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Abstract: This manuscript provides a comprehensive tutorial on the operating principles of a bio-
inspired Cellular Nonlinear Network, leveraging the local activity of NbOx memristors to apply
a spike-based computing paradigm, which is expected to deliver such a separation between the
steady-state phases of its capacitively-coupled oscillators, relative to a reference cell, as to unveal
the classification of the nodes of the associated graphs into the least number of groups, according
to the rules of a non-deterministic polynomial-hard combinatorial optimization problem, known as
vertex coloring. Besides providing the theoretical foundations of the bio-inspired signal-processing
paradigm, implemented by the proposed Memristor Oscillatory Network, and presenting pedagog-
ical examples, illustrating how the phase dynamics of the memristive computing engine enables
to solve the graph coloring problem, the paper further presents strategies to compensate for an
imbalance in the number of couplings per oscillator, to counteract the intrinsic variability observed
in the electrical behaviours of memristor samples from the same batch, and to prevent the impasse
appearing when the array attains a steady-state corresponding to a local minimum of the optimization
goal. The proposed Memristor Cellular Nonlinear Network, endowed with ad hoc circuitry for the
implementation of these control strategies, is found to classify the vertices of a wide set of graphs
in a number of color groups lower than the cardinality of the set of colors identified by traditional
either software or hardware competitor systems. Given that, under nominal operating conditions, a
biological system, such as the brain, is naturally capable to optimise energy consumption in problem-
solving activities, the capability of locally-active memristor nanotechnologies to enable the circuit
implementation of bio-inspired signal processing paradigms is expected to pave the way toward
electronics with higher time and energy efficiency than state-of-the-art purely-CMOS hardware.

Keywords: graph coloring; cellular nonlinear networks; memristor oscillatory networks; locally-active
memristors; control theory

1. Introduction

Memristor technologies promise to revolutionise the world of electronics in the years
to come, allowing to boost the performance of integrated circuits beyond the Moore era.
Theoretically introduced in 1971 by L. Chua [1], memristors are essentially resistances
with state- and input-dependent programmable capability [2]. Despite the first association
between Chua’s theory and the experimental observation of fingerprints of memristive be-
haviour at the nanoscale was made by R.S. Williams and his team at Hewlett Packard Labs
in 2008 [3], the appearance of memory resistance switching effects in miniaturized physical
structures were reported in numerous occasions throughout the past two centuries [4],
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constituting the object of extensive and intensive investigations for the development of
novel solid-state memories first in the 1960s [5]. In fact, the main application of memris-
tors [6]—certainly the most profitable one from a business perspective point of view—is the
design of memories with higher retention, lower power consumption, and larger density
as compared to state-of-the-art data storage units [7]. Another major field of application
regards the development of innovative neuromorphic systems, which resemble biological
entities more closely than traditional artificial networks ([8–11]). A closely-related branch
of research takes inspiration from the high levels of organization and energy efficiency
of biological systems to develop mem-computing machines ([12–14]), which extend the
functionalities of traditional cellular architectures [15]. Another bio-inspired research di-
rection aims to the circuit implementation of in-memory computing paradigms through
high-capacity memristive memories, stacked in 3D crossbar arrangement above underlying
CMOS circuitry [16], and employed, alternatively, to store data or to execute processing
tasks ([17–20]), which reveals the high potential of novel hardware platforms of this kind to
resolve the von Neumann bottleneck, limiting the maximum operating speed of traditional
computing engines, in the near future. Additionally, the unique combined capability of
non-volatile resistance switching memories to sense data ([21,22]), learn how to recognize
patterns [23], process information [24], and store multiple states [25] within a single tiny
physical volume, and the availability of nanoscale locally-active [26] volatile memristors,
which may amplify the small signal upon suitable polarization ([27,28]), open up yet-
unexplored opportunities for the Internet-of-Things (IoT) industry, which urgently calls for
the development of miniaturized, low-power, light-weight, portable, and smart technical
systems, which, within a very short time frame, are able to acquire a large amount of
information from the environment, to extract features of interest from noisy data so as to
solve specific optimization problems, and to store or transmit to a prescribed user the most
relevant results of the computation.

One of the most challenging tasks for computing machines, based upon the classical
von Neumann architecture, is the solution of combinatorial optimisation problems belong-
ing to the non-deterministic polynomial (NP)-hard complexity class1. Nowadays there is a
huge interest in developing novel inexpensive low-power high-speed hardware solutions
capable to solve NP-hard problems more efficiently than traditional computers, given that
high-performance technical systems of this kind may find application in various industry
sectors, e.g., for traffic management, airline scheduling, gene sequencing, and electronic
chip wiring.

A recent Nature Electronics publication [29] proposed the use of a memristive crossbar
array—refer to Figure 1—for accelerating the vector-matrix multiplications (VMMs) at
the basis of the update rule of an iterative machine learning algorithm, which is credited
to Hopfield, and enables to solve combinatorial problems, within an overall disruptive
analogue hardware architecture, leveraging and controlling its numerous inherent noise
sources to allow a power-efficient derivation of the optimal solutions.

1 The time it takes for a von Neumann computing machine to find the optimal solution to a NP-hard problem,
which involves n elements, scales exponentially with n.
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Figure 1. In-memory computing in a N × N memristive crossbar array (here N = 4). In-memory
computing in an N × N memristive crossbar array (here, N = 4). Naturally obeying Kirchhoff’s
Current Law (KCL), the bio-inspired network enables a time-efficient computation of VMMs. With j ∈
{1, . . . , N}, the current flowing down the jth column of the array is simply given by ij = ∑N

i=1 Gi,j · vi,
where Gi,j denotes the conductance of the memory resistive switch located at the intersection between
the conductive nanowires stretching along row i and column j [29]. The computation of the currents
at the outputs of the crossbar columns assumes that the bottom terminals of all the memristors—refer
to the thick black horizontal segments in their circuit-theoretic symbols—are at virtual ground.

Cellular Nonlinear Networks (CNNs) with locally-active volatile memristors [30]
constitute a powerful engine for the implementation of bio-inspired spike-based computing
paradigms. This manuscript, inspired to a recent publication [31], is devoted to explain in
a pedagogical form how these bio-inspired memristor cellular arrays2, may be adopted
for solving a complex NP-hard problem known as vertex coloring. While page limitation
prevented a complete description of the theory at the basis of the spike-based computing
paradigm implemented by the proposed cellular arrays3, all details are pedagogically
reported in this tutorial. In regard to the structure of the manuscript, Section 2 provides a
brief description of the memristor model adopted for the study. Section 3 introduces the
memristive computing engine for solving the vertex coloring problem, including a discus-
sion of its operating principles, and the specification of strategies aimed to compensate for
non-idealities, including an imbalance in the number of couplings per oscillator, and the
memristor device-to-device variability. Section 4 presents a rigorous iterative procedure
for coloring a graph via the network phase dynamics. Importantly, control paradigms to
resolve local minima-based impasse conditions [33] are proposed in Section 5, which further
compares the performance of the proposed spike-based computing engine, endowed with
ad hoc circuitry to implement such strategies, with the solutions of state-of-the-art software
and hardware competitor systems. Finally, conclusions are drawn in Section 6.

2 CNNs with non-volatile memristors ([12–14]) may pave the way toward the development of advanced
visual-sensor processors [32] with high spatial resolution and intrinsic memory capability.

3 Importantly, depending upon the graph under focus, the proposed Memristor CNN (M-CNN) may feature
either local or non-local capacitive couplings. The solution of the vertex coloring problem through the proposed
M-CNNs depends upon the phase differences among the oscillations developing in the constitutive units of the
array at steady state. In order to highlight the steady-state oscillatory behaviours of the cells during operation,
the bio-inspired arrays are also referred to as Memristor Oscillatory Networks (MONs) in the remainder of
the manuscript.
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2. A Physics-Based Model for the Threshold Switching Dynamics of a Nano-Scale
Locally-Active Memristor Device Stack

In a past study [34,35] we employed physics laws to construct state evolution and
memductance functions of a NbOx memristor, fabricated at NaMLab, after inferring the
physical mechanisms, which underlie its nonlinear dynamics, from the outcome of ex-
perimental measurements, and the insights gained through theoretic investigations of a
mathematical model, derived previously on the basis of Chua’s Unfolding Theorem [28]. A
thorough analysis of the proposed physics-based model [34] revealed that the Mott insulator-
to-metal transition does not constitute the key physical mechanism at the origin of the threshold
switching process, that each of our NbOx-based memristors undergoes under the application of
a generic quasi-static voltage stimulus between its two terminals. Conversely, a temperature-
activated trap-assisted Poole-Frenkel conduction mechanism underlies the abrupt turn-on
dynamics of the volatile memristor. Importantly, shortly after our discovery, a further proof
of evidence for the validity of our conjecture was provided by engineers from Hewlett
Packard (HP) Labs [36]. Remarkably, despite it was originally proposed for the NbO mi-
crostructure, the physics-based model in [34] was found to fit rather well also experimental
data extracted from nanoscale variants of the NbOx threshold switching resistance from
NaMLab after minor adaptations [37,38].

As illustrated in Figure 2(a), ([30,31]), the equivalent circuit model of the memristor
M consists of the series combination between a linear resistor Rc, capturing the action of
the top electrode resistance, and a parallel one-port, formed by a core memristor M̃, and a
nonlinear resistorR, which accounts for the parasitics inherent to the NbOx nanostructure,
and is responsible for the manifestation of leakage current effects. Several studies [34,35]
have revealed that the state of the core memristor is well captured by its body temperature T.
In fact, as anticipated earlier, threshold switching effects in the nano-device originate from
runaway Joule self-heating governed by Poole-Frenkel electrical conduction mechanisms.
Taking this into account for the formulation of a state-dependent Ohm’s law, with ṽm (ĩm)
representing the voltage (current) of M̃, and choosing Newton’s law of cooling to dictate
the time evolution of the state, the DAE set, governing the static and dynamic behaviour of
the core memristor may be expressed as

dT
dt

= g(T, ṽm) ,
1

Cth
· ĩm · ṽm −

Γth
Cth
· (T − Tamb), (1)

ĩm = G(T, ṽm) · ṽm ,
1

R01
· exp

(
− a01 − a11 · |ṽm|

T

)
· ṽm, (2)

where Cth (Γth) stands for the effective thermal capacitance (conductance) of the core device
M̃, Tamb denotes the ambient temperature, R01, a01 and a11 are constants4, while vm (im)
symbolises the voltage (current) falling across (flowing though) the memristorM, whose
circuit-theoretic symbol is shown in Figure 2(b). Remarkably, the DAE set (1)–(2) of the
core memristor falls into the voltage-controlled extended memristor family from Chua’s
classification5 [40]. The constitutive relationship f (vR, iR) = 0 of the nonlinear resistorR
is given in implicit form as

vR = R02 · iR · exp

(
a02 − a12 ·

√
|vR|

Tamb

)
. (3)

4 The reader is invited to consult [34,35] for details on the association between the real parameters R01, a01 and
a11 and the physical properties of the core nanostructure.

5 It is instructive to observe that there exist memristor physical realisations, whose models feature an even more
general input- and state- dependent Ohm law than what is admissible for extended memristors. For these
two-terminal devices, including the TiO2 memristor from HP Labs [39], the mathematical description includes
an implicit Ohm law of the form h(x, vm, im) = 0, with x, vm, and im denoting the device state, voltage, and
current, respectively.
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revealing that a variant of the Poole-Frenkel law explains current transport phenomena in
the parasitic resistor as well6. The nominal parameter values for the core memristor and
nonlinear resistor models were obtained by fitting the underlying equations to experimental
data extracted from nano-device samples (see [37,38] for details on the NbOx nanostructure
fabrication process). Importantly, since the non-negligible intrinsic spread in dynamic
behaviour from sample to sample may impair the capability of a computing engine based
on memristive hardware to perform a predefined data processing task as desired, this non-
ideality may not be neglected in circuit design considerations. Particularly, in the analysis
to follow, where a Memristor Oscillatory Network (MON) is adopted to find optimal
solutions to graph coloring problems [31], it will be accounted through the replacement of
specific parameters in the NbOx nano-scale threshold switch physics model, specifically
Γth, R01, a01, a11, RC, R02, and a12, with corresponding ones, i.e., in turn, Γth,α, R01,α, a01,α,
a11,α, RC,α, R02,α, and a12,α, that are controlled via a real variable α, which is set randomly
to a distinct value chosen from a uniform distribution across the closed range [0, 1] for
each nanostructure individually, prior that the simulation of the ODE, modelling the array
associated to a pre-specified graph, is commenced.

Figure 2. (a) Equivalent circuit of the physical model of a NbOx nanoscale memristor M from
NaMLab. The linear resistor RC and the nonlinear resistorR respectively account for the effects of
electrode contact resistance and parasitics. (b) Memristor circuit-theoretic symbol.

Table 1 reports the parameter setting of the nano-scale memristor physics-based model
modulated according to the device-to-device variability estimated statistically beforehand
through the analysis of current-voltage characteristics of a large number of samples under
a common quasi-static stimulation [31].

Table 1. Parameter setting for NbOx nanoscale threshold switch from NaMLab. The effects of
the memristor-to-memristor variability are accounted through the assignment of a distinct value,
chosen randomly within the closed set [0, 1] to the variable α, controlling specific coefficients of
Equations (1), (2), and (3).

Cth/ J · K−1 Γth,α/ W · K−1 Tamb/ K R01,α/ Ω a01,α/ K
1 · 10−14 1.889 · 10−6 · 1.064α 293 3.047 · 0.831α 3620 · 1.061α

a11,α/ K· V−1 Rc,α/ Ω R02,α/ Ω a02/ K a12,α/ K· V−1/2

820.4 · 1.137α 173.8 · 1.092α 565 · 1.377α 1000 168.8 · 1.083α

3. Memristive Computing Engine for Solving the Vertex Coloring Problem

One of the most popular NP-hard problems is graph or vertex coloring. Given an
undirected graph, consisting of a certain arrangement of edge-coupled vertices, the aim
of the problem is to assign a color to each vertex, satisfying the constraint, which dictates

6 The mathematical description of the nonlinear resistor, formulated in Equation (3), is in fact equivalent to the
model of a NbOx memristor, as originally presented in [34,35], which reveals the correspondence of the real
parameters R02, a02 and a12 to physical properties of the nanostructure, in the limit when changes occurring in
the device state, defined as its body temperature, are negligible.
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that a given color should be shared between as many vertices as possible so long as no
edge connects any two of them. The lowest number of color groups, the vertices of the
unconnected graph may be classified into, is called chromatic number.

As revealed back in 1988, graph coloring may be achieved by harnessing synchroni-
sation mechanisms in arrays of of coupled oscillatory cells [41]. A more recent work [42]
showed that the assignment of colors to vertices of a graph may be naturally implemented
through the analysis of the steady-state phase shifts between capacitively-coupled re-
laxation oscillators exploiting negative differential resistance (NDR) effects in vanadium
dioxide (VO2) nano-structures. Inspired from this research, we have recently investigated
the capability of an oscillatory network, leveraging locally-active dynamics in NbOx mem-
ristors, and featuring capacitive couplings, to identify the minimum possible number of
colors assignable to the vertices of an associated undirected graph via phase dynamics.

In order to color a given graph of N vertices or nodes, a unique number in the set
{0, 1, . . . , N − 1} is first attributed to each vertex. A one-to-one association is then estab-
lished between the vertices (edges) of the graph, and the oscillators (coupling capacitors,
each of capacitance CC) of the associated network. The oscillator 0, corresponding to the
node 0, assumes a critical role in the solution of the graph coloring problem, and is called
reference cell. A general indication, regarding the selection of a suitable reference oscillator
among the N possible candidates, will be given shortly. As an example, Figure 3(a) and (b)
show a 6-node ring and the associated MON, respectively.

Figure 3. (a) A 6-node ring-shaped undirected graph (b) Associated MON. The oscillator i of the
network corresponds to the vertex i of the graph (i ∈ {0, 1, 2, 3, 4, 5}).

With reference to Figure 4, plots (a) and (b) show the oscillator circuit and its symbol,
respectively. Each oscillatory cell is composed of the parallel connection between a NbOx
memristorM, a bias circuit, consisting of the series combination of a DC voltage source VS
with a series resistor RS, allowing to polarize [28] the resistance switching memory within
the locally-active region of its DC current-voltage locus, and a capacitor C.

Figure 4. Memristive oscillatory cell (a) and its symbol (b).

On the basis of the NbOx nano-device physics-based model, expressed by Equations (1),
(2), and (3), under the variability-aware parameter setting of Table 1, we carried out a deep
numerical investigation of the capability of an array of capacitively-coupled memristive



J. Low Power Electron. Appl. 2022, 12, 22 7 of 30

oscillatory cells to classify the vertices of a pre-defined undirected graph in the least number
of groups.

