot reach a similar accuracy due to the low accuracy of
the secondary ‘dual’ network. The ‘big’ + distance configuration achieves a relatively low
testing accuracy and it invokes the ‘big’ network 669 times in 2947 data samples.

91.3% 92.8%

61.1%

76.9%

2947

406

105

669

0

500

1000

1500

2000

2500

3000

3500

40%

50%

60%

70%

80%

90%

100%

'Big' only 'Big' + 6'Little' 'Big' + 'Dual' 'Big' + Distance

In
fe

re
n

ce
 C

o
u

n
t

A
cc

u
ra

cy
 (

%
)

Test Accuracy 'Big' Inference Count

Figure 13. The accuracy and the ‘big’ inference counts for four configurations (quantized TFLite
format) on the test data set (2947 samples) have been evaluated on a PC.

In order to establish the same testing environments and provide the same test samples
for all MCU boards, we choose to apply the data samples from the UCI-HAR test data
set rather than a real-time signal from the board sensors. Only 60 data samples from the
UCI-HAR test data set can be selected to fit in the MCU boards together with the model
and switching algorithm due to memory limitations. Therefore, we select ten data samples
for each activity and compose them into a certain sequence of activity I to VI. This means
that there are five activity changes in the test data sequence. We have verified that the
classification results obtained in these 60 samples are equivalent to the ones obtained with
the whole data set, although there are some negligible differences between devices due
to the different toolchains. The following evaluations are performed under a working
frequency of 48 MHz without debugging. Four configurations of the adaptive neural
network are evaluated below:

6.1. ‘Big’ Only

As shown in Figure 13, after removing the LSTM layers used in [23], we still maintain
an accuracy level of around 90% for the ‘big’ network on the activity classification task
compared to the results in [22,23]. The original ‘big’ model method performs 2947 inferences
on all test data samples. Due to the large topology of the ‘big’ model and a large number of
inferences, the ‘big’-only configuration has the highest execution time. This can be seen
in Figure 14: for all four MCUs working at the same operating frequency of 48 MHz, the
latency of the ‘big’-only model is the highest among all four configurations. The power
consumption values for each configuration show negligible variations for each MCU in
Figure 15. Therefore, the energy consumption for each configuration is only affected by the
inference time. As shown in Figure 15, the ‘big’-only configuration consumes the highest
value of energy.

J. Low Power Electron. Appl. 2022, 12, 28 19 of 24

2,266

5,951

3,664

1,606

521

1,228

654
478

942

2,578

1,191

778
923

2,416

1,502

724

60 60 60 60

8 8
7

12

7 7

4
3

24 24 24 24

0

10

20

30

40

50

60

0

1,000

2,000

3,000

4,000

5,000

6,000

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

In
fe

re
n

ce
 C

o
u

n
t

Ti
m

e
 (

m
s)

Time (ms) for 'Big' only Time (ms) for 'Big' + 6'Little'

Time (ms) for 'Big' + 'Dual' Time (ms) for 'Big' + Distance (threshold of 8000)

 'Big' Inference Count for 'Big' only 'Big' Inference Count for 'Big' + 6'Little'

 'Big' Inference Count for 'Big' + 'Dual' 'Big' Inference Count for 'Big' + Distance (threshold of 8000)

Figure 14. The time evaluation of four adaptive configurations on MCU boards with the ‘big’ inference
counts. A total of 60 data samples extracted from the UCI-HAR test data set are tested to form the
evaluation.