While the memristor model parameters, accounting for the inherent fluctuations in
static and dynamic properties among distinct nano-device samples, were already reported
in Table 1, only the values assigned to the physical quantities of the non-memristive circuit
elements in the proposed MON are provided in Table 2.

Table 2. Parameter setting for the non-memristive circuit elements in the oscillator of Figure 4(a).

VS/ V RS/ Ω C/ F CC/ F

2.5 5525 10 · 10−9 0.2 · 10−9

3.1. Operating Principles of the Capacitively-Coupled Networks

The capacitive nature of the couplings in the network is responsible for pulling the
phases of physically-connected oscillators far apart one from the other at steady-state. This
repelling mechanism may be exploited to colour the vertices of the associated graph. The
phases of uncoupled oscillators tend to form clusters, which may be interpreted as color
groups for the corresponding vertices. The larger is the separation between phase clusters,
the simpler is the classification of the nodes of the graph into color groups.

To illustrate this concept, let us consider a simple undirected graph, composed of
one edge, which couples two nodes, as shown in Figure 5(a). The chromatic number of
this graph is obviously equal to 2. The corresponding oscillatory network is depicted in
plot (b) of the same figure. Simulating the circuit with nominal parameter setting7, the
time waveforms of the voltages across the capacitors or those of the currents through
the memristors within the circuits of the two capacitively-coupled memristive oscillators
are expected to feature a steady-state phase shift of about 180◦. Upon the emergence of
anti-phase synchronisation between the two oscillators of this simple network, it would be
natural to assign one color to vertex 0 and another one to vertex 1 of the associated graph
of Figure 5(a).

As a further example, Figure 5(c) visualises another undirected graph with chromatic
number equal to 2. The respective oscillatory array is shown in plot (d) of the same figure.
Simulating this network, the phases of oscillators 1 and 2 are expected to cluster together,
and to shift away from the phase of reference oscillator 0 as much as possible, approaching
a relative value of approximately 180◦ at steady state. With the network exhibiting such
a phase pattern at steady state, it would be straightforward to divide the vertices of the
associated graph into two color groups, including vertex 0 and vertices 1 and 2, respectively.

Due to a couple of non-idealities the expectations on the phase dynamics of the
networks in plots (b) and (d) of Figure 5 are not fulfilled in practice. Details will be
provided in the next two sections.

7 The nominal parameter setting is obtained from Table 1 for α = 0.5. As will be shown later, simulating the
memristor model under a quasi-DC voltage stimulus and with the variability parameter stepped across its
existence domain, the locus observed for α = 0.5 appears in the center of the distribution of characteristics
emerging in the voltage-current plane.
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Figure 5. (a) A 2-node 1-edge graph. Its chromatic number is 2. (b) Oscillatory network corresponding
to the graph in (a). (c) A 3-vertex 2-edge graph. Its chromatic number is once again 2. Interestingly,
the number of edges departing from vertex 0 (from either vertex 1 or vertex 2) is 2 (1). (d) Oscillatory
network corresponding to the graph in (c).

Before proceeding, the following remark explains how the autonomous memristive
array is initialised, and clarifies how the steady-state phases of the cells are computed when
the network converges to an oscillatory solution.

Remark 1. With VS and RS fixed to specific values, as reported in Table 1, all memristors in the
network are biased in a common operating point lying along the NDR of the DC Im–Vm locus
of the NbOx resistive nanoswitch. Defining as vC,i and Ti the states of the second-order cell i of
the memristive array (i ∈ {0, . . . , N − 1}), the initial conditions for the capacitor voltage and
the memristor8 temperature are set in each oscillator to 0 V, and to the ambient temperature Tamb,
fixed to 293 K in Table 1, respectively. A random sequence is generated to mismatch, in a non-
deterministic way, the time instants, at which the signals generated by the DC voltage sources
within the oscillators ramp toward the nominal VS value over a time span of 1µs at the beginning
of a simulation. If sustained periodic oscillations develop across the network at steady state, for
each oscillator i ∈ {0, . . . , N − 1}, the phase of the memristor current im,i relative to the phase of
the current im,0 through the NbOx device in the reference oscillator 0 is then computed, as follows.
First, the common period T of the oscillations, observed in the time waveforms of the memristor
currents at steady state, is estimated. For each i-value in the set {0, . . . , N − 1}, the time instant
ti, at which the memristor current im,i in the cell i attains a given threshold value Ith, specifically
0.5 mA, during its ascending phase, within a single common steady-state cycle, is then recorded.
The cycle, utilised for these calculations, covers the time span [t0, t0 + T], where t0 marks the time
instant, when this threshold crossing event occurs for the memristor current im,0 in the reference cell
0. Next, for each i-value, the temporal span ∆ti , ti − t0, which separates the instants ti and t0, at
which the threshold crossing event occurs for the memristor currents in the cells i and 0, respectively,
is calculated. Finally, this allows to compute the steady-state phase shift between cells i and 0 via9

ϕ
(s)
i , ω0 · ∆ti, where ω0 , 2π

T , for each i-value.

3.2. Compensation for an Imbalance in the Number of Couplings per Oscillator

If an imbalance in the number of edges per node characterises the coupling structure of
a given graph, the phases of physically-coupled oscillators in the corresponding memristive
oscillatory network may be found to hold only a marginal distance one from the other at
steady state. The balanced nature of the graph of Figure 3 (Figure 5(a)) originates from
the fact that each of its six (two) nodes is coupled to 2 other nodes (the other node). On
the other hand, inspecting the graph of Figure 5(c), vertex 0 is coupled to vertices 1 and 2,
while each of vertices 1 and 2 is connected to vertex 0 only. The resulting imbalance in the
number of couplings per cell, arising in the associated array of memristive oscillators—refer
to Figure 5(d)—prevents the phases of cells 1 and 2 from separating as expected from the

8 The voltage across (current through) the memristor in the cell i is indicated via vm,i (im,i).
9 The units of the steady-state relative phase of oscillator i, computed via ϕ

(s)
i = ω0 · ∆ti , are radiants. In order

to express ϕ
(s)
i in degrees, its formula needs to be scaled by the factor 180◦

π (i ∈ {0, . . . , N − 1}).
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phase of cell 0. This is shown in the phase diagram10 of Figure 6(a), where the dashed orange
and green traces, illustrating the time evolution of the phases of cells 1 and 2 relative to cell 0,
respectively, feature a separation as small as 50◦ from the reference 0◦ level at steady state. The
unbalanced nature of the network of Figure 5(d) results in an imbalance in the capacitive load
per oscillator. Looking at the coupling configuration in this array, and recalling the circuit of
each oscillator, shown in Figure 4(a), in which, for simplicity, the memristor is replaced with its
small-signal equivalent circuit model [43], the application of basic circuit-theoretic principles
allows to obtain an expression in the sinusoidal regime for the capacitive impedance ZCi(jω),
loading oscillator i for each value of i in the set {0, 1, 2}, i.e.,

ZC0(jω) = ZC ‖ (ZCC (jω) + ZC(jω)) ‖ (ZCC (jω) + ZC(jω)), (4)

ZC1(jω) = ZC ‖
{

ZCC (jω) +
[
ZC(jω) ‖

(
ZCC (jω) + ZC(jω)

)]}
, (5)

ZC2(jω) = ZC ‖
{

ZCC (jω) +
[
ZC(jω) ‖

(
ZCC (jω) + ZC(jω)

)]}
, (6)

where

ZC(jω) =
1

jωC
, and (7)

ZCC (jω) =
1

jωCC
. (8)

Defining

Ca ‖ Cb ,
Ca · Cb

Ca + Cb
, (9)

the load capacitance Ci of the oscillator i ∈ {0, 1, 2} in the network of Figure 5(d) may be
extracted easily from the (i + 1)th equation in the triplet (4)–(6), yielding

C0 = C + 2 · (CC ‖ C), (10)

C1 = C + CC ‖ (C + CC ‖ C) ≈ C + CC ‖ C, (11)

C2 = C + CC ‖ (C + CC ‖ C) ≈ C + CC ‖ C, (12)

where the approximations stem from the inequality C >> CC, yielding C + CC ‖ C ≈ C.
Analysing Equations (10)–(12) it is clear that, in order to compensate for the imbalance in
the capacitive load per oscillator within the network of Figure 5(d), an additional capacitor
with capacitance Ccomp,j = CC ‖ C should be added in parallel to the capacitor C in the
circuit of oscillator j, for each j-value in the set {1, 2}, as shown in Figure 6(b). Simulating
the balanced network, the relative phases of cells 1 and 2 cluster together, converging to
values close to the expected 180◦ level at steady state, as may be evinced from plot (a) in
the same figure, where the orange and green solid traces reveal the time evolution of ϕ1
and ϕ2, respectively.

10 A new graphical tool—which we call phase diagram—is introduced in this research study [31] for visualising
the phase dynamics of the network. Referring, for example, to the phase diagram of Figure 6(a), a specific trace
visualises the time evolution of the phase of oscillator j relative to oscillator 0 (j ∈ {1, . . . , N− 1}). Reading the
time flow along the radial direction, the angle between the segment, joining the origin to the point, where the
trace is found to lie at time t, and the blue horizontal line, denoting the 0◦-valued reference level, represents
the phase shift ϕj(t) of oscillator j with respect to oscillator 0 at time t.



J. Low Power Electron. Appl. 2022, 12, 22 10 of 30

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 3

0.0 0.2 0.4 0.6 0.8 1.0
vM/mA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

i M
/
m
A

α=0.0
α=0.2
α=0.4
α=0.6
α=0.8
α=1.0

Fig. 3: Quasi-static current-voltage characteristic of distinct realizations of
the memristor M depending on the variability parameter α, which accurately
reflects the distribution obtained by measuring 196 NbOx-based threshold
switching devices.

B. Unbalanced number of connections

If the graph of Fig. 1(a) will be implemented with its associ-
ated network in Fig. 1(b), we can determine the evolution of
the phase shift between the oscillators, as depicted in Fig. 4
by dashed lines. For this phase shift oscillator 0 will serve
as reference and a large phase shift relative to this reference
will be interpreted as a different color. On the radial axis, the
time is shown and the angle in this plot illustrates the phase
shift. The bold numbers represent the number of the respective
vertex. If we had coupled only two oscillators by a capacitor,
with system parameters of Table I, we would have recorded a
phase shift of approximately 180° between them, as known
from [1], [8], [9], [15]–[18]. Thus, similarly, it would be
desirable to achieve a phase shift of 180° between oscillators
0 and 1 as well as between oscillators 0 and 2, to obtain
a reproducible maximum phase separation between different
colors independently of the chosen graph. But, as seen in
Fig. 4 (dashed lines) we derive approximately 50° phase shift.
This is the case because oscillator 0 has two connections and
oscillators 1 and 2 only have one. Because of this, there is
an imbalance in the network. The effective capacitance Cieff
loading the oscillator i ∈ {0, 1, 2}, consists of the internal
capacitance C of the oscillator and in parallel to this, for each
of the physically-connected neighboring oscillators, the series
connection between the respective coupling capacitor Cc and
the total capacitance loading the respective coupling capacitor
Cc itself.1 Thus, we derive the following equations for the
three oscillators of this network:

C0
eff = C + 2 · (CC ||C) (3a)

C1
eff = C + CC || (C + CC ||C) ≈ C + CC ||C (3b)

C2
eff = C + CC || (C + CC ||C) ≈ C + CC ||C (3c)

1For example, for oscillator 1, which has only one physically-connected
neighboring oscillator, i.e. the reference oscillator 0, the total capacitance
loading the respective coupling capacitor is the parallel between the internal
capacitance of the reference oscillator 0 and the series connection between the
capacitance, which couples oscillators 0 and 2, and the internal capacitance
of oscillator 2.
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Fig. 4: Evolution of the phase shift (referenced to oscillator 0) of the three
oscillators for the graph of Fig. 1 for the unbalanced (dashed) and balanced
(solid) case without variability (α = 0) between the memristors. The bold
numbers represent the numbering of the respective vertices.
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Fig. 5: Balanced associated network of the graph depicted in Fig. 1.

since CC � C, with:

CC ||C =
CC C

CC + C
.

The difference in this effective capacitance is approximately
the difference in the number of connections times CC ||C. If we
add this difference to the oscillator of the associated network
(as illustrated in Fig. 5), the network becomes balanced.
The evolution of the phase shift for the balanced associated
network is depicted in Fig. 4 (solid lines). As expected, the
phase shift is approximately 180°. We are also able to color
the network clearly in two colors (color 1: vertex 0 and color
2: vertices 1 and 2). In general, the compensation capacitor
Cicomp for the oscillator i in a network of N oscillators is
given by:

Cicomp = (nmax − ni) · (CC ||C) (4a)

nmax = max
0≤j<N

nj (4b)

with ni as the number of couplings of oscillator i and
nmax as the maximum number of couplings, which at least
one of the N oscillators, the network is comprised of, has.
Hereafter, the balanced associated network will be used for
the implementation of graphs.

C. Impact of the device-to-device variability of the NbOx
memristor

A major issue is the device-to-device variability of the NbOx
memristor and its impact on the behavior of the network.
In Fig. 6, the behavior of the graph in Fig. 1(a) and its
associated balanced network (Fig. 5) is shown taking the
device variability into account. The dashed line shows, that the
phase shifts of oscillator 1 and 2 with respect to oscillator 0 do
not converge. Thus, the network cannot be used for the task of

(a)

Figure 6. (a) Phase diagram visualising the time evolution of the phases of oscillators 1 (in orange)
and 2 (in green) relative to oscillator 0, sitting on the 0◦ phase state throughout the simulation (blue
horizontal line) for the original unbalanced network of Figure 5(c) (see the dashed traces) and for
the compensated network in plot (b) of this figure (refer to the solid traces). In the first (latter) case,
the phases of oscillators 1 and 2 are found to cluster together, and to distance themselves from the
reference 0◦ phase, associated to oscillator 0, by approximately 50◦ (180◦) at steady state. (b) Complete
circuitry of the memristive oscillatory network of Figure 5(d) after compensation for the imbalance in
the number of couplings per oscillator. Here Ccomp,1 = Ccomp,2 = CC ‖ C.

With reference to Figure 6(b), it is interesting to observe that the compensating ca-
pacitance Ccomp,j for oscillator j ∈ {1, 2} is equal to the product between CC ‖ C and
the difference between the number of connections for oscillator 0, coinciding with the
maximum number of connections per oscillator in the unbalanced network of Figure 5(d),
and the number of connections for oscillator j. Taking inspiration from this finding, for a
general unbalanced network with N oscillators, the compensating capacitance Ccomp,i for
oscillator i ∈ {0, 1, . . . , N − 1} is computed via

Ccomp,i = (nmax − ni) · (CC ‖ C), (13)

where ni is the number of couplings for oscillator i, while

nmax = max
0≤i<N

{ni}, (14)

is the maximum number of couplings per oscillator in the original network. While reducing
the coupling capacitance may allow to accelerate the phase dynamics in the memristive
computing engine, a number of factors influence its selection. In this regard, to name but
a couple of key aspects, first CC should not be too small, otherwise the capacitive path
between any two oscillators, to be paired so as to reproduce the links, joining the vertices
of the associated graph, across the proposed cellular medium, would effectively act as
an open circuit. Concurrently, CC may not be so large as to violate the validity of the
approximation C >> CC, used to derive the compensating capacitance Ccomp,i for each
oscillator i ∈ {0, 1, . . . , N − 1} (refer to Equation (13)), which enables to counteract the
non-uniformity in the load capacitance per oscillator across the cellular medium, allowing
to keep the natural frequencies11 of the oscillators close together, which facilitates the
convergence of the memristive computing engine to some steady state.

In the remainder of this paper, any unbalanced network will first be compensated, and
then simulated for the solution of a given graph coloring problem.

3.3. Compensation for the Memristor Device-to-Device Variability

Simulating the network of Figure 5(b) for the case, where the device-to-device vari-
ability is taken into account, the memristor currents in the two oscillatory circuits may
be unable to settle on steady-state oscillatory waveforms. Figure 7(a) shows the current-
voltage loci obtained by simulating the memristor model Equations (1), (2), and (3) un-
der a quasi-DC voltage stimulus for each value of the variability parameter α in the set

11 The natural frequency of an oscillator is the inverse of the period of the oscillations developing across
its circuitry.
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{0, 0.2, 0.4, 0.6, 0.8, 1.0}. It is worth to pinpoint that the distribution of quasi-static character-
istics, visualised in this figure, matches the variability observed in analogous loci measured
from 196 device samples. Assuming that the oscillator 0 (1) in the two-cell network hosts
a memristor, featuring a quasi-DC im–vm locus lying in the center (on the right end) of
the distribution of Figure 7(a), the network is found to fail to converge to steady-state
oscillatory dynamics. This issue is essentially due to the significant mismatch between
the DC operating points of the resistive nano-switches in the two oscillators. It may be
addressed by reprogramming the DC operating point of the memristor in cell 1. This may
be achieved [28] by adjusting either the resistance RS of the series resistor, as done in this
research study, or the voltage VS of the DC source within the circuit of oscillator 1 until an
anti-phase synchronisation pattern is found to emerge in the network.

As demonstrated in the phase diagram visualised in plot (b) of Figure 7, stepping the
increment ∆RS,1 in the series resistance RS of oscillator 1 from 0 Ω up to 151 Ω, the network
keeps featuring non-convergent phase dynamics for a while (see the orange trace relative
to the case ∆RS,1 = 50 Ω). Then, from some point onward, the memristor currents in the
two oscillators settle on steady-state oscillatory waveforms, sharing the same frequency,
but differing in phase by an offset, which progressively approaches the expected 180◦ level
as the series resistance RS of oscillator 1 gets larger (compare the green and purple traces,
obtained for the first and second ∆RS,1-value in the set {100, 125}Ω, respectively). Finally,
the two capacitively-coupled cells attain anti-phase synchronisation (refer to the red trace
corresponding to the scenario ∆RS,1 = 151 Ω).

As another example, Figure 7(c), where the orange and green dashed traces illustrate
the time evolution of the phase of oscillators 1 and 2 relative to oscillator 0, respectively,
demonstrates that the balanced network of Figure 6(b) fails to converge to a steady-state
oscillatory solution when the first, second, and third value in the set {0.5, 0, 1} is assigned
in turn to the variability parameter α in the model of the memristor in oscillator 0, 1, and
2. A numerical procedure, tuning separately12, one at a time, the series resistances in
oscillators 1 and 2 with the intention to maximise the steady-state phase shifts ϕ

(s)
1 and

ϕ
(s)
2 , determines that decrementing (incrementing) the series resistance of oscillator 1 (2) by

∆RS,1 = −134 Ω (∆RS,2 = +151 Ω), the network exhibits a steady-state oscillatory pattern
characterised by the anti-phase synchronisation between oscillators 1 and 2, on one side,
and oscillator 0, on the other side.

In the remainder of this section, in order to compensate for the negative effects that
the memristor device-to-device variability has on the performance of a balanced network,
the following approach shall be adopted. First, a reference cell, hosting the memristor, to
which the random number generator assigns a variability parameter value closest to 0.5
among all NbOx devices in the array, should be selected. In a hardware implementation of
the memristive network, the memristor of the reference oscillator would approximately
display the average dynamical behaviour among all the resistive nano-switches employed
in the array13. This would minimise the subsequent adjustment to be carried out on the
bias circuit of each oscillator j ∈ {1, . . . , N − 1} to reprogram the DC operating point of the
respective memristor14. Then, for each j-value in the set {1, . . . , N − 1}, the oscillator j is
capacitively coupled only to the reference oscillator 0, and the series resistance RS in its

12 In order to reprogram appropriately the operating point of the memristor in the cell j ∈ {1, 2} of the 3-oscillator
network under focus, the cell j itself is capacitively coupled only to the reference cell 0, and, as described earlier,
∆RS,j is tuned until anti-phase synchronisation emerges in the resulting two-cell network. This procedure is
carried out separately for oscillators 1 and 2.

13 It is important to pinpoint that, while the choice of a reference cell for the preliminary compensation of the
memristor device-to-device variability should fall for a specific oscillator, as specified here, no rule dictates the
selection of a reference cell for the later computation of the relative phase pattern of the array, as discussed in
Section 4.

14 It is important to observe that, while taking the proposed device-to-device compensation measure, care need
to be taken so as to keep the natural oscillation frequency of each oscillator within a close range. In fact, a wide
spread in this parameter, inevitably differing across the cellular medium, due to the RS tuning procedure,
would jeopardize the convergence of the bio-inspired computing engine to some steady state.
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DC bias circuit is adjusted through a numerical procedure till the point when its increment
or decrement by ∆Rs,j induces a 180◦ phase shift between the memristor currents of the
two cells.

It is important to observe that, in hardware, such RS tuning procedure needs to
be carried out only once, during the computing machine testing phase, directly after
its fabrication. In order to simplify the programmability of the series resistor, it could
be implemented through a voltage-controlled CMOS transistor forced to operate in the
linear region.
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Fig. 3: Quasi-static current-voltage characteristic of distinct realizations of
the memristor M depending on the variability parameter α, which accurately
reflects the distribution obtained by measuring 196 NbOx-based threshold
switching devices.

B. Unbalanced number of connections

If the graph of Fig. 1(a) will be implemented with its associ-
ated network in Fig. 1(b), we can determine the evolution of
the phase shift between the oscillators, as depicted in Fig. 4
by dashed lines. For this phase shift oscillator 0 will serve
as reference and a large phase shift relative to this reference
will be interpreted as a different color. On the radial axis, the
time is shown and the angle in this plot illustrates the phase
shift. The bold numbers represent the number of the respective
vertex. If we had coupled only two oscillators by a capacitor,
with system parameters of Table I, we would have recorded a
phase shift of approximately 180° between them, as known
from [1], [8], [9], [15]–[18]. Thus, similarly, it would be
desirable to achieve a phase shift of 180° between oscillators
0 and 1 as well as between oscillators 0 and 2, to obtain
a reproducible maximum phase separation between different
colors independently of the chosen graph. But, as seen in
Fig. 4 (dashed lines) we derive approximately 50° phase shift.
This is the case because oscillator 0 has two connections and
oscillators 1 and 2 only have one. Because of this, there is
an imbalance in the network. The effective capacitance Cieff
loading the oscillator i ∈ {0, 1, 2}, consists of the internal
capacitance C of the oscillator and in parallel to this, for each
of the physically-connected neighboring oscillators, the series
connection between the respective coupling capacitor Cc and
the total capacitance loading the respective coupling capacitor
Cc itself.1 Thus, we derive the following equations for the
three oscillators of this network:

C0
eff = C + 2 · (CC ||C) (3a)

C1
eff = C + CC || (C + CC ||C) ≈ C + CC ||C (3b)

C2
eff = C + CC || (C + CC ||C) ≈ C + CC ||C (3c)

1For example, for oscillator 1, which has only one physically-connected
neighboring oscillator, i.e. the reference oscillator 0, the total capacitance
loading the respective coupling capacitor is the parallel between the internal
capacitance of the reference oscillator 0 and the series connection between the
capacitance, which couples oscillators 0 and 2, and the internal capacitance
of oscillator 2.
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Fig. 4: Evolution of the phase shift (referenced to oscillator 0) of the three
oscillators for the graph of Fig. 1 for the unbalanced (dashed) and balanced
(solid) case without variability (α = 0) between the memristors. The bold
numbers represent the numbering of the respective vertices.
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Fig. 5: Balanced associated network of the graph depicted in Fig. 1.

since CC � C, with:

CC ||C =
CC C

CC + C
.

The difference in this effective capacitance is approximately
the difference in the number of connections times CC ||C. If we
add this difference to the oscillator of the associated network
(as illustrated in Fig. 5), the network becomes balanced.
The evolution of the phase shift for the balanced associated
network is depicted in Fig. 4 (solid lines). As expected, the
phase shift is approximately 180°. We are also able to color
the network clearly in two colors (color 1: vertex 0 and color
2: vertices 1 and 2). In general, the compensation capacitor
Cicomp for the oscillator i in a network of N oscillators is
given by:

Cicomp = (nmax − ni) · (CC ||C) (4a)

nmax = max
0≤j<N

nj (4b)

with ni as the number of couplings of oscillator i and
nmax as the maximum number of couplings, which at least
one of the N oscillators, the network is comprised of, has.
Hereafter, the balanced associated network will be used for
the implementation of graphs.

C. Impact of the device-to-device variability of the NbOx
memristor

A major issue is the device-to-device variability of the NbOx
memristor and its impact on the behavior of the network.
In Fig. 6, the behavior of the graph in Fig. 1(a) and its
associated balanced network (Fig. 5) is shown taking the
device variability into account. The dashed line shows, that the
phase shifts of oscillator 1 and 2 with respect to oscillator 0 do
not converge. Thus, the network cannot be used for the task of
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Fig. 6: Evolution of the phase shift (referred to oscillator 0) of the three
oscillators for the graph of Fig. 1(a) with variability (oscillator 0: α = 0.5,
oscillator 1: α = 0.0 and oscillator 2: α = 1.0) between the memristors.
Depicted is the behavior of each oscillator for the uncompensated (dashed
line) and compensated (solid line) cases. In the compensated case, oscillator
1 was adapted by ∆R = −134Ω and oscillator 2 by ∆R = 151Ω. The bold
numbers are the labels identifying the vertices of the graph under study.

vertex coloring. But by a small adjustment of the DC operating
point of each oscillator, depending on the characteristics of the
corresponding memristor, this issue can be solved. In Fig. 6
the solid lines show the behavior of the network with ad-
hoc changes in the resistance of the series resistor RS . As
desired, oscillators 1 and 2 are found to feature a phase shift of
approximately 180° with respect to oscillator 0. With regard to
our strategy to find the right adjustment of the operating point
of an oscillator, consider the simple case where two oscillators
are coupled. The first oscillator serves as a reference and is not
adjusted. This reference oscillator should feature a quasi-static
current-voltage characteristic which lies in the center of the
distribution depicted in Fig. 3. In our case we select a device
with α = 0.5. The other oscillator is adjusted by adapting
the voltage source by ∆V or/and the series resistor by ∆R
until the phase shift converges to approximately 180°, as seen
in Fig. 7 for an oscillator with α = 1.0 and the reference
oscillator (blue line) with α = 0.5. It can be determined,
that for a too small adjustment (∆R = 50Ω) there is no
convergence. By implementing a larger change (∆R = 100Ω,
∆R = 125Ω), the system converges but not to a 180° phase
shift. By implementing ∆R = 151Ω the system works as
intended and stays at 180° phase shift. However, there is a
variability between the adapted and the reference oscillator.
This adaptation has been implemented for all oscillators in the
network individually utilizing the same reference oscillator. If
the system is oscillating faster, due to smaller capacitors C
and CC , it becomes difficult or even impossible to determine
the operating point at which the system works. In this case
the device-to-device variability has to be decreased, which is a
major goal in device fabrication. Hereafter, all memristors will
be implemented with a device-to-device variability by distinct
parameters α ∈ [0, 1] and the corresponding oscillators will
be adapted as described in this section.

III. GROUPING VERTICES INTO COLORS

One of the most significant parts of the vertex coloring prob-
lem is the decision regarding which vertices belong to the same
group and should be assigned to the same color. This decision
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Fig. 7: Phase shift behavior for two coupled oscillators with variability for
distinct adjustments ∆R of the series resistor RS . The reference oscillator
(blue line) has the variability parameter α = 0.5, the other oscillator has
α = 1.0.
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should be based on the final phase shifts the oscillators feature
within the associated network after the network reaches a
stable state. Thereby, the vertices are sorted according to
the values of the steady-state phase shifts of their associated
oscillators relative to the reference oscillator in ascending
numerical order. Additionally, it is necessary to provide the
information regarding which vertices are connected. This is
defined by the symmetrical adjacency matrix A. This N ×N
matrix defines the whole undirected graph of N vertices. The
following expression describes the elements of the matrix:

Aij = Aji =

{
1 if oscillator i is coupled to j
0 if oscillator i and j are not coupled,

(5)

whereby i and j denote the column and the row of the
adjacency matrix. As an example, for the graph of a ring of six
vertices as shown in Fig. 8, we derive the following adjacency
matrix A:

A =


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 . (6)

According to the rules of vertex coloring, only unconnected
vertices are allowed to have the same color. This means that
for all pairs of vertices m,n in a color Ck, the corresponding
element Amn of the adjacency matrix has to be zero:

∀m,n ∈ Ck : Amn = 0 . (7)
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Fig. 6: Evolution of the phase shift (referred to oscillator 0) of the three
oscillators for the graph of Fig. 1(a) with variability (oscillator 0: α = 0.5,
oscillator 1: α = 0.0 and oscillator 2: α = 1.0) between the memristors.
Depicted is the behavior of each oscillator for the uncompensated (dashed
line) and compensated (solid line) cases. In the compensated case, oscillator
1 was adapted by ∆R = −134Ω and oscillator 2 by ∆R = 151Ω. The bold
numbers are the labels identifying the vertices of the graph under study.

vertex coloring. But by a small adjustment of the DC operating
point of each oscillator, depending on the characteristics of the
corresponding memristor, this issue can be solved. In Fig. 6
the solid lines show the behavior of the network with ad-
hoc changes in the resistance of the series resistor RS . As
desired, oscillators 1 and 2 are found to feature a phase shift of
approximately 180° with respect to oscillator 0. With regard to
our strategy to find the right adjustment of the operating point
of an oscillator, consider the simple case where two oscillators
are coupled. The first oscillator serves as a reference and is not
adjusted. This reference oscillator should feature a quasi-static
current-voltage characteristic which lies in the center of the
distribution depicted in Fig. 3. In our case we select a device
with α = 0.5. The other oscillator is adjusted by adapting
the voltage source by ∆V or/and the series resistor by ∆R
until the phase shift converges to approximately 180°, as seen
in Fig. 7 for an oscillator with α = 1.0 and the reference
oscillator (blue line) with α = 0.5. It can be determined,
that for a too small adjustment (∆R = 50Ω) there is no
convergence. By implementing a larger change (∆R = 100Ω,
∆R = 125Ω), the system converges but not to a 180° phase
shift. By implementing ∆R = 151Ω the system works as
intended and stays at 180° phase shift. However, there is a
variability between the adapted and the reference oscillator.
This adaptation has been implemented for all oscillators in the
network individually utilizing the same reference oscillator. If
the system is oscillating faster, due to smaller capacitors C
and CC , it becomes difficult or even impossible to determine
the operating point at which the system works. In this case
the device-to-device variability has to be decreased, which is a
major goal in device fabrication. Hereafter, all memristors will
be implemented with a device-to-device variability by distinct
parameters α ∈ [0, 1] and the corresponding oscillators will
be adapted as described in this section.

III. GROUPING VERTICES INTO COLORS

One of the most significant parts of the vertex coloring prob-
lem is the decision regarding which vertices belong to the same
group and should be assigned to the same color. This decision
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Fig. 7: Phase shift behavior for two coupled oscillators with variability for
distinct adjustments ∆R of the series resistor RS . The reference oscillator
(blue line) has the variability parameter α = 0.5, the other oscillator has
α = 1.0.
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should be based on the final phase shifts the oscillators feature
within the associated network after the network reaches a
stable state. Thereby, the vertices are sorted according to
the values of the steady-state phase shifts of their associated
oscillators relative to the reference oscillator in ascending
numerical order. Additionally, it is necessary to provide the
information regarding which vertices are connected. This is
defined by the symmetrical adjacency matrix A. This N ×N
matrix defines the whole undirected graph of N vertices. The
following expression describes the elements of the matrix:

Aij = Aji =

{
1 if oscillator i is coupled to j
0 if oscillator i and j are not coupled,

(5)

whereby i and j denote the column and the row of the
adjacency matrix. As an example, for the graph of a ring of six
vertices as shown in Fig. 8, we derive the following adjacency
matrix A:

A =


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 . (6)

According to the rules of vertex coloring, only unconnected
vertices are allowed to have the same color. This means that
for all pairs of vertices m,n in a color Ck, the corresponding
element Amn of the adjacency matrix has to be zero:

∀m,n ∈ Ck : Amn = 0 . (7)

(c)

Figure 7. (a) Spread in the distribution of quasi-DC memristor current-voltage loci, as emerging
from numerical simulations of the model Equations (1), (2), and (3) for all values of the variability
parameter α in the set {0, 0.2, 0.4, 0.6, 0.8, 1.0}. (b) Phase diagram showing the time evolution of the
phase shift of oscillator 1 relative to the 0◦-valued phase of the reference oscillator 0 for each of the
values of the series resistance increment ∆RS,1 in the set {50, 100, 125, 151}Ω (refer in turn to the
orange, green, purple, and red traces). The two capacitively-coupled oscillators achieve anti-phase
synchronisation for the largest ∆RS,1-value in this set. (c) Phase diagram illustrating the phase
dynamics of oscillators 1 (in orange) and 2 (in green) for the balanced network of Figure 6(b) for the
case where specific parameters in the model of the memristor in the cells 0, 1, and 2 are respectively
controlled by the first, second, and third α-value within the set {0.5, 0, 1} (see the dashed traces),
and after the negative effects on the network performance associated to the memristor device-to-
device variability have been compensated by incrementing (decrementing) the series resistance RS by
∆RS,1 = −134 Ω (∆RS,2 = +151 Ω) (refer to the solid lines).