87,924

16,005

19,839

5,155

19,770

3,068 3,552
1,402

35,830

7,019 6,451

2,321

34,629

6,696
8,148

2,333

38.8

2.7

5.4

3.2

37.9

2.5

5.4

2.9

38.0

2.7

5.4

3.0

37.5

2.8

5.4

3.2

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

STM32L4R5ZI Apollo2 Blue SparkFun Edge ECM3532

P
o

w
e

r
(m

W
)

En
e

rg
y

(u
J)

Energy (uJ) for 'Big' only Energy (uJ) for 'Big' + 6'Little'

Energy (uJ) for 'Big' + 'Dual' Energy (uJ) for 'Big' + Distance (threshold of 8000)

Power (mW) for 'Big' only Power (mW) for 'Big' + 6'Little'

Power (mW) for 'Big' + 'Dual' Power (mW) for 'Big' + Distance (threshold of 8000)

Figure 15. The power and energy evaluation of four adaptive configurations on MCU boards. A total
of 60 data samples extracted from the UCI-HAR test data set are tested to form the evaluation.

J. Low Power Electron. Appl. 2022, 12, 28 20 of 24

6.2. ‘Big’ + Six ‘Little’

The difference between the inference time of the ‘big’-only and ‘big’ + six ‘little’
configurations is shown in Figure 14. The inference latency of the ‘big’ model is around
12 times longer than the latency of the ‘little’ model. Therefore, the lower the number of
times the ‘big’ network gets invoked, the higher the efficiency of the system is. In this
configuration, six ‘little’ models are applied to save time by restricting the ‘big’ inference
count to around ten times. In all MCU evaluations in Figure 14, the time result of the ‘big’ +
six ‘little’ configuration is the lowest and this reduces the execution time by around 80%
compared to the original ‘big’-only configuration and around 50% compared to the others.
For all four configurations, the power is largely equivalent, as can be seen in Figure 15.
Due to the significant advantage of the ‘big’ + six ‘little’ configuration in terms of execution
time, this configuration achieves energy savings of around 80% compared to the original
‘big’ method on all MCUs.

6.3. ‘Big’ + ‘Dual’

In contrast to the ‘big’ + six ‘little’ configuration, the ‘big’ + ‘dual’ configuration is
not restricted by the number of categories that need to be classified. The number of ‘little’
networks in the previous configuration is determined by the number of categories, which
leads to difficulties in model deployment if the number of categories is large such as in
the CIFAR-100 data set. By applying a network focusing on detecting activity changes,
the ‘big’ + ‘dual’ configuration can pick up activity changes by comparing the current
activity and the previous activity. However, two deficiencies appear in this configuration.
Firstly, in the 7352 training data samples, there are only 280 cases of activity switching. We
extract 280 data samples with an ‘activity change’ label and 7072 samples with an ‘activity
continuance’ label to train the ‘dual’ model, resulting in an unbalanced training data set.
Secondly, there is an error propagation problem which occurs when ‘dual’ classification is
incorrect in the case of ‘activity change’. For example, in Figure 16, the ‘dual’ model has
an error at the seventh data sample where the activity switches from I to III, skipping ‘big’
inference and misleading the adaptive system to output activity I. After that, the ‘dual’
model has no errors for the rest of the data, detecting no activity changes. This adaptive
system continues to propagate the output errors because the seventh output is set up as
activity I instead of III. Compared to the ‘big’ + six ‘little’ configuration, the ‘big’ model is
also skipped at the seventh data because the ‘little’ model does not pick up any changes
(an error). However, after the next data input, the ‘little’ model is able to recognize that the
activity is not activity I anymore. Then, the ‘big’ model is invoked to output the correct
activity label and the system recovers to a correct state.

Data Number 1 2 3 4 5 6 7 8 9 10

Real Activity Label Ⅱ Ⅱ Ⅱ Ⅰ Ⅰ Ⅰ Ⅲ Ⅲ Ⅲ Ⅲ

 'Little' Output Ⅱ Ⅱ Ⅱ Not Ⅱ Ⅰ Ⅰ Ⅰ Not Ⅰ Ⅲ Ⅲ

 'BIG' Output
Not

Invoked
Not

Invoked
Not

Invoked
Ⅰ

Not
Invoked

Not
Invoked

Not
Invoked

Ⅲ
Not

Invoked
Not

Invoked

 'Big' + 6 'Little' Output Ⅱ Ⅱ Ⅱ Ⅰ Ⅰ Ⅰ Ⅰ Ⅲ Ⅲ Ⅲ

 'Dual' Output Remains Remains Remains Changes Remains Remains Remains Remains Remains Remains