Remark 2. In view of a future hardware implementation, the parameter setting of the memristive
computing engine could be optimized to increase the data processing speed further. However, a
comprehensive investigation, aimed to ensure this would not impair the accuracy of the engine
calculations, should concurrently be carried out. On one hand, the operating speed of the computing
engine should not be so large to prevent the memristor to respond to the stimuli, it experiences over
time, which would not allow to exploit thoroughly its rich dynamics for solving the challenging
vertex coloring task under focus. On the other hand, the array of capacitively-coupled memristor
oscillators is expected to attain a steady state within a sufficiently-short time frame. For all the
case studies, investigated in this research work, except for those simulations, in which the proposed
computing engine was unable to exit the transient phase, the value assigned to the coupling
capacitance CC enabled the oscillators’ phases to converge to steady-state values within tens of
milliseconds. Each design parameter may in fact affect some key figure of merit of the bio-inspired
network. For example, reducing the capacitance C of each oscillator may induce an acceleration in
the phase dynamics. However, it could also reduce the range of admissible memristor NDR bias
points, about which the processing unit would undergo limit-cycle oscillations [44], which, as a
consequence, would shrink the tuneable range for the series resistance RS in the device-to-device
variability compensation procedure.

4. A Rigorous Strategy for Coloring a Graph via the Network Phase Dynamics

As explained earlier, the assignment of colors to the nodes of a graph is based upon the
relative phases among the oscillators of the associated network at steady state. However,
a rigorous strategy, as proposed below, needs to be applied at the end of the network
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simulation to classify the vertices of the associated graph into color groups, with the
intention to use the minimum possible number of colors15.

As described earlier, the relative phases among the oscillators of a given network are
computed at the end of a simulation, on the basis of the time instants at which, within a
common steady-state period, the time waveforms of the currents through the memristors
cross a threshold value Ith, here set to 0.5 mA, during the ascending phase. This calculation
allows to order the relative phases in increasing order, with the 0◦ reference level sitting
on the first position of the arrangement, which we refer to as phase shift ordering in the
remainder of the paper. The phase shift ordering directly translates into a corresponding
ranking among the oscillators, with those, which feature a lower steady-state phase relative
to the reference cell, sitting higher in the table. Equivalently, the ranking among the
oscillators may be interpreted as a ranking among the associated vertices.

Our rigorous strategy to assign colors to the vertices of the associated graph on the
basis of the network phase dynamics is based upon the analysis of the oscillator/vertex
ranking through an iterative procedure composed of N iterations. The first iteration
may be summarised as follows. Initially the first vertex in the table, i.e., reference vertex
0, is inserted in the first color group. Proceeding toward the bottom of the table, for
j ∈ {2, . . . , N}, vertex at position j in the table is assigned the same color as (j− 1)th-placed
vertex if the graph features no edge between these two vertices, otherwise the jth-ranked
vertex is defined as the first element of a new color group. After coloring vertex at row N in
the table, a final check needs to be carried out to verify if the vertices in the last color group
may be merged with those in the first color group. This may be done if and only if no pair
of vertices in these two groups is connected by means of an edge in the undirected graph.
In cycle i ∈ {2, . . . , N} of the iterative procedure, the color assignment step is repeated in a
similar fashion, analysing progressively the vertices at positions i, i + 1, . . ., N, 1, 2, . . ., i− 1
in the table. With such iterative procedure, at least one of the cycles will allow to determine
the minimum number of color groups, identifiable by the network, given the phase shift
ordering it outputs at the end of a certain simulation. In other words, indicating the kth

color group, which, on the basis of the prediction of the ith cycle of the iterative procedure,
is identifiable by the network, as C(i)k (k ∈ {1, . . . , mi}, where mi ∈ [n, N] denotes the total
number of colors assigned to the N nodes of the associated graph in the ith iteration, and n
represents the chromatic number of the graph itself, the proposed strategy will output the
particular group classification obtained from the qth iteration, whereby mq = mini=N

i=1 {mi}.

Remark 3. Remarkably, the initialisation of the oscillatory network, and, particularly, the temporal
order of activation of the DC voltage sources in its oscillators, plays a crucial role on the steady-state
phase arrangement, and, as a result, on the outcome of the proposed strategy. Consequently, it
is possible that the classification of the vertices of a graph into color groups, as estimated via our
iterative procedure, is not optimal. Under these circumstances, the network is unable to identify the
chromatic number of the associated graph, since it converges to an oscillatory solution corresponding
to a local minimum for some optimisation goal associated to the vertex coloring problem.

Let us denote the phase shift vector as ϕ , [ϕ0 = 0◦, . . . , ϕN−1], where ϕi stands for
the phase shift between oscillator i and reference oscillator 0 over the course of a certain
simulation of the network (i ∈ {0, . . . , N − 1}). Given that the network of capacitively-
coupled oscillators tends to pull the phases of physically-connected cells far apart one

15 The proposed strategy will determine the minimum possible number of color groups, which, under a given
initialisation setting, the network is able to identify as it classifies the nodes of the associated graph. Importantly,
as will be clarified later, this minimum number does not necessarily coincide with the chromatic number of
graph, since the network may converge to a correct but suboptimal solution. Methods allowing the memristive
array to overcome a suboptimal solution so as to approach the optimal one will be presented shortly.
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from the other, it is expected that the phase dynamics unfold toward a steady-state pattern
maximising a function F(ϕ) of the form

F(ϕ) ,
1
2
·

N−1

∑
i=0

N−1

∑
j=0

ai,j · |ϕi − ϕj|, (15)

where ai,j is the element at row i and column j of the so-called adjacency matrix A, which
encodes the coupling arrangement within a N-node graph16. Transforming the expression
for F(ϕ) in Equation (15), another function of the phase shift vector, defined as

G(ϕ) ,
1
2
·

N−1

∑
i=0

N−1

∑
j=0

ai,j · cos(ϕi − ϕj), (16)

is chosen to describe the optimisation goal of the network as it evolves toward a stable
solution. It is worth pinpointing that the phase shift vector ϕ(s) = [ϕ

(s)
0 = 0◦, . . . , ϕ

(s)
N−1],

emerging in a well-behaved network at steady state, minimises the function G(ϕ). For a
general network, however, the optimization goal function might feature a number of local
minima besides the global minimum. If the oscillatory solution, the network converges to,
at the end of a certain simulation, corresponds to a local (the global) minimum of G(ϕ),
the application of the vertex coloring strategy, described earlier, results in a group number
higher than (equal to) the chromatic number of the associated graph.

The analysis of an exemplary network, specifically the one shown in Figure 3(b),
allows to gain a deeper insight into the phase dynamics of a memristive array in a pair of
simulation scenarios, associated to a suboptimal and to the optimal initialisation scenario,
respectively. The network under focus is already balanced, since each of its oscillators is
coupled to the 2 adjacent cells, thus only the memristor device-to-device variability needs
to be neutralised. Figure 8(a) ((c)) visualises the time evolution of the phase dynamics
emerging in the network under a suboptimal (the optimal) initialisation setting. In both
scenarios the optimisation goal function decreases over time, but, in the first (latter) case,
G(ϕ) converges asymptotically toward a local (the global) minimum, as depicted in plot (b)
((d)) of the same figure.

16 If an (no) edge connects vertices i and j, then ai,j = aj,i = 1(0). Note that A = AT ∈ RN×N .
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The test regarding whether or not several vertices can be
inserted into the same color Ck can be performed by utilizing
a sub-matrix Ak of the adjacency matrix A, which includes
only the columns and rows belonging to the tested vertices.
Thus, if the vertices can be inserted in the same color Ck, the
sub-matrix Ak has to be the zero matrix.

The interaction between the oscillators of the associated
network provides a presorting of the vertices according to
their steady-state phase shifts. Physically-coupled oscillators
tend to feature a large phase shift between their oscillations.
Thus, oscillators exhibiting smaller phase shift are probably
uncoupled and are more likely to belong to the same group
or rather color. By sorting the phase shifts, we derive the
order of the vertices, which will systematically be tested for
the color arrangement. This sufficiently decreases the number
of necessary tests, resulting in a reasonable calculation time.
Without the presorting we have to check all possible sortings
of the vertices. For a graph with N vertices, this would result
in (N − 1)! possibilities, for example a network with N = 25
vertices has approximately 6.2 · 1023 possible combinations.
If we use the presorting according to the phase shifts, we
only have to check one sorting for the optimal coloring. For
the grouping/coloring based on the ordering of the vertices
according to the phase shifts of associated oscillators, we first
assign the first color to the first vertex/oscillator, i.e. to the
vertex with the smallest phase shift, in the ordered list. We
then move on to consider the second vertex/oscillator of this
ordering and assign the second color to it, unless the vertex
under focus is not physically coupled to the reference oscillator
(this can be determined by analyzing the respective sub-matrix
Ak, as shown through an example later). In the case there is
no connection between the first two vertices, the second one
is also inserted in the first color group. Then the third vertex
is tested. In case only one color group has been created so far,
the third vertex is assigned a new color only if it is coupled to
either of the first two vertices. If, on the other hand, two color
groups have been created so far, the third vertex is assigned a
new color only if it is physically coupled to the second vertex,
otherwise it is inserted in the same color group of the second
vertex. This color assignment routine goes on in a similar
fashion with the testing of all the remaining vertices in the
sorted list starting from the fourth one. To illustrate these steps,
we will use the example of the ring of six vertices depicted in
Fig. 8. The trajectories for the phase shifts of the associated
oscillators are illustrated in Fig. 9. These trajectories result in
the following steady-state phase shifts:

ϕ = ( ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 )>

= ( 0◦ 118◦ 240◦ 358◦ 120◦ 242◦ )> . (8)

Hence, the resulting ordering of the vertices is: 0; 1; 4; 2; 5; 3.
First, we will start at the vertex with the smallest phase shift.
In the first step of the testing routine, we assign the first vertex,
vertex 0, to the first color and test, if the second vertex, vertex
1, can be colored with the same color. This is not the case,
because vertex 0 and 1 are connected, which is also obvious
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Fig. 9: Exemplary trajectories for the phase shifts of the associated network
for the graph of a ring of six vertices shown in Fig. 8. All capacitor voltages
and all memristor temperatures in the network are initialized respectively to
0V and to Tamb = 293K. The voltage of the DC source in each cell is
ramped from 0V to VS over a time of 1µs. A random sequence is generated
to dedicate a particular ordering in the time instants at which the N DC
voltages begin to rise.

upon analyzing the corresponding sub-matrix A1:

A1 =

(
A00 A01

A10 A11

)
=

(
0 1
1 0

)
. (9)

Because the sub-matrix A1 is not equal to the zero matrix,
vertex 0 and 1 cannot be grouped in the same color. Thus, the
first color is assigned of vertex 0 only, i.e. C1 = {0} while
we have to create a second color, which is associated with
vertex 1. In the next step, we have to test if vertex 4 can also
colored with the second color. Because vertex 1 and 4 are not
connected i.e. the sub-matrix A2:

A2 =

(
A11 A14

A41 A44

)
=

(
0 0
0 0

)
(10)

is the zero matrix, they can both be grouped in the second
color (C2 = {1; 4}). The next vertex for testing is vertex 2,
which is not connected to vertex 4 but is coupled to vertex
1. Thus, vertex 2 cannot be included in the second color and
will be assigned a third color. Vertex 5 can be added to the
third color (C3 = {2; 5}). Finally, vertex 3 has to be associated
with a fourth color, because it is connected to vertex 2 and,
as a result, may not be assigned the third color. Since the first
oscillator and the oscillator with the highest phase shift could
be close to each other in the phase plot, a final test will be
additionally carried out to verify if the first and the last vertex
in the order can be grouped in the same color C1. Because
vertex 3 is not connected to vertex 0, vertex 3 can be inserted
in color C1. This procedure results in a grouping of the vertices
into three different colors, namely C1 = {0; 3}, C2 = {1; 4}
and C3 = {2; 5}, for the example of the graph shown in Fig. 8.
In this case the testing routine, started from vertex 0, resulted
in the indication of three different colors for this graph2.
However, for a different graph this might not be the case and
therefore the testing routine has to be repeated by selecting

2With the initial conditions chosen in the simulation of Fig. 9, the minimum
number of colors, which the network is able to identify is three. As a result,
the application of the testing strategy to the phase shift ordering of equation
(8) already founds the best solution of the graph coloring problem for the
initial conditions chosen in Fig. 9. Note that three is not the optimal solution
of the problem i.e. the initial conditions chosen here are sub-optimal.
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Fig. 11: Evolution of the minimization goal G(ϕ) for the phase evolution of
Fig. 9, which trends towards a local minimum of −3 (compared to the global
minimum of −6 obtained in Fig. 10(b)). The assignment of vertices to color
groups, on the basis of the final phase shifts of the respective oscillators, is
visualized in Fig. 9 by highlighting the perimeter of the portion of the circle,
where the 2 trajectories, indicating the temporal trends of the phases of the
oscillators corresponding to the vertices 0 and 3, 1 and 4, 2 and 5, respectively
belong to at steady state, with the same colors used in this plot to fill the two
circles symbolizing the corresponding vertices of the graph. This is a correct
solution of the vertex coloring problem, but not the optimal one, since it does
not provide the minimal number of colors, i.e. the chromatic number of the
graph under consideration.

properties, for instance the device-to-device variability, which
affects differently the operation of each oscillators, the turn on
sequence of the voltage sources of the oscillators. Because the
optimization goal G(ϕ) in equation (12) is a non-convex func-
tion, it may feature several local minima. The one with largest
modulus is the global optimum. The others are only local
solutions. Simple optimization algorithms like gradient based
methods and also the proposed implementation of the vertex
coloring task, exploiting the analogue dynamics of coupled
memristor oscillators, stop at local solutions, and remain there
afterwards, for improperly chosen initial conditions. There are
some algorithms which are able to overcome local solutions,
leading to the global solution. Inspired by distinct approaches,
like genetic algorithms [27] or simulated annealing procedures
[28], two possible strategies to determine the global solution
for solving the vertex coloring problem via coupled oscillators
will be presented in sections IV-C and IV-D.

C. Obtaining global solutions by crossover

The first possibility to overcome the local solutions of our
optimization goal G(ϕ) is inspired by genetic algorithms.
Genetic algorithms simulate the evolution of a population,
where individuals for the next generation are generated from
the old population by mutation and crossover and only the
fittest individuals of the old population and the new individuals
will be selected for the next generation. This means that the
fittest individuals would be the ones forming the population
with the best score in some health-monitoring measure (i.e. the
optimization goal in the associated genetic algorithm) [27].
In the following, we will transfer the crossover idea to our
network.
As illustrated in Fig. 12, a crossover should exchange the
elements of some network identification vector, which, in our
case, corresponds to the phase shift vector, to bypass the local
solutions. However, this is not possible in our network, since

ϕ =
(
0◦ 118◦ 240◦ 358◦ 120◦ 242◦

)>
ϕc =

(
0◦ 240◦ 118◦ 358◦ 120◦ 242◦

)>
Fig. 12: Illustration of a crossover between the elements ϕ1 and ϕ2 of the
phase shift vector ϕ

a phase shift is unequivocally associated with an oscillator
and cannot be reassigned to another oscillator, which means
that ϕi will always be the phase shift of oscillator i for all
i ∈ {1, . . . , N}. What we can do, this notwithstanding, is
to reconfigure the connections between the oscillators. This
can be implemented by endowing the coupling circuit with
transistor-based switches so as to allow the reprogrammality
of the connections between the oscillators,as discussed in
[9]. Thus, we are able to change the roles of the oscillators
(Fig. 13(b)), which leads to an exchange of the associated
vertices. This means that, in the example of Fig. 12, oscillator
1 changes its association from vertex 1 to vertex 2 and the
other way around goes for oscillator 2. This becomes clear
when comparing Figs. 13(a) and (c). In Fig. 14, the evolution
of (a) the phase shift, (b) the optimization goal G(ϕ) and (c)
the number of colors for the graph of six vertices in a ring, as
seen in Fig. 8, is illustrated. Here the initial conditions of the
network are the same as in Fig. 9 and Fig. 11. Thus, within
the first 5ms the system shows the same behavior as depicted
in Fig. 11 and tends to a local solution with an optimization
goal of −3, as seen in Fig. 14(a)-(c) with three classes of phase
shifts and therefore three respective colors. At the time of
5ms a crossover is implemented, and the system leaves the
local solution and reaches the global solution. This results
in an optimization goal G(ϕ) of −6 and a vertex coloring
with two colors. The implementation of the crossover concept
enables the network to overcome local solutions. But in order
to implement this approach, it is necessary to determine which
pairs of oscillators should be targeted. In principle we are
able to to calculate the number of colors identifiable by the
network after each possible crossover between pairs of vertices
i, j ∈ [0, N − 1] and and interchange the connections of the
particular couple of nodes, whereby the network identifies the
lowest number of colors. But this strategy would result in
1
2N(N−1) possible crossovers, if we assume that i 6= j. Thus,
we need a strategy which reduces the amount of calculations.
After an extensive study, the following two step strategy was
determined to be the most efficient:

1) Identify the first vertex i for the crossover:
In this step, we determine which vertex i should be swapped
by crossover to attain a better solution. We search for a
vertex, which prevents the network to estimate a lower number
of colors for the associated graph. Therefore, we test, for
each vertex, how many colors the network is able to identify
after we extract the associated oscillator from the network
itself. Most likely, this would correspond to the number of
different colors, which we are able to assign to the oscillators,
by applying the testing strategy of section III to the same
vertex ordering, established previously, except for the removal
of one vertex at a time from the list. In other words no

 4 6 
t/ms
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one vertex after the other as starting point. Starting the routine
from vertex 1, the first test would check whether or not vertex
4 may be included in the same color group C1 as vertex 1.
With one of the phase shift vector elements as starting point,
the identification of the minimum number of colors, which the
network is able to identify with such a phase shift ordering, is
ensured. Note that this method, referred to as standard in the
remainder of the paper, does not guarantee the determination
of the chromatic number of the graph implemented by the
network. However, the number of sub-matrices which need
to be analyzed is still much lower compared to the number
of possible orderings of the vertices, i.e. (N − 1)!, obtained
without any presorting according to the phase shift. If the
associated network works well, the sorting will lead to the
minimal number of colors for this graph.

IV. THE NETWORK AS OPTIMIZATION ALGORITHM

In this section we will gain a deeper insight into the operation
of the whole network. Here we interpret the system as an
engine for optimization algorithm. We will see that, due to an
improper choice of the initial conditions, the system may be
unable to identify the minimal number of colors. This can be
interpreted as local solution of an optimization problem, where
the solving algorithm reaches its limit. In the following, two
possible solutions to avoid the local solution and reach the
global solution will be explained and validated.

A. Mathematical representation of the optimization goal of the
network

The oscillatory network can be interpreted as an engine solving
optimization problems. We know that, under the given condi-
tions, two capacitively coupled oscillators maximize the phase
shift between them to 180°. Thus, we are able to generalize
this for a network of coupled oscillators. For a network of
N oscillators with adjacency matrix A, we assume that the
system maximizes the sum of the phase differences between
coupled oscillators given by:

max
ϕ

1

2

∑
0≤i<N

∑
0≤j<N

Aij |ϕi − ϕj |︸ ︷︷ ︸
=F (ϕ)

(11)

where we highlighted the optimization goal F (ϕ). Here ϕ is
the vector of all phases of the oscillators and ϕi is the ith

element of ϕ and hence the phase of the ith oscillator. Aij is
the element in the ith row and jth column of the adjacency
matrix A. To normalize the optimization goal F (ϕ), we will
take the cosine function of each phase difference, which leads
to the change from a maximization to a minimization problem
and results in the following optimization task:

min
ϕ

1

2

∑
0≤i<N

∑
0≤j<N

Aij cos (ϕi − ϕj)︸ ︷︷ ︸
=G(ϕ)

(12)

where we highlighted the new optimization goal G(ϕ).
Fig. 10(b) shows the desired evolution of the phase shifts
for a properly initialized network associated to the graph of
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Fig. 10: (a) Evolution of the phase shift of the associated network for the
graph depicted in Fig 8. The assignment of vertices to color groups, on the
basis of the final phase shifts of the respective oscillators, is visualized in
plot (a) by highlighting the perimeter of the left (right) half circle, which the
3 trajectories, indicating the temporal trends of the phases of the oscillators
corresponding to the vertices 1, 3, and 5 (0, 2, and 4), belong to at steady
state, with the same colors used in plot (b) to fill the three circles symbolizing
the associated vertices of the graph. (b) Evolution of the minimization goal
G(ϕ) for the vector phase evolution shown in (a), which trends towards the
global minimum of −6. The initial conditions of all capacitor voltages and
memristor temperatures in the network are set as reported in the caption of
Fig. 9 but with a different random sequence to dedicate a particular ordering
in the time instants at which the N DC voltages begin to rise.

Fig. 8. Thanks to the correct initial conditions, here we are
able to determine that the oscillators can be divided into two
groups, associated to two different colors respectively. The first
color is assigned to all even vertices (0, 2, 4) and the second
color to all odd vertices (1, 3, 5). For rings with an even
number of vertices, the minimal number of colors is always
two. Thus, the correct solution can be determined utilizing the
properly initialized network. Fig. 10(b) shows the evolution
of the optimization goal. The value of the optimization goal
G(ϕ) first decreases exponentially and then asymptotically
converges to approximately −6, which is the global minimum
of the optimization problem (12) for this graph.

B. Local and global solutions

Depending on the initial state of the system, sometimes the
network is unable to identify the minimal number of colors
for the given graph, and therefore the optimization goal does
not reach the global minimum. In contrast to the optimum
global solution obtained in Fig. 10, as already shown in
Fig. 9 and in Fig. 11, for a different initial state, the system
reaches only a local solution [7]. Thereby, the choice of proper
initial conditions for the dynamic elements of the network
(i.e. capacitors and memristors) depends upon several system
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one vertex after the other as starting point. Starting the routine
from vertex 1, the first test would check whether or not vertex
4 may be included in the same color group C1 as vertex 1.
With one of the phase shift vector elements as starting point,
the identification of the minimum number of colors, which the
network is able to identify with such a phase shift ordering, is
ensured. Note that this method, referred to as standard in the
remainder of the paper, does not guarantee the determination
of the chromatic number of the graph implemented by the
network. However, the number of sub-matrices which need
to be analyzed is still much lower compared to the number
of possible orderings of the vertices, i.e. (N − 1)!, obtained
without any presorting according to the phase shift. If the
associated network works well, the sorting will lead to the
minimal number of colors for this graph.

IV. THE NETWORK AS OPTIMIZATION ALGORITHM

In this section we will gain a deeper insight into the operation
of the whole network. Here we interpret the system as an
engine for optimization algorithm. We will see that, due to an
improper choice of the initial conditions, the system may be
unable to identify the minimal number of colors. This can be
interpreted as local solution of an optimization problem, where
the solving algorithm reaches its limit. In the following, two
possible solutions to avoid the local solution and reach the
global solution will be explained and validated.

A. Mathematical representation of the optimization goal of the
network

The oscillatory network can be interpreted as an engine solving
optimization problems. We know that, under the given condi-
tions, two capacitively coupled oscillators maximize the phase
shift between them to 180°. Thus, we are able to generalize
this for a network of coupled oscillators. For a network of
N oscillators with adjacency matrix A, we assume that the
system maximizes the sum of the phase differences between
coupled oscillators given by:

max
ϕ

1

2

∑
0≤i<N

∑
0≤j<N

Aij |ϕi − ϕj |︸ ︷︷ ︸
=F (ϕ)

(11)

where we highlighted the optimization goal F (ϕ). Here ϕ is
the vector of all phases of the oscillators and ϕi is the ith

element of ϕ and hence the phase of the ith oscillator. Aij is
the element in the ith row and jth column of the adjacency
matrix A. To normalize the optimization goal F (ϕ), we will
take the cosine function of each phase difference, which leads
to the change from a maximization to a minimization problem
and results in the following optimization task:

min
ϕ

1

2

∑
0≤i<N

∑
0≤j<N

Aij cos (ϕi − ϕj)︸ ︷︷ ︸
=G(ϕ)

(12)

where we highlighted the new optimization goal G(ϕ).
Fig. 10(b) shows the desired evolution of the phase shifts
for a properly initialized network associated to the graph of
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Fig. 10: (a) Evolution of the phase shift of the associated network for the
graph depicted in Fig 8. The assignment of vertices to color groups, on the
basis of the final phase shifts of the respective oscillators, is visualized in
plot (a) by highlighting the perimeter of the left (right) half circle, which the
3 trajectories, indicating the temporal trends of the phases of the oscillators
corresponding to the vertices 1, 3, and 5 (0, 2, and 4), belong to at steady
state, with the same colors used in plot (b) to fill the three circles symbolizing
the associated vertices of the graph. (b) Evolution of the minimization goal
G(ϕ) for the vector phase evolution shown in (a), which trends towards the
global minimum of −6. The initial conditions of all capacitor voltages and
memristor temperatures in the network are set as reported in the caption of
Fig. 9 but with a different random sequence to dedicate a particular ordering
in the time instants at which the N DC voltages begin to rise.

Fig. 8. Thanks to the correct initial conditions, here we are
able to determine that the oscillators can be divided into two
groups, associated to two different colors respectively. The first
color is assigned to all even vertices (0, 2, 4) and the second
color to all odd vertices (1, 3, 5). For rings with an even
number of vertices, the minimal number of colors is always
two. Thus, the correct solution can be determined utilizing the
properly initialized network. Fig. 10(b) shows the evolution
of the optimization goal. The value of the optimization goal
G(ϕ) first decreases exponentially and then asymptotically
converges to approximately −6, which is the global minimum
of the optimization problem (12) for this graph.

B. Local and global solutions

Depending on the initial state of the system, sometimes the
network is unable to identify the minimal number of colors
for the given graph, and therefore the optimization goal does
not reach the global minimum. In contrast to the optimum
global solution obtained in Fig. 10, as already shown in
Fig. 9 and in Fig. 11, for a different initial state, the system
reaches only a local solution [7]. Thereby, the choice of proper
initial conditions for the dynamic elements of the network
(i.e. capacitors and memristors) depends upon several system

(d)

 4 6 
t/ms

Figure 8. (a) ((c)) Phase dynamics of the balanced network of Figure 3(b) with compensation for the
memristor device-to-device variability and under a suboptimal (the optimal) initialisation setting. (b)
((d)) Time evolution of the optimisation goal function toward a local (the global) minimum in the
simulation scenario illustrated in plot (a) ((c)). In the first (latter) case the application of the vertex
coloring strategy to the respective vertex ranking divides the 6 nodes of the graph of Figure 3(a) into
3 (2) colors. In the first (latter) case the composition of each of the 3 (2) color groups is made clear by
the colors assigned in plot (a) ((c)) to the arcs of the circular sectors, which host the final destinations
of the traces associated to phase shifts clustering together, as well as by the colors assigned in the
inset of plot (b) ((d)) to the respective nodes of the graph. Since the chromatic number of the graph is
2, the relative phases among the oscillators of the network converge to a suboptimal (the optimal)
pattern in the simulation of plot (a) ((c)).

Let us gain a deeper insight into the outcome of the proposed graph coloring strategy
for the case of the suboptimal simulation, which, as demonstrated in Figure 8(a), outputs
the following steady-state phase shift vector:

ϕ(s) = [ϕ
(s)
0 , ϕ

(s)
1 , ϕ

(s)
2 , ϕ

(s)
3 , ϕ

(s)
4 , ϕ

(s)
5 ]T = [0◦, 118◦, 240◦, 358◦, 120◦, 242◦]T. (17)

The resulting phase shift ordering, namely ϕs
0 − ϕs

1 − ϕs
4 − ϕs

2 − ϕs
5 − ϕs

3, allows to
establish the following vertex ranking17:

0− 1− 4− 2− 5− 3. (18)

17 Since, here, oscillator i is associated to vertex i for each i ∈ {0, . . . , N − 1}, the oscillator sequence, correspond-
ing to the phase shift ordering, may be indifferently referred to as oscillator ranking or vertex ranking. As will
be clarified later on, this is not always the case, when perturbation actions are performed on the network to
enhance its performance.
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For each i-value in the set {1, . . . , 6}, the ith cycle of the proposed iterative graph col-
oring procedure provides the following group classification of the nodes of the undirected
graph of Figure 3(a):

C(1)1 = {0, 3}, C(1)2 = {1, 4}, C(1)3 = {2, 5}, (19)

C(2)1 = {1, 4}, C(2)2 = {2, 5}, C(2)3 = {3, 0}, (20)

C(3)1 = {4, 2}, C(3)2 = {5, 3}, C(3)3 = {0}, C(3)4 = {1}, (21)

C(4)1 = {2, 5}, C(4)2 = {3, 0}, C(4)3 = {1, 4}, (22)

C(5)1 = {5, 3}, C(5)2 = {0}, C(5)3 = {1, 4}, C(5)4 = {2}, (23)

C(6)1 = {3, 0}, C(6)2 = {1, 4}, C(6)3 = {2, 5}. (24)

In each of cycles 1, 2, 4, and 6, our iterative procedure assigns the vertices of the
graph of Figure 3(a) a minimum number of colors, i.e., 3, which, as expected, is higher
than the chromatic number of the graph itself, i.e., n = 2. In each of these iterations the
same three pairs of vertices are grouped together, thus any number in the set {1, 2, 4, 6}
may be assigned to q, and, as a result, any of Equations (19), (20), (22), and (24) may be
taken as outcome of the graph coloring procedure. The suboptimal solution of the graph
coloring problem is clearly indicated in Figure 8(a), where 3 different colors are used to
mark the arcs of the 3 circular sectors, which in turn host the final destinations of the
2 traces associated to the phase shifts of the oscillator pairs (0, 3), (1, 4), and (2, 5), as well
as in the inset of Figure 8(b), where a distinct color is used to fill each node pair in the set
{(0, 3), (1, 4), (2, 5)}.

Let us now analyse comprehensively the working principles of our graph coloring
strategy for the case of the optimal simulation, which produces Figure 9(a) for the dynamical
behaviour of the memristor currents in the 6 oscillators of the network over the steady-state
time interval t ∈ [9.9, 10]ms. Looking in more detail at the evolution of the memristor
currents over the last part of this time interval, i.e., for t ∈ [9.97, 10]ms, Figure 9(b) shows
the common period18 T of the 6 oscillatory waveforms, and marks the time instants t0 and
t3, at which im,0 and im,3 cross the threshold value Ith = 0.5 ms, respectively, allowing to
compute the steady-state phase shift ϕ3(s) between cells 3 and 0, as described in the figure
caption. Computing also the relative phase shifts of the other 5 oscillators of the network
over the common T-long time interval shown in plot (b) of Figure 9(b), the steady-state
phase shift vector ϕ(s) is found to be equal to

ϕ(s) = [ϕ
(s)
0 , ϕ

(s)
1 , ϕ

(s)
2 , ϕ

(s)
3 , ϕ

(s)
4 , ϕ

(s)
5 ]T = [0◦, 180◦, 5◦, 195◦, 11◦, 182◦]T. (25)

as indicated in Figure 8(c). The resulting phase shift ordering, namely ϕ
(s)
0 − ϕ

(s)
2 − ϕ

(s)
4 −

ϕ
(s)
1 − ϕ

(s)
5 − ϕ

(s)
3 , allows to establish the following vertex ranking:

0− 2− 4− 1− 5− 3. (26)

For each i-value in the set {1, . . . , 6}, the ith cycle of the proposed iterative graph col-
oring procedure provides the following group classification of the nodes of the undirected
graph of Figure 3(a):

18 in this work the estimation of the common period T of the oscillations developing in a N-cell network, and the
associated group ordering of the phase shifts of the cells 1, . . ., N − 1 relative to the null phase of the reference
cell 0 are carried out every cycle throughout the duration of any simulation.
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C(1)1 = {0, 2, 4}, C(1)2 = {1, 5, 3}, (27)

C(2)1 = {2, 4, 0}, C(2)2 = {1, 5, 3}, (28)

C(3)1 = {4, 1}, C(3)2 = {5, 3}, C(3)3 = {0, 2}, (29)

C(4)1 = {1, 5, 3}, C(4)2 = {0, 2, 4}, (30)

C(5)1 = {5, 3, 1}, C(5)2 = {0, 2, 4}, (31)

C(6)1 = {3, 0}, C(6)2 = {2, 4}, C(6)3 = {1, 5}. (32)

In each of cycles 1, 2, 4, and 5, our iterative procedure assigns the vertices of the
graph of Figure 3(a) a minimum number of colors, i.e., 2, which, as expected, coincides
with the chromatic number of the graph itself, i.e., n = 2. In each of these iterations the
same two triplets of vertices are grouped together, thus any number in the set {1, 2, 4, 5}
may be assigned to q, and, as a result, any of Equations (27), (28), (30) and (31) may be
taken as outcome of the graph coloring procedure. The optimal solution of the graph
coloring problem is clearly indicated in Figure 8(c), where 2 different colors are used to
mark the arcs of the 2 circular sectors, which in turn host the final destinations of the 3
traces associated to the phase shifts of the oscillator triplets (0, 2, 4), and (1, 5, 3), as well as
in the inset of Figure 8(d), where a distinct color is used to fill each node triplet in the set
{(0, 2, 4), (1, 5, 3)}.
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Figure 9. (a) Steady-state time evolution of the memristor current im,i of oscillator i ∈ {0, 1, 2, 3, 4, 5}
over the time interval [9.9, 10]ms for the simulation of the balanced network of Figure 3(b) with
compensation for the memristor device-to-device variability and under the optimal initialisation
setting (see also Figure 8(c),(d) for more results obtained from this simulation). The differences in
the peak values of the waveforms originate from the variability in the static and dynamic properties
of the samples, as reproduced by our memristor model. As was already shown in relation to their
relative phases in Figure 8(c), the oscillator triplets (1, 5, 3) and (0, 2, 4) group together, as respectively
indicated over the first and second half of the first observable cycle, where the order of appearance of
the nearby peaks of the memristor currents follows in turn the patterns 1-5-3 and 0-2-4. The same
color coding map, as established in Figure 8(c) and reused in the inset of Figure 8(d), is adopted here
to differentiate between the traces pertaining to distinct oscillators. (b) Zoom-in view of the time
behaviour of each memristor current in the network across the time span [9.97, 10]ms. The common
period T of the oscillatory waveforms is found to be equal to 19.21µs. As an example, the time instant
t0 (t3), at which the memristor current im,0 (im,5) of oscillator 0 (3) crosses the threshold Ith = 0.5 mA
in its ascending phase over the first observable cycle, gives 9973.8457µs (9984.2351µs), allowing to

compute the steady-state phase of oscillator 3 relative to the reference oscillator 0 via ϕ
(s)
3 = ∆t3 ·ω0,

with ω0 = 2·π
T . Performing a calculation of this kind for each of the remaining 5 oscillators results in

the steady-state phase shift vector ϕ(s) reported in Equation (25).