 'BIG' Output
Not

Invoked
Not

Invoked
Not

Invoked
Ⅰ

Not
Invoked

Not
Invoked

Not
Invoked

Not
Invoked

Not
Invoked

Not
Invoked

 'Big' + 'Dual' Output Ⅱ Ⅱ Ⅱ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ

… …

Figure 16. The output comparison of two configurations when an error occurs at the moment of
an ‘activity change’. Errors have been labelled in the color red. The results including the primary
module, secondary module, and overall adaptive system have been shown below.

Although the ‘dual’ model is able to solve the large category issue, it is not sufficiently
trained due to the unbalanced training data set. Due to the poor accuracy of the ‘dual’

J. Low Power Electron. Appl. 2022, 12, 28 21 of 24

model, the error propagation mentioned in Figure 16 occurs and fails to switch on the ‘big’
model when detecting an activity change for further inference. This results in a minimal ‘big’
inference count but a relatively poor performance in terms of accuracy. Therefore, the overall
accuracy of this adaptive system (around 60% for all test data on a PC) is lower compared to
the other configurations as shown in Figure 13. Furthermore, because the complexity of the
‘dual’ model is relatively high and the ‘dual’ model is activated continuously, this leads to a
higher complexity in the inference process. Additionally, the combination of previous and
current data samples for the ‘dual’ input needs to be pre-processed. Therefore, despite having
the fewest number of ‘big’ inference counts (Figure 13), the latency and energy consumption
double compared to the best configuration of the ‘big’ + six ‘little’ models as shown in
Figures 14 and 15.

6.4. ‘Big’ + Distance

The ‘big’ + distance configuration, as shown in Figure 17, shows that the Manhattan
distance and Euclidean distance have a poor performance when distinguishing activities I
to III which are WALKING, WALKING_UPSTAIRS, and WALKING_DOWNSTAIRS. The
distance between the data samples of the same activities exceeds the distance between
the ones of different activities (see data 8 to 10 in Figure 17). Therefore, a clear threshold
boundary cannot be set to separate the case of ‘activity change’ from unchanged activities
due to these indistinguishable values.

Data Number 1 2 3 4 5 6 7 8 9 10 11 12

Activity Label Ⅴ Ⅴ Ⅳ Ⅳ Ⅵ Ⅵ Ⅰ Ⅰ Ⅲ Ⅲ Ⅱ Ⅱ Activity remains

Manhattan

Distance (p = 1)
154 10,230 230 19,717 4,153 28,782 8,642 7,300 8,518 9,174 5,376 Activity changes

Euclidean

Distance (p = 2)
11 582 20 1,090 124 1,693 565 485 756 604 389

Distinguishable

Values

Mahalanobis

Distance
201,532 1,609,852 263,481 1,349,489 746,925 418,438 511,839 653,612 547,821 495,100 586,691

Indistinguishable

Values

NULL

Figure 17. Distance results for different pairs of adjacent data samples. Values in one distance
measurement (one row) are comparable.

In the ‘big’ + distance configuration, a threshold point of 8000 for the Manhattan
distance is selected for the evaluation in Figures 13 and 14. This threshold of 8000 triggers
the ‘big’ model more frequently so it can be considered sensitive. As with the ‘big’ + ‘dual’
model, the ‘big’ + distance model also suffers from the error propagation issue which
severely affects the overall accuracy. Compared to the ‘big’ + six ‘little’ configuration, this
configuration achieves a relatively low accuracy level at around 76% with a higher number
of ‘big’ invocation times as shown in Figure 13. Furthermore, this configuration has a
significant latency and energy costs which doubles compared to ‘big’ + six ‘little’ models
and it is similar to the ‘big’ + ‘dual’ configuration as shown in Figures 14 and 15.