5. Control Paradigms to Resolve Local Minima-Based Impasse Conditions

In order to overcome the impasse, emerging when a memristive network converges to
a stable oscillatory solution associated to a local minimum of the optimisation goal function
G(ϕ), it is necessary to destabilise the array through an ad-hoc perturbation. We identified
two possible strategies allowing to pull the dynamical system out of a local minimum of
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the respective optimisation problem. In many cases, after recovering from the impasse, the
network was found to converge asymptotically toward an oscillatory solution associated
the global minimum of the optimisation goal function. The proposed approaches, referred
to as crossover and pulse destabilisation strategies, are presented in the following two sections.

5.1. Crossover Strategy

One of the strategies, allowing the network to overcome an impasse situation, inspired
from genetic algorithms [45], is based upon the interchange between the connections
of two properly-selected oscillators19 ([31,33]). This corresponds to the exchange of the
associations between the two cells of the network and the corresponding vertices in the
relative graph. In order to select the most appropriate pair of oscillators—let us use indices
i and j to label them—for the crossover, the following two-step procedure is applied.

1. For each value of k in the set {0, . . . , N − 1}, the vertex k is removed from the original
N-node graph, and the iterative vertex coloring strategy is applied to the resulting
graph of (N − 1) nodes, using a modified version of the vertex ranking, which is
tabulated beforehand, after a simulation of the oscillatory network, under a generic
sub-optimal initialisation setting, attains the steady state. Specifically, the label of the
vertex k, taken out of the original graph, is removed from the original vertex ranking,
resulting in a new table with N − 1 entries. For each value of k, a N × N matrix,
denoted as A(k), and obtained from the original adjacency matrix A by setting to 0 all
the elements at row k and at column k, may still be used to define the connectivity of
the respective (N − 1)-node graph. Coloring the N − 1 vertices of N distinct graphs,
at least one of the N problems will be found to admit the best solution, allowing to
categorise the N − 1 nodes of the relative graph through the lowest number of color
groups. The particular node k, which, extracted out of the original graph, allows the
resulting network to identify the least number of colors according to our iterative
vertex coloring procedure, may then be chosen as first vertex i to involve in the
crossover20.

2. Assigning, one at a time, any integer from the set {0, . . . , i− 1, i + 1, . . . , N − 1} to k,
the iterative vertex coloring strategy is then applied to a new vertex ranking, obtained
from the original table by interchanging the positions of vertices i and k. Note that the
original N-node graph, with connectivity defined by the adjacency matrix A, should
be considered in each of the N− 1 applications of the iterative vertex coloring strategy,
since nothing else, except for the correspondence between oscillators and vertices,
is affected in a crossover operation21. Solving the resulting N − 1 vertex coloring
problems, the solution, assigning the least number of colors to the N nodes of the
original graph, will be determined. It may happen that, on the basis of the proposed
iterative procedure, for two or more values of k, the exchange between the positions
of oscillators k and i in the original vertex ranking results in a common lowest number
of color groups for the N nodes of the original graph. In this case, the choice of
the second oscillator j to involve in the crossover falls for the particular candidate

19 The application of a crossover to pairs of oscillators implies the necessity to endow the network with repro-
grammable connections, e.g. via transistor-based switches, which, however, would add on to the integrated
circuit (IC) overhead in a future hardware implementation of the network.

20 In fact, it is highly probable that this node mostly prevents the optimisation measure of Equation (16) from
attaining the global minimum, which would provide as solution to the vertex coloring task the chromatic
number of the original N-node graph, as desired. In case, for each of two or more values of k, the application
of our vertex coloring strategy to the respective (N − 1)-node graph, obtained by removing the vertex k from
the original graph, results in a common lowest number of colors, any of these node i candidates may be finally
considered for the crossover

21 The interchange between nodes i and k operated on the original vertex ranking is due to the fact that the
application of a crossover between the corresponding oscillators in the network is equivalent to exchanging
their associations to the respective pair of vertices in the original graph. The relative phases, inherent to the
oscillators, maintain the same ordering, as established originally. As a result, the oscillator ranking remains
unaltered, but the mapping from oscillator ranking to vertex ranking is subject to the earlier mentioned
node interchange.
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k, whose relative phase ϕk features the largest distance from the relative phase ϕi of
oscillator i in the steady-state phase shift vector ϕ obtained through the simulation
preceding the application of the two-step strategy.

In order to gain a deeper understanding of the proposed two-step procedure, let us
apply it to the vertex ranking 0− 1− 4− 2− 5− 3, obtained at steady state from a simulation
of the balanced network of Figure 3(b) (or, equivalently, of Figure 10(b), the corresponding
graph of which is illustrated again in Figure 10(a) for the sake of clarity) with compensation
for the memristor device-to-device variability and under the same sub-optimal initialisation
setting as in the simulation illustrated in Figure 8(a),(b) (see the caption of Figure 11 for
details). According to the first step of the procedure, applying our iterative vertex coloring
strategy to the original vertex ranking, i.e., 0− 1− 4− 2− 5− 3, after depriving it of the kth

node label, with the associated 5-node graph obtained from the original one of Figure 3(a)
by breaking all the connections of the kth vertex (k ∈ {0, 1, 2, 3, 4, 5}), the smallest number
of colors, the vertices of the 5-node graph are assigned to, is 2 for each k-value in the
set {0, 1}, and 3 for each k-value in the set {2, 3, 4, 5}. The choice for the i cell for the
crossover may then fall either on reference oscillator 0 or on oscillator 1. Let us choose
the latter cell. In line with the second step of the procedure, exchanging the positions of
labels k and i = 1 in the original vertex ranking 0− 1− 4− 2− 5− 3 (k ∈ {0, 2, 3, 4, 5}),
the application of the iterative vertex coloring strategy to the resulting sequence, with
respect to the original 6-node graph of Figure 3(a), results in a minimum number of color
groups equal to 2 for each k-value in the set {0, 2}, to 3 for each k-value in the set {3, 4},
and to 4 for k = 5. Now, given that, in the original steady-state phase shift ordering,
ϕ
(s)
2 − ϕ

(s)
0 = 122◦ > ϕ

(s)
1 − ϕ

(s)
0 = 118◦, oscillator with label k = 2 is selected as cell j for

the crossover. With reference to Figure 10, where plots (a) and (b) show once again the
six-node ring-based graph, and the associated capacitively-coupled array of memristor
oscillators, plot (c), redrawn in a different but equivalent form in plot (d), depicts the novel
coupling arrangement in the network upon the interchange between the connections of
oscillators 1 and 2.

Figure 10. (a) Original 6-node ring-based graph. (b) ((c) or, equivalently, (d)) Coupling arrangement
in the network associated to the graph in (a), before (after) a crossover between cells 1 and 2, which
swaps the correspondence between these cells and the respective nodes in the graph.

The numerical results illustrated in Figure 11, where plots (a), (b), and (c) respectively
show phase dynamics, time evolution of the optimisation goal function, and temporal
trend of the solution of the classification task, respectively, provide evidence for the success
of the circuit implementation of the crossover strategy in pulling the dynamical system
out of the impasse state, allowing its asymptotic convergence to the solution of the graph
coloring problem associated to the global minimum of G(ϕ). These results were obtained
by simulating the balanced network of Figure 10(b), with compensation for the memristor
device-to-device variability, and under the same sub-optimal initialisation setting as in the
simulation illustrated in Figure 8(a),(b). With reference to Figure 11, at the end of the first
part of the simulation, covering the time span t ∈ [0, 5)ms,the optimisation goal function
was found to sit at a local minimum value, specifically −3 (see plot (b)), and the minimum
number of colors, which, on the basis of our iterative vertex coloring procedure, may be
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assigned to the nodes of the graph in Figure 10(a), is 3 (refer to plot (c)). At t = 5 ms the
connections of oscillators 1 and 2 were interchanged, as shown in plot (c) or, equivalently,
in plot (d) of Figure 10. Looking more at Figure 11, the dynamics of the relative phases of
the cells resume directly after the crossover, approaching a new stable steady-state pattern,
whereby G(ϕ) is found to sit at its global minimum level, particularly −6 (see plot (b))),
and the network is able to identify the chromatic number of the graph in Figure 10(a), as
determined through the proposed iterative vertex coloring procedure (refer to plot (c)).
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Fig. 13: Illustration of a crossover in the network associated to the graph of Fig. 8 between oscillators 1 and 2. (a) Network prior to the crossover. Oscillator 1
(2) is associated to vertex 1 (2). (b) Crossover implementation by reconfiguration of the connections between the oscillators. The connections from oscillator
2 are assigned to oscillator 1 and vice versa. (c) Rearrangement of the view of the network in (b) to enable an easier comparison to (a). Oscillators 1 and 2
reverse their roles in the network. Oscillator 1 (2) is now associated to vertex 2 (1).
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Fig. 14: Evolution of (a) the phase shift. (b) the optimization goal G(ϕ) and (c) the number of colors for the graph in Fig. 8. For this simulation the same
initial state as the one selected for the system of Fig. 9 was chosen, but at the time instant t = 5ms the crossover of oscillators 1 and 2 was implemented.
The assignment of vertices to color groups, on the basis of the final phase shifts of the respective oscillators, is visualized in plot (a) by highlighting the
perimeter of the left (right) half circle, which the 3 trajectories, indicating the temporal trends of the phases of the oscillators corresponding to the vertices
0, 2, and 4 (1, 3, and 5), belong to at steady state, with the same color used in plot (b) to fill the three circles symbolizing the corresponding vertices of the
graph.

additional simulation is performed on the network in the two-
step procedure. At the end, we finally select the particular
vertex i, whose removal from the sorting results in the least
number of colors3. Therefore, this test is based on the phase
shift vector ϕ and on the modified adjacency matrix A′

i. A′
i

is obtained from the adjacency matrix A of the graph, by
setting all its elements on the ith row and column to zero,
which represents the removal of the vertex i from the original
graph.

2) Identify the second vertex j 6= i for the crossover:
In the second step, the other vertex j, involved in the crossover,
is determined. Here, i is fixed to the result of the first step
of the strategy. To determine the number of colors, which,
most likely, the network will identify after the crossover
between vertices i and j, we can apply the concept described
in section III to the adjacency matrix A and the modified
crossver phase shift vector ϕc obtained from the phase vector
ϕ, by interchanging its ith and jth elements as illustrated in
Fig. 12 for i = 1 and j = 2:

ϕck =


ϕj if k = i

ϕi if k = j

ϕk otherwise .
(13)

If, two or more vertex j candidates, after the crossover with
vertex i, lead to a modified network able to identify the same

3If, as a result of the removal of any of two or more vertices, the resulting
modified network identifies the same lowest number of colors, any of these
vertices may be selected as first vertex for the crossover.

lowest number of colors, the final choice goes for that vertex
j candidate, which, in the original sorting, features the highest
phase shift modulus with respect to vertex i.

By utilizing this two-step strategy, we only need 2N −1 tests.
Thus, for a network with ten vertices we reduce the number
of calculations from 45 to 9. Thus our two-step method saves
a lot of computation time for larger networks. As an example,
let us apply this two-step method to the example of Fig. 14.
At the end of the first part of the simulation, i.e. at t = 5ms
we reach a steady state phase shift as shown in equation (8).
According to the first step, the lowest number of colors, which
the network is able to identify for each case where one of the
vertices of the associated graph removed, is calculated. For
the calculations, we follow the routine of section III using
the steady phase shift vector of equation (8) as well as the
modified adjacency matrix A′

i. For the test of vertex 1, we
derive the following modified adjacency matrix:

A′
1 =


0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 . (14)

The modified network may group the remaining five vertices
into two color sets i.e. C1 = {0, 4, 2}, and C2 = {5, 3}. The
identification of two colors is also achieved by the modified
network obtained by taking vertex 0 out of the original graph,
while in each of the other cases the resulting modified network
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additional simulation is performed on the network in the two-
step procedure. At the end, we finally select the particular
vertex i, whose removal from the sorting results in the least
number of colors3. Therefore, this test is based on the phase
shift vector ϕ and on the modified adjacency matrix A′

i. A′
i

is obtained from the adjacency matrix A of the graph, by
setting all its elements on the ith row and column to zero,
which represents the removal of the vertex i from the original
graph.

2) Identify the second vertex j 6= i for the crossover:
In the second step, the other vertex j, involved in the crossover,
is determined. Here, i is fixed to the result of the first step
of the strategy. To determine the number of colors, which,
most likely, the network will identify after the crossover
between vertices i and j, we can apply the concept described
in section III to the adjacency matrix A and the modified
crossver phase shift vector ϕc obtained from the phase vector
ϕ, by interchanging its ith and jth elements as illustrated in
Fig. 12 for i = 1 and j = 2:

ϕck =


ϕj if k = i

ϕi if k = j

ϕk otherwise .
(13)

If, two or more vertex j candidates, after the crossover with
vertex i, lead to a modified network able to identify the same

3If, as a result of the removal of any of two or more vertices, the resulting
modified network identifies the same lowest number of colors, any of these
vertices may be selected as first vertex for the crossover.

lowest number of colors, the final choice goes for that vertex
j candidate, which, in the original sorting, features the highest
phase shift modulus with respect to vertex i.

By utilizing this two-step strategy, we only need 2N −1 tests.
Thus, for a network with ten vertices we reduce the number
of calculations from 45 to 9. Thus our two-step method saves
a lot of computation time for larger networks. As an example,
let us apply this two-step method to the example of Fig. 14.
At the end of the first part of the simulation, i.e. at t = 5ms
we reach a steady state phase shift as shown in equation (8).
According to the first step, the lowest number of colors, which
the network is able to identify for each case where one of the
vertices of the associated graph removed, is calculated. For
the calculations, we follow the routine of section III using
the steady phase shift vector of equation (8) as well as the
modified adjacency matrix A′

i. For the test of vertex 1, we
derive the following modified adjacency matrix:

A′
1 =


0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 . (14)

The modified network may group the remaining five vertices
into two color sets i.e. C1 = {0, 4, 2}, and C2 = {5, 3}. The
identification of two colors is also achieved by the modified
network obtained by taking vertex 0 out of the original graph,
while in each of the other cases the resulting modified network
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(2) is associated to vertex 1 (2). (b) Crossover implementation by reconfiguration of the connections between the oscillators. The connections from oscillator
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Fig. 14: Evolution of (a) the phase shift. (b) the optimization goal G(ϕ) and (c) the number of colors for the graph in Fig. 8. For this simulation the same
initial state as the one selected for the system of Fig. 9 was chosen, but at the time instant t = 5ms the crossover of oscillators 1 and 2 was implemented.
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0, 2, and 4 (1, 3, and 5), belong to at steady state, with the same color used in plot (b) to fill the three circles symbolizing the corresponding vertices of the
graph.

additional simulation is performed on the network in the two-
step procedure. At the end, we finally select the particular
vertex i, whose removal from the sorting results in the least
number of colors3. Therefore, this test is based on the phase
shift vector ϕ and on the modified adjacency matrix A′

i. A′
i

is obtained from the adjacency matrix A of the graph, by
setting all its elements on the ith row and column to zero,
which represents the removal of the vertex i from the original
graph.

2) Identify the second vertex j 6= i for the crossover:
In the second step, the other vertex j, involved in the crossover,
is determined. Here, i is fixed to the result of the first step
of the strategy. To determine the number of colors, which,
most likely, the network will identify after the crossover
between vertices i and j, we can apply the concept described
in section III to the adjacency matrix A and the modified
crossver phase shift vector ϕc obtained from the phase vector
ϕ, by interchanging its ith and jth elements as illustrated in
Fig. 12 for i = 1 and j = 2:

ϕck =


ϕj if k = i

ϕi if k = j

ϕk otherwise .
(13)

If, two or more vertex j candidates, after the crossover with
vertex i, lead to a modified network able to identify the same

3If, as a result of the removal of any of two or more vertices, the resulting
modified network identifies the same lowest number of colors, any of these
vertices may be selected as first vertex for the crossover.

lowest number of colors, the final choice goes for that vertex
j candidate, which, in the original sorting, features the highest
phase shift modulus with respect to vertex i.

By utilizing this two-step strategy, we only need 2N −1 tests.
Thus, for a network with ten vertices we reduce the number
of calculations from 45 to 9. Thus our two-step method saves
a lot of computation time for larger networks. As an example,
let us apply this two-step method to the example of Fig. 14.
At the end of the first part of the simulation, i.e. at t = 5ms
we reach a steady state phase shift as shown in equation (8).
According to the first step, the lowest number of colors, which
the network is able to identify for each case where one of the
vertices of the associated graph removed, is calculated. For
the calculations, we follow the routine of section III using
the steady phase shift vector of equation (8) as well as the
modified adjacency matrix A′

i. For the test of vertex 1, we
derive the following modified adjacency matrix:

A′
1 =


0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 . (14)

The modified network may group the remaining five vertices
into two color sets i.e. C1 = {0, 4, 2}, and C2 = {5, 3}. The
identification of two colors is also achieved by the modified
network obtained by taking vertex 0 out of the original graph,
while in each of the other cases the resulting modified network

Figure 11. (a) Time evolution of the relative phases of the oscillators of the balanced network of
Figure 3(b), with compensation for the memristor device-to-device variability, and under the same
sub-optimal initialisation setting as in the simulation illustrated in Figure 8(a),(b), for the case where
the connections of oscillators 1 and 2 are interchanged at t = 5 ms. Right before the application of
the crossover to the two cells, the network is found to sit on a stable oscillatory solution associated
to a local minimum of the optimisation goal function (see also the three phase clusters emerging in
plot (a) right before the crossover procedure). Despite the phase shift vector, measured much earlier
than it was done in the simulation of Figure 8(a),(b), was found to be slightly different from the one
reported in Equation (17), specifically ϕ(s) = [0◦, 118◦, 238◦, 359◦, 119◦, 240◦]T, the resulting vertex
ordering remains defined by Equation (18). (b) Evolution of the optimisation goal function over
time. (c) Minimum number of color groups assigned through the iterative vertex coloring procedure
of Section 4 to the nodes of the graph in Figure 3(a) over time (the procedure is applied once every
T-long cycle, with the common period T of the oscillatory waveforms of the currents through the
memristors, measured over the time interval [4.965, 4.984]ms, found to be equal to 19.24 µs). After
the crossover these nodes are classified into 2 groups (c). The interchange between the couplings of
oscillators 1 and 2 was thus found to resolve the impasse, allowing the memristive array to approach
the optimal solution associated to the global minimum of G(ϕ), and to identify the chromatic number
n = 2 of the associated graph (see also the two phase clusters emerging in plot (a) at the end of
the simulation).

As anticipated earlier, the circuit implementation of the crossover strategy crucially re-
quires the availability of reprogrammable connections among the oscillators of the network.
This inevitably increases the area overhead of the hardware platform. Furthermore, the cir-
cuitry necessary to endow the network with reprogrammable connectivity, may introduce
some mismatch between the capacitive loads of the oscillators, which may represent an
obstacle toward the convergence of the phase dynamics of the memristive array toward the
pattern corresponding to the global minimum of the optimisation problem. For this reason,
another strategy for pulling the dynamical system out of a local minimum, which is more
amenable to circuit implementation, is presented in the next section.

5.2. Pulse Destabilisation Strategy

Inspired from simulated annealing algorithms [46] as well from our latest approach—
referred to as Kick-Fly-Catch paradigm—for humanoid robot motion control [47,48], the
proposed strategy ([31,33]) is based upon supplying energy to the system, while it sits in
an impasse state. Particularly, a pulse is applied to an ad-hoc oscillator by offsetting the
value VS of its DC voltage source by an appropriate amount ∆VS for a given time interval
of length Tp. Consequently, the relative phase of the oscillator, sitting at the steady-state
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level ϕ(s) previous to the stimulation, experiences a sudden shift by ∆ϕ, which is found to
depend upon amplitude ∆VS and length Tp of the voltage pulse. Taking inspiration from
the research study presented in [49], extensive numerical simulations revealed that, for a
given pulse width22 Tp, there is an approximately-linear relation between the pulse height
∆VS and the sudden shift ∆ϕ, that the relative phase of the oscillator experiences upon
destabilisation, i.e.,

∆VS ≈
V0 · ∆ϕ

180◦
, (33)

where V0 was numerically set to −0.23 V for the networks analysed in this research study23.
Provided the right choice is made regarding the cell to perturb, and the proper amplitude
and width are assigned to the voltage pulse stimulus, the resulting resumption of the phase
dynamics of the oscillators should ideally allow the optimisation goal function to move out
of the local minimum, converging asymptotically toward its global minimum. A two-step
procedure, presented below, is proposed here to determine the most suitable cell to perturb
and the most appropriate pulse amplitude.

1. The most suitable oscillator i ∈ {0, . . . , N − 1} to target in the pulse destabilisa-
tion action is determined in the same way as was done for the selection of the cell
i ∈ {0, . . . , N − 1} to involve in the crossover process (see the first step in the pro-
cedure aimed to choose the right cell pair (i, j) to involve in the coupling inter-
change strategy).

2. The second step is aimed to determine the appropriate shift ∆ϕ to be added to the

steady-state relative phase ϕ
(s)
i of oscillator i for pulling the network out of the local

minimum state, facilitating its convergence to an oscillatory solution, which would
ideally correspond to the least number of color groups for the N vertices of the associ-
ated graph. To accomplish this task, for each value of k within the set {1, . . . , M− 1},
with M a predefined positive integer, the offset ∆ϕk = k · 360◦

M is added to the phase

shift ϕ
(s)
i of cell i in the steady-state relative phase shift vector ϕ(s) recorded before

the application of the pulse destabilisation process, and the iterative graph coloring
procedure is applied to the resulting vertex ranking for the original graph. The choice
for the most appropriate offset ∆ϕ, within the specified set of k-dependent uniformly-
spaced values, goes for the ∆ϕk-candidate, which, according to our graph coloring
strategy, allows the network to classify the nodes of the associated graph in the lowest
number of color groups. If, for two or more k-values, the application of the iterative
graph coloring procedure to the vertex ranking, resulting from the phase shift order-
ing, obtained by adding up the relevant offset ∆ϕk to the phase shift ϕ

(s)
i of oscillator

i in the steady-state relative phase shift vector ϕ(s), leads to the identification of the
same lowest number of colors, the selection goes for the ∆ϕk-candidate featuring the
largest modulus. Finally, the pulse amplitude of the Tp-long stimulus to be applied to
oscillator i is obtained from Equation (33).

In order to gain more insights into the mechanisms underlying this two-step procedure,
let us apply it to the vertex ranking 0− 1− 4− 2− 5− 3, obtained at steady state from a
simulation of the balanced network of Figure 3(b) with compensation for the memristor
device-to-device variability and under the same sub-optimal initialisation setting as in the
simulation illustrated in Figure 8(a),(b) (see the caption of Figure 12 for details). Given
that the first step of the procedure is identical to the first step of the algorithm allowing to

22 In this work Tp was set to twice the common graph-dependent period T of the oscillatory waveforms of
the capacitor voltages and of the memristor currents in the network before the application of the pulse
destabilisation paradigm.

23 We acknowledge, however, that the most suitable formula, expressing the relationship between the amplitude
∆VS of a destabilising pulse of fixed width Tp and the resulting sudden shift ∆ϕ in the phase of the perturbed
oscillator, may depend upon network properties and parameters. A deeper study, aimed to optimise the shape
of the destabilisation stimulus, will be carried out in the future.
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select the optimal cell pair (i, j) to involve in the crossover strategy, retrieving the results
presented in the previous section, either oscillator from the label set i ∈ {0, 1} may be
chosen as target of the pulse destabilisation action. Let us go for the latter one. Following
the guidelines established for the second step of the procedure, setting M to 4, for each k-
value in the set {1, 2, 3}, colors are assigned to the nodes of the original graph of Figure 3(a)
by applying the proposed iterative methodology to the kth vertex ranking variant derived
from the phase shift vector ϕ(s) = [0◦, 118◦, 238◦, 359◦, 119◦, 240◦]T recorded right before
the time instant24 t = 5 ms, at which the pulse perturbation action is commenced by adding
up the kth value of ∆ϕk in the set {90◦, 180◦, 270◦} to the relative phase ϕ

(s)
1 of oscillator

1. Analysing the kth vertex ranking within the set {0− 4− 1− 2− 5− 3, 0− 4− 2− 5−
1− 3, 0− 1− 4− 2− 5− 3} (k ∈ {1, 2, 3}), according to our node coloring paradigm the
network identifies a minimum number of color groups equal to the kth number in the set
{3, 2, 3}. Setting k to 2 in the formula for ∆ϕk, from Equation (33) the amplitude ∆VS of
the pulse applied to oscillator 1 at t = 5 ms for a Tp = 38.48µs-long time interval is set to
−0.23 V (see the caption of Figure 12 for details).
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Fig. 15: Evolution of (a) the phase shift. (b) the optimization goal G(ϕ) and (c) the number of colors for the graph in Fig. 8. For this simulation the same
initial state as the one selected for the system of Fig. 9 was chosen, but at the time instant t = 5ms a pulse was applied to oscillator 1, resulting in a phase
shift of approximately 180°. The assignment of vertices to color groups, on the basis of the final phase shifts of the respective oscillators, is visualized in
plot (a) by highlighting the perimeter of the left (right) half circle, which the 3 trajectories, indicating the temporal trends of the phases of the oscillators
corresponding to the vertices 0, 2, and 4 (1, 3, and 5), belong to at steady state, with the same color used in plot (b) to fill the three circles symbolizing the
corresponding vertices of the graph.

likely, would be identifiable by the network in case the phase
shift ϕi of oscillator i experienced a sudden translation by
any offset ∆ϕj in a set of M − 1 uniformly-spaced values
(∆ϕj = j ·360◦/M , with j = 1, . . . ,M −1). Thereby we can
reapply the concepts exposed in section III to the adjacency
matrix A and to a perturbed phase shift vector ϕp, obtained
from the phase vector ϕ by translating the phase shift ϕi of
oscillator i by a phase offset ∆ϕj :

ϕpk =

{
ϕi + ∆ϕj if k = i

ϕk otherwise.
(16)

If, two or more phase offset ∆ϕj candidates, after addition to
the phase shift of vertex i, lead to a modified network with the
same lowest number of colors, the choice falls on the candidate
with the largest modulus. According to equation (15) the
corresponding amplitude ∆V of the T -long pulse to be added
up to the nominal value VS of the DC voltage source of
oscillator i is finally determined.

Let us apply this two-step method to the example of Fig. 15.
At the end of the first half of the simulation i.e at t = 5ms the
steady state phase shift vector is expressed by equation (8),
analogously as in the crossover simulation of Fig. 14. The
application of the first step of the strategy provides analogous
results as obtained in section IV-C. Vertices 0 and 1 play a
major role in preventing the network from determining the
chromatic number. Selecting oscillator 1 as target of the pulse
destabilization process, the offset candidates are chosen freely
from a set 3 values, i.e. ∆ϕj ∈ {90◦, 180◦, 270◦}, withj ∈
{1, 2, 3} (M = 4). Consequently, three perturbed phase shift
vectors may be computed. For example, for ∆ϕj = 180◦,
from equation (8) we obtain

ϕp =
(
0◦ 298◦ 240◦ 358◦ 120◦ 242◦

)>
. (17)

For each perturbed phase shift vectors, adopting the testing
strategy of section III, and taking the structure of the adjacency
matrix A into consideration, the minimal number of colors,
which the network is expected to identify after the associated
pulse-based destabilization of oscillator 1, is calculated. For
∆ϕ2 = 180◦ (for either ∆ϕ1 = 90◦ or ∆ϕ3 = 270◦) the

destabilized network now featuring a new phase shift ordering,
namely 0; 4; 2; 5; 1; 3 (0; 4; 1; 2; 5; 3 or 0; 1; 4; 2; 5;
3, respectively) is able to group the vertices into two (three)
colors. As a result , in order to change the phase shift ϕ1 of
oscillator 1 by ∆ϕ2 = 180◦, at t = 5ms a T -long voltage
pulse of amplitude ∆V = −0.23V , as follows from equation
(15), is added to the voltage VS of the DC source of oscillator 1
itself, resulting in the asymptotic approach of the optimization
goal G(ϕ) to the global solution, as shown in Fig. 15. Further
examples of larger graphs will be discussed in section V.
The benefits of this concept are the ease and unconstrained
nature of the selection process of an appropriate phase offset
by which to translate the phase shift a given vertex in order
to allow the network to reach the global solution and and its
simple circuit implementation. But the impact of the amplitude
or width of the pulse on the network performance depends on
the system parameters, thus the determination of an accurate
estimation of the relation between the pulse parameters and
the resulting translation in the phase shift of the perturbed
oscillator, such as the one proposed in (15) for the graphs
analyzed in this study, might turn out to be a difficult task
for more complex networks. Also the implementation of this
algorithm can not guarantee an immaculate determination of
the global solution, but it enables the system to overcome a
large percentage of local solutions.

V. RESULTS

In this section the results for the vertex coloring of selected
graphs from the 2nd DIMACS implementation challenge will
be presented. In Table II, the selected graphs, the number
of their vertices, and their chromatic number, which is the
minimal number of different colors by which their vertices
may be colored, are given on the left side. On the right side of
the same table the performance results of oscillatory networks
and of the Brelaz heuristic in solving vertex coloring problems
are given. Overall, four approaches will be compared. At
first the solutions obtained by the Brelaz heuristic (“Brelaz
heuristic”), which is an ordering algorithm to solve vertex
coloring problems, and secondly the results computed by
the oscillatory network from [9] (“reference [9]”), where no
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Fig. 15: Evolution of (a) the phase shift. (b) the optimization goal G(ϕ) and (c) the number of colors for the graph in Fig. 8. For this simulation the same
initial state as the one selected for the system of Fig. 9 was chosen, but at the time instant t = 5ms a pulse was applied to oscillator 1, resulting in a phase
shift of approximately 180°. The assignment of vertices to color groups, on the basis of the final phase shifts of the respective oscillators, is visualized in
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likely, would be identifiable by the network in case the phase
shift ϕi of oscillator i experienced a sudden translation by
any offset ∆ϕj in a set of M − 1 uniformly-spaced values
(∆ϕj = j ·360◦/M , with j = 1, . . . ,M −1). Thereby we can
reapply the concepts exposed in section III to the adjacency
matrix A and to a perturbed phase shift vector ϕp, obtained
from the phase vector ϕ by translating the phase shift ϕi of
oscillator i by a phase offset ∆ϕj :

ϕpk =

{
ϕi + ∆ϕj if k = i

ϕk otherwise.
(16)

If, two or more phase offset ∆ϕj candidates, after addition to
the phase shift of vertex i, lead to a modified network with the
same lowest number of colors, the choice falls on the candidate
with the largest modulus. According to equation (15) the
corresponding amplitude ∆V of the T -long pulse to be added
up to the nominal value VS of the DC voltage source of
oscillator i is finally determined.