Overall and across all MCUs, our best adaptive network configuration, the ‘big’ + six
‘little’ configuration, achieves a high prediction accuracy level of around 90%, which is
comparable to the original ‘big’-only method. As discussed in Section 3’s initial evaluation
of the MCU, ECM3532 achieves the highest processing speed, followed by STM32L4, Spark-
Fun Edge (Apollo3) and Apollo2 (listed fastest to slowest). With the same configuration,
the execution time in Figure 14 shows that this is consistent across all four MCU boards.
For the ‘big’ + six ‘little’ configuration, the ‘big’ inference count is reduced by around
85% compared with the original method, achieving up to 5× the acceleration on MCUs.
Since the MCU boards are in working mode when running different configurations, the
power consumption of these configurations is similar to the MCU shown in Figure 15.
Due to the negligible differences between network configurations in terms of power, the
distribution of the energy consumption of the configurations for each MCU follows the time
cost distribution in Figure 14. As shown in Figure 15, across all devices, the ‘big’ + six ‘little’
algorithm configuration achieves energy savings of around 80% compared to the original

J. Low Power Electron. Appl. 2022, 12, 28 22 of 24

‘big’-only method, and around 50% compared to the other two configurations. Furthermore,
compared to a standard MCU running the ‘big’ network only, the best configuration, the
‘big’ + six ‘little’ model, coupled with the best state-of-the-art near-threshold hardware, can
achieve a reduction in energy of up to 98% that will translate into a 62× increase in the
operating lifetime of an application for detecting battery-powered activity.

7. Conclusions

In this research, we have compared commercially available near-threshold and stan-
dard MCUs in terms of performance and energy consumption. At the same operating
frequency, near-threshold MCUs have a significant advantage in power consumption,
which is 80% lower than standard MCUs. Due to the comparable processing speed, the
low-power near-threshold MCU can achieve energy savings of around 80% compared to
the standard MCU STM32L4. Moreover, we have proposed three adaptive neural network
configurations and investigated how MCU deployments can benefit from our algorithms
to obtain lower energy consumption while maintaining prediction accuracy. We demon-
strate that despite the low amount of memory available in these devices, it is possible to
deploy ‘big–little’ configurations that result in significantly better energy and performance
characteristics. The proposed algorithms can be successfully deployed on STM32L4R5ZI,
Apollo2 Blue, SparkFun Edge (Apollo3 Blue) and ECM3532. The application UCI-HAR
is representative of an activity recognition task that assumes that an activity will remain
constant for some period of time before switching to a different activity. In order to save
time and energy, we activate the secondary model with a faster inference speed to pause
the primary model when the activity remains constant. The best adaptive network con-
figuration, the ‘big’ + six ‘little’ configuration, has achieved a reduction in energy of 80%
and a comparable level of prediction accuracy to the original method in the UCI-HAR test.
The results prove that the proposed methods can deliver different levels of time–energy
reduction and constant accuracy on all the devices we tested. Furthermore, coupled with
near-threshold MCUs, the best configuration is able to increase battery life by up to 62× on
UCI-HAR compared to the original non-adaptive method using a standard MCU.

Future work involves extending the work to other application areas such as machine
health monitoring and anomaly detection. In addition, we plan to investigate how the
approach can be scaled to applications with a large number of possible output categories
without an explosion in the memory requirements by using additional network hierarchies.
Finally, a future research direction includes developing a framework that is able to auto-
matically extract optimal ‘little’ configurations from a ‘big’ configuration in terms of overall
accuracy and energy in order to replace manual analysis.

Author Contributions: Methodology, Z.S., N.H. and J.N.-Y.; software, Z.S. and J.N.-Y.; validation,
Z.S.; resources, Z.S.; data curation, Z.S.; writing—original draft preparation, Z.S.; writing—review
and editing, Z.S., N.H. and J.N.-Y.; visualization, Z.S.; supervision, J.N.-Y.; All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partially funded by the Royal Society INF/R2/192044 Machine Intelligence
at the Network Edge (MINET) fellowship.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Our work can be found here: https://github.com/DarkSZChao/Big-
Little_NN_Strategies (accessed on 9 March 2022) .

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/DarkSZChao/Big-Little_NN_Strategies
https://github.com/DarkSZChao/Big-Little_NN_Strategies

J. Low Power Electron. Appl. 2022, 12, 28 23 of 24

Abbreviations
The following abbreviations are used in this manuscript:

MCU Microcontroller Unit
LoT Internet of Things
CNN Convolutional Neural Network
UCI-HAR UCI-Human Activity Recognition

References
1. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge intelligence: Paving the last mile of artificial intelligence with edge

computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]
2. Chen, J.; Ran, X. Deep learning with edge computing: A review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
3. Coral. Edge TPU. Available online: https://coral.ai/docs/edgetpu/faq/ (accessed on 20 February 2022).
4. Ambiq Micro. Apollo3 Blue Datasheet. Available online: https://cdn.sparkfun.com/assets/learn_tutorials/9/0/9/Apollo3

_Blue_MCU_Data_Sheet_v0_9_1.pdf (accessed on 15 December 2021).
5. Eta Compute. Eta Compute ECM3532 AI Sensor Product Brief. Available online: https://media.digikey.com/pdf/Data%20

Sheets/Eta%20Compute%20PDFs/ECM3532-AI-Vision-Product-Brief-1.0.pdf (accessed on 15 December 2021).
6. Chaudhary, H. Eta Compute’s ECM3532 Board Provides AI Vision Works for Months on a Single Battery. Available online: https:

//opencloudware.com/eta-computes-ecm3532-board-provides-ai-vision-that-can-work-for-months-on-a-single-battery/
(accessed on 20 February 2022).

7. Flamand, E.; Rossi, D.; Conti, F.; Loi, I.; Pullini, A.; Rotenberg, F.; Benini, L. GAP-8: A RISC-V SoC for AI at the Edge of the IoT.
In Proceedings of the 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors
(ASAP), Milan, Italy, 10–12 July 2018; pp. 1–4.

8. Clarke, P. CEO Interview: Minima’s Tuomas Hollman on Why Static Timing Sign-Off Is Over. Available online: https:
//www.eenewseurope.com/en/ceo-interview-minimas-tuomas-hollman-on-why-static-timing-sign-off-is-over/ (accessed on
20 February 2022).

9. Clarke, P. Minima, ARM Apply ‘Real-Time’ Voltage Scaling to Cortex-M3. Available online: https://www.eenewsanalog.com/
news/minima-arm-apply-real-time-voltage-scaling-cortex-m3 (accessed on 20 February 2022).

10. Flaherty, N. €100m Project to Develop Low Power Edge AI Microcontroller. Available online: https://www.eenewseurope.com/
en/e100m-project-to-develop-low-power-edge-ai-microcontroller/ (accessed on 20 February 2022).

11. Novac, P.E.; Hacene, G.B.; Pegatoquet, A.; Miramond, B.; Gripon, V. Quantization and deployment of deep neural networks on
microcontrollers. Sensors 2021, 21, 2984. [CrossRef] [PubMed]

12. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713.

13. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized neural networks: Training neural networks with low
precision weights and activations. J. Mach. Learn. Res. 2017, 18, 6869–6898.

14. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

15. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks.
In Computer Vision—ECCV 2016, Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14
October 2016; Springer: Cham, Switzerland, 2016; pp. 525–542.

16. Mocerino, L.; Calimera, A. CoopNet: Cooperative convolutional neural network for low-power MCUs. In Proceedings of the
2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genova, Italy, 27–29 November 2019;
pp. 414–417.

17. Amiri, S.; Hosseinabady, M.; McIntosh-Smith, S.; Nunez-Yanez, J. Multi-precision convolutional neural networks on heteroge-
neous hardware. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, 19–23 March 2018; pp. 419–424.

18. Romaszkan, W.; Li, T.; Gupta, P. 3PXNet: Pruned-Permuted-Packed XNOR Networks for Edge Machine Learning. ACM Trans.
Embed. Comput. Syst. 2020, 19, 5. [CrossRef]

19. Yu, J.; Lukefahr, A.; Das, R.; Mahlke, S. Tf-net: Deploying sub-byte deep neural networks on microcontrollers. ACM Trans. Embed.
Comput. Syst. 2019, 18, 45. [CrossRef]

20. Teerapittayanon, S.; McDanel, B.; Kung, H.T. Branchynet: Fast inference via early exiting from deep neural networks. In
Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016;
pp. 2464–2469.

21. Park, E.; Kim, D.; Kim, S.; Kim, Y.D.; Kim, G.; Yoon, S.; Yoo, S. Big/little deep neural network for ultra low power inference.
In Proceedings of the 2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS),
Amsterdam, The Netherlands, 4–9 October 2015; pp. 124–132.

http://doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/JPROC.2019.2921977
https://coral.ai/docs/edgetpu/faq/
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/9/Apollo3_Blue_MCU_Data_Sheet_v0_9_1.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/9/Apollo3_Blue_MCU_Data_Sheet_v0_9_1.pdf
https://media.digikey.com/pdf/Data%20Sheets/Eta%20Compute%20PDFs/ECM3532-AI-Vision-Product-Brief-1.0.pdf
https://media.digikey.com/pdf/Data%20Sheets/Eta%20Compute%20PDFs/ECM3532-AI-Vision-Product-Brief-1.0.pdf
https://opencloudware.com/eta-computes-ecm3532-board-provides-ai-vision-that-can-work-for-months-on-a-single-battery/
https://opencloudware.com/eta-computes-ecm3532-board-provides-ai-vision-that-can-work-for-months-on-a-single-battery/
https://www.eenewseurope.com/en/ceo-interview-minimas-tuomas-hollman-on-why-static-timing-sign-off-is-over/
https://www.eenewseurope.com/en/ceo-interview-minimas-tuomas-hollman-on-why-static-timing-sign-off-is-over/
https://www.eenewsanalog.com/news/minima-arm-apply-real-time-voltage-scaling-cortex-m3
https://www.eenewsanalog.com/news/minima-arm-apply-real-time-voltage-scaling-cortex-m3
https://www.eenewseurope.com/en/e100m-project-to-develop-low-power-edge-ai-microcontroller/
https://www.eenewseurope.com/en/e100m-project-to-develop-low-power-edge-ai-microcontroller/
http://dx.doi.org/10.3390/s21092984
http://www.ncbi.nlm.nih.gov/pubmed/33922868
http://dx.doi.org/10.1145/3371157
http://dx.doi.org/10.1145/3358189

J. Low Power Electron. Appl. 2022, 12, 28 24 of 24

22. Nunez-Yanez, J.; Howard, N. Energy-efficient neural networks with near-threshold processors and hardware accelerators. J. Syst.
Arch. 2021, 116, 102062. [CrossRef]

23. Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition.
Sensors 2016, 16, 115. [CrossRef] [PubMed]

24. Turaga, P.; Chellappa, R.; Subrahmanian, V.S.; Udrea, O. Machine recognition of human activities: A survey. IEEE Trans. Circuits
Syst. Video Technol. 2008, 18, 1473–1488. [CrossRef]

25. Wang, X.; Magno, M.; Cavigelli, L.; Benini, L. FANN-on-MCU: An open-source toolkit for energy-efficient neural network
inference at the edge of the Internet of Things. IEEE Internet Things J. 2020, 7, 4403–4417. [CrossRef]

26. Ma, J.; parai.; Mabrouk, H.; BaptisteNguyen; idog ceva; Xu, J.; LÊ, M.T. Majianjia/nnom, version 0.4.3; Zendo: Geneva, Switzerland,
2021. doi: [CrossRef]

27. TensorFlow. TensorFlow Lite Guide. Available online: https://www.tensorflow.org/lite/guide (accessed on 10 May 2021).
28. STMicroelectronics. Artificial Intelligence Ecosystem for STM32. Available online: https://www.st.com/content/st_com/en/

ecosystems/artificial-intelligence-ecosystem-stm32.html (accessed on 8 June 2021).
29. Eta Compute. TENSAI®Flow. Available online: https://etacompute.com/tensai-flow/ (accessed on 10 May 2021).
30. STMicroelectronics. STM32L4R5xx Datasheet. Available online: https://www.st.com/resource/en/datasheet/stm32l4r5zg.pdf

(accessed on 8 June 2021).
31. Ambiq Micro. Apollo2 MCU Datasheet. Available online: https://ambiq.com/wp-content/uploads/2020/10/Apollo2-MCU-

Datasheet.pdf (accessed on 19 July 2021).
32. Yeo, K.S.; Roy, K. Low Voltage, Low Power VLSI Subsystems; McGraw-Hill, Inc.: New York, NY, USA, 2004; p. 44.
33. Nunez-Yanez, J. Energy proportional neural network inference with adaptive voltage and frequency scaling. IEEE Trans. Comput.

2018, 68, 676–687. [CrossRef]
34. UCI Machine Learning. Human Activity Recognition Using Smartphones Data Set. Available online: https://archive.ics.uci.

edu/ml/datasets/human+activity+recognition+using+smartphones (accessed on 2 March 2021).
35. De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18.

[CrossRef]
36. McLachlan, G.J. Mahalanobis distance. Resonance 1999, 4, 20–26. [CrossRef]
37. TensorFlow. Converter Command Line Reference. Available online: https://github.com/tensorflow/tensorflow/blob/master/

tensorflow/lite/g3doc/r1/convert/cmdline_reference.md (accessed on 29 March 2021).
38. GCC Team. GCC, the GNU Compiler Collection. Available online: https://gcc.gnu.org/ (accessed on 25 May 2021).
39. Arm Developer. GNU Arm Embedded Toolchain. Available online: https://developer.arm.com/tools-and-software/open-

source-software/developer-tools/gnu-toolchain/gnu-rm (accessed on 25 May 2021).

http://dx.doi.org/10.1016/j.sysarc.2021.102062
http://dx.doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://dx.doi.org/10.1109/TCSVT.2008.2005594
http://dx.doi.org/10.1109/JIOT.2020.2976702
http://dx.doi.org/10.5281/zenodo.5737372
https://www.tensorflow.org/lite/guide
https://www.st.com/content/st_com/en/ecosystems/artificial-intelligence-ecosystem-stm32.html
https://www.st.com/content/st_com/en/ecosystems/artificial-intelligence-ecosystem-stm32.html
https://etacompute.com/tensai-flow/
https://www.st.com/resource/en/datasheet/stm32l4r5zg.pdf
https://ambiq.com/wp-content/uploads/2020/10/Apollo2-MCU-Datasheet.pdf
https://ambiq.com/wp-content/uploads/2020/10/Apollo2-MCU-Datasheet.pdf
http://dx.doi.org/10.1109/TC.2018.2879333
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
http://dx.doi.org/10.1016/S0169-7439(99)00047-7
http://dx.doi.org/10.1007/BF02834632
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/r1/convert/cmdline_reference.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/r1/convert/cmdline_reference.md
https://gcc.gnu.org/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm

	Introduction
	Background and Related Work
	Hardware for Low-Power Edge AI
	Algorithmic Techniques for Low-Power Edge AI
	Frameworks for Low-Power Edge AI

	Low-Power Microcontroller Evaluation
	Adaptive Neural Network Methodology
	`Big' + Six `Little' Configuration
	`Big' + `Dual' Configuration
	`Big' + Distance Configuration

	Neural Network Microcontroller Deployment
	STM32L4R5ZI
	Apollo2 Blue
	SparkFun Edge (Apollo3 Blue)
	ECM3532

	Results and Discussion
	`Big' Only
	`Big' + Six `Little'
	`Big' + `Dual'
	`Big' + Distance

	Conclusions
	References