Let us apply this two-step method to the example of Fig. 15.
At the end of the first half of the simulation i.e at t = 5ms the
steady state phase shift vector is expressed by equation (8),
analogously as in the crossover simulation of Fig. 14. The
application of the first step of the strategy provides analogous
results as obtained in section IV-C. Vertices 0 and 1 play a
major role in preventing the network from determining the
chromatic number. Selecting oscillator 1 as target of the pulse
destabilization process, the offset candidates are chosen freely
from a set 3 values, i.e. ∆ϕj ∈ {90◦, 180◦, 270◦}, withj ∈
{1, 2, 3} (M = 4). Consequently, three perturbed phase shift
vectors may be computed. For example, for ∆ϕj = 180◦,
from equation (8) we obtain

ϕp =
(
0◦ 298◦ 240◦ 358◦ 120◦ 242◦

)>
. (17)

For each perturbed phase shift vectors, adopting the testing
strategy of section III, and taking the structure of the adjacency
matrix A into consideration, the minimal number of colors,
which the network is expected to identify after the associated
pulse-based destabilization of oscillator 1, is calculated. For
∆ϕ2 = 180◦ (for either ∆ϕ1 = 90◦ or ∆ϕ3 = 270◦) the

destabilized network now featuring a new phase shift ordering,
namely 0; 4; 2; 5; 1; 3 (0; 4; 1; 2; 5; 3 or 0; 1; 4; 2; 5;
3, respectively) is able to group the vertices into two (three)
colors. As a result , in order to change the phase shift ϕ1 of
oscillator 1 by ∆ϕ2 = 180◦, at t = 5ms a T -long voltage
pulse of amplitude ∆V = −0.23V , as follows from equation
(15), is added to the voltage VS of the DC source of oscillator 1
itself, resulting in the asymptotic approach of the optimization
goal G(ϕ) to the global solution, as shown in Fig. 15. Further
examples of larger graphs will be discussed in section V.
The benefits of this concept are the ease and unconstrained
nature of the selection process of an appropriate phase offset
by which to translate the phase shift a given vertex in order
to allow the network to reach the global solution and and its
simple circuit implementation. But the impact of the amplitude
or width of the pulse on the network performance depends on
the system parameters, thus the determination of an accurate
estimation of the relation between the pulse parameters and
the resulting translation in the phase shift of the perturbed
oscillator, such as the one proposed in (15) for the graphs
analyzed in this study, might turn out to be a difficult task
for more complex networks. Also the implementation of this
algorithm can not guarantee an immaculate determination of
the global solution, but it enables the system to overcome a
large percentage of local solutions.

V. RESULTS

In this section the results for the vertex coloring of selected
graphs from the 2nd DIMACS implementation challenge will
be presented. In Table II, the selected graphs, the number
of their vertices, and their chromatic number, which is the
minimal number of different colors by which their vertices
may be colored, are given on the left side. On the right side of
the same table the performance results of oscillatory networks
and of the Brelaz heuristic in solving vertex coloring problems
are given. Overall, four approaches will be compared. At
first the solutions obtained by the Brelaz heuristic (“Brelaz
heuristic”), which is an ordering algorithm to solve vertex
coloring problems, and secondly the results computed by
the oscillatory network from [9] (“reference [9]”), where no
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initial state as the one selected for the system of Fig. 9 was chosen, but at the time instant t = 5ms a pulse was applied to oscillator 1, resulting in a phase
shift of approximately 180°. The assignment of vertices to color groups, on the basis of the final phase shifts of the respective oscillators, is visualized in
plot (a) by highlighting the perimeter of the left (right) half circle, which the 3 trajectories, indicating the temporal trends of the phases of the oscillators
corresponding to the vertices 0, 2, and 4 (1, 3, and 5), belong to at steady state, with the same color used in plot (b) to fill the three circles symbolizing the
corresponding vertices of the graph.

likely, would be identifiable by the network in case the phase
shift ϕi of oscillator i experienced a sudden translation by
any offset ∆ϕj in a set of M − 1 uniformly-spaced values
(∆ϕj = j ·360◦/M , with j = 1, . . . ,M −1). Thereby we can
reapply the concepts exposed in section III to the adjacency
matrix A and to a perturbed phase shift vector ϕp, obtained
from the phase vector ϕ by translating the phase shift ϕi of
oscillator i by a phase offset ∆ϕj :

ϕpk =

{
ϕi + ∆ϕj if k = i

ϕk otherwise.
(16)

If, two or more phase offset ∆ϕj candidates, after addition to
the phase shift of vertex i, lead to a modified network with the
same lowest number of colors, the choice falls on the candidate
with the largest modulus. According to equation (15) the
corresponding amplitude ∆V of the T -long pulse to be added
up to the nominal value VS of the DC voltage source of
oscillator i is finally determined.

Let us apply this two-step method to the example of Fig. 15.
At the end of the first half of the simulation i.e at t = 5ms the
steady state phase shift vector is expressed by equation (8),
analogously as in the crossover simulation of Fig. 14. The
application of the first step of the strategy provides analogous
results as obtained in section IV-C. Vertices 0 and 1 play a
major role in preventing the network from determining the
chromatic number. Selecting oscillator 1 as target of the pulse
destabilization process, the offset candidates are chosen freely
from a set 3 values, i.e. ∆ϕj ∈ {90◦, 180◦, 270◦}, withj ∈
{1, 2, 3} (M = 4). Consequently, three perturbed phase shift
vectors may be computed. For example, for ∆ϕj = 180◦,
from equation (8) we obtain

ϕp =
(
0◦ 298◦ 240◦ 358◦ 120◦ 242◦

)>
. (17)

For each perturbed phase shift vectors, adopting the testing
strategy of section III, and taking the structure of the adjacency
matrix A into consideration, the minimal number of colors,
which the network is expected to identify after the associated
pulse-based destabilization of oscillator 1, is calculated. For
∆ϕ2 = 180◦ (for either ∆ϕ1 = 90◦ or ∆ϕ3 = 270◦) the

destabilized network now featuring a new phase shift ordering,
namely 0; 4; 2; 5; 1; 3 (0; 4; 1; 2; 5; 3 or 0; 1; 4; 2; 5;
3, respectively) is able to group the vertices into two (three)
colors. As a result , in order to change the phase shift ϕ1 of
oscillator 1 by ∆ϕ2 = 180◦, at t = 5ms a T -long voltage
pulse of amplitude ∆V = −0.23V , as follows from equation
(15), is added to the voltage VS of the DC source of oscillator 1
itself, resulting in the asymptotic approach of the optimization
goal G(ϕ) to the global solution, as shown in Fig. 15. Further
examples of larger graphs will be discussed in section V.
The benefits of this concept are the ease and unconstrained
nature of the selection process of an appropriate phase offset
by which to translate the phase shift a given vertex in order
to allow the network to reach the global solution and and its
simple circuit implementation. But the impact of the amplitude
or width of the pulse on the network performance depends on
the system parameters, thus the determination of an accurate
estimation of the relation between the pulse parameters and
the resulting translation in the phase shift of the perturbed
oscillator, such as the one proposed in (15) for the graphs
analyzed in this study, might turn out to be a difficult task
for more complex networks. Also the implementation of this
algorithm can not guarantee an immaculate determination of
the global solution, but it enables the system to overcome a
large percentage of local solutions.

V. RESULTS

In this section the results for the vertex coloring of selected
graphs from the 2nd DIMACS implementation challenge will
be presented. In Table II, the selected graphs, the number
of their vertices, and their chromatic number, which is the
minimal number of different colors by which their vertices
may be colored, are given on the left side. On the right side of
the same table the performance results of oscillatory networks
and of the Brelaz heuristic in solving vertex coloring problems
are given. Overall, four approaches will be compared. At
first the solutions obtained by the Brelaz heuristic (“Brelaz
heuristic”), which is an ordering algorithm to solve vertex
coloring problems, and secondly the results computed by
the oscillatory network from [9] (“reference [9]”), where no

Figure 12. (a) Phase dynamics of the balanced network of Figure 3(b), with compensation for the
memristor device-to-device variability, and under the same sub-optimal initialisation setting as in
the simulation illustrated in Figure 8(a)-(b), for the case where the voltage VS of the DC source in
oscillator 1 is offset by ∆Vs = −0.23 V from the time instant t = 5 ms for a temporal window of
duration Tp = 38.48µs (the common period T of the oscillatory waveforms of the currents through
the memristors, measured over the time interval [4.965, 4.984]ms, was found to be equal to 19.24 µs).
As discussed earlier, right before the application of the pulse to cell 1, which triggers a sudden shift
in its relative phase by approximately 180◦, the network is found to sit on a stable oscillatory solution
associated to a local minimum of the optimisation goal function (see also the three phase clusters
emerging in plot (a) right before the pulse destabilisation action). Despite the phase shift vector,
measured much earlier than it was done in the simulation of Figure 8(a),(b), was found to be slightly
different from the one reported in Equation (17), specifically ϕ(s) = [0◦, 118◦, 238◦, 359◦, 119◦, 240◦]T,
the resulting vertex ordering remains defined by Equation (18). (b) Time evolution of the optimisation
goal function. (c) Minimum number of color groups assigned through the iterative vertex coloring
procedure of Section 4 to the nodes of the graph in Figure 3(a) over time (the procedure is applied once
every T-long cycle). After the pulse destabilisation 2 colors are assigned to these nodes. The pulse-
based perturbation of oscillator 1 was thus found to resolve the impasse, allowing the memristive
array to approach the optimal solution associated to the global minimum of G(ϕ), and to identify the
chromatic number n = 2 of the associated graph (see also the two phase clusters emerging in plot
(a) at the end of the simulation). Despite, at the time instant t = 5 ms, when the pulse perturbation
commences, G(ϕ) undergoes a sudden increase from the local minimum value of −3, it descends
steeply straight away, decreasing monotonically toward the global minimum value of −6 thereafter.

The numerical results illustrated in Figure 12, where plots (a), (b), and (c) respectively
show phase dynamics, time evolution of the optimisation goal function, and temporal trend

24 In order to present a fair comparison between the beneficial effects of the crossover and pulse destabilisation
control paradigms, we ensured that the simulations in Figures 11 and 12 provided identical results for
t ∈ [0, 5)ms by choosing the same initialisation setting, and assigning a common random set of α-values to the
memristors.
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of the solution of the classification task, respectively, provide evidence for the success of the
circuit implementation of the pulse destabilisation strategy in pulling the dynamical system
out of the impasse state, allowing its asymptotic convergence to the solution of the graph
coloring problem associated to the global minimum of G(ϕ). These results were obtained
by simulating the balanced network of Figure 10(b), with compensation for the memristor
device-to-device variability, and under the same sub-optimal initialisation setting as in
the simulation illustrated in Figure 8(a),(b). With reference to Figure 12, at the end of
this first part of the simulation, covering the time interval expressed as t ∈ [0, 5)ms, the
optimisation goal function was found to sit at a local minimum value, specifically −3 (see
plot (b)), and the minimum number of colors, which, on the basis of our iterative vertex
coloring procedure, may be assigned to the nodes of the graph in Figure 3(a), is 3 (refer
to plot (c)). From the time instant t = 5 ms and for a Tp = 38.48µs-long time interval,
the offset ∆VS = −0.23 V is added up to the nominal value VS of the DC voltage source
in oscillator 1. As may be evinced by inspecting Figure 11, the relative phase of cell 1
undergoes a sudden shift by approximately 180◦, and, thereafter, the phase dynamics of the
network evolve toward a new stable steady-state pattern, whereby G(ϕ) is found to sit at
its global minimum level, particularly −6 (see plot (b))), and the network is able to identify
the chromatic number of the graph in Figure 10(a), as determined through the proposed
iterative vertex coloring procedure (refer to plot (c)).

5.3. Discussion

Since a single crossover or pulse destabilisation manoeuvre may be unable to pull a
more complex memristive network out of an impasse situation, or to reach the solution
associated to the global minimum of the optimisation goal function, in case the dynamical
system receives enough energy to move out of the solution associated to a local minimum
of the optimisation goal function25, a good approach to address this issue would be to
reapply either of the two proposed strategies periodically, interchanging the connections of
two distinct appropriate oscillators or applying a suitable destabilising pulse to a different
ad-hoc oscillator at regular time intervals26.

Let us provide a proof of principle of the proposed approach, focusing on the pulse
destabilisation control strategy. Similar results were obtained through the periodic ap-
plication of the crossover paradigm. With reference to Figure 13, plot (a) shows the time
evolution of the phase shifts of the oscillators with labels running from 1 to 24 with respect
to the reference cell 0 in a capacitively-coupled network of NbOx memristor oscillators
implementing a N = 25-node undirected graph known as queen5_5 [50]—see also the inset
in plot (b)—in case compensation for the mismatch between the capacitive loads of the
oscillators and for the memristor device-to-device variability is set in place, and for the case
where, periodically, on the basis of the two-step strategy introduced in Section 5.2, a distinct
oscillator is perturbed by means of a Tp-long pulse of appropriate height ∆Vs. As shown in
plot (b) the optimisation goal function evolves progressively through various local minima
before attaining the global minimum value, which is associated to the identification of the
chromatic number of the queen5_5 graph, i.e., n = 5, as demonstrated in plot (c). After a
38 ms-long transient time interval, the network exhibits a robust oscillatory solution, given
that the subsequent application of destabilisation pulse stimuli to the oscillators does no
longer affect the phase dynamics.

25 In some cases, after overcoming the impasse situation, the dynamical system could approach a new oscillatory
solution associated to another local minimum of G(ϕ).

26 The time separation Tint between consecutive applications of the crossover or pulse destabilisation strategy
is set to 2 ms in the simulations discussed in this section. Furthermore, in this work the estimation of the
common period T of the oscillations appearing in a N-cell network, and the associated group ordering of the
phase shifts of the cells 1, . . ., N − 1 relative to the null phase of the reference cell 0 are carried out every cycle
throughout the duration of any simulation. Moreover, in the first (latter) control strategy, the application of a
pulse to the same oscillator (a crossover involving either oscillator from the same pair) is not allowed until at
least 5 iterations of the control strategy have elapsed first. As a result, each pulse destabilisation (crossover)
manoeuvre targets a different oscillator (involves a different pair of oscillators).
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Fig. 17: Evolution of (a) the phase shift. (b) the optimization goal G(ϕ) and (c) the number of colors for the queen6_6 graph, which results in a temporary
local solution of eight colors. To optimize the determined solution, every 2ms a crossover was implemented.

oscillatory network as a computing engine for the implemen-
tation of optimization algorithms. The fact that, for general
inappropriate initial conditions, the network converges to a
local solution, was deemed to be the main reason why the
system did rarely determine the graph chromatic number. By
implementing the concepts of crossovers (section IV-C) and
the pulse destabilization (section IV-D), on the memristive
network, local solutions may be bypassed, and, in most graph
coloring problems analyzed in this paper, the global solution
is finally attained. The utilization of these concepts to solve
vertex coloring problems leads to a far superior performance,
with fewer color groups as compared to those identified via
other means in other significant studies reported recently in
the literature, as shown in Table II from section V.
According to our research agenda, the next step will tackle the
hardware implementation of an array of oscillators with freely
configurable connections between the cells. Furthermore, other
concepts or better strategies for the given concepts, allowing
the network to identify the chromatic number faster or with
less effort, shall be investigated. Furthermore, the thermal
noise of memristors should be included in future simulations
to determine if it might have a beneficial effect on the
network performance, similarly as in a simulated annealing
optimization process.

REFERENCES

[1] M. Weiher, M. Herzig, R. Tetzlaff, A. Ascoli, T. Mikolajick, and S. Sle-
sazeck, “Pattern formation with locally active s-type NbOx memristors,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66,
no. 7, 2019.

[2] R. Tetzlaff, A. Ascoli, I. Messaris, and L. O. Chua, “Theoretical foun-
dations of memristor cellular nonlinear networks: Memcomputing with
bistable-like memristors,” IEEE Transactions on Circuits and Systems I:
Regular Papers, 2019.

[3] A. Ascoli, I. Messaris, R. Tetzlaff, and L. O. Chua, “Theoretical
foundations of memristor cellular nonlinear networks: Stability analysis
with dynamic memristors,” IEEE Transactions on Circuits and Systems
I: Regular Papers, 2019.

[4] A. Ascoli, R. Tetzlaff, S.-M. Kang, and L. O. Chua, “Theoretical
foundations of memristor cellular nonlinear networks: A DRM2-based
method to design memcomputers with dynamic memristors,” IEEE
Transactions on Circuits and Systems I: Regular Papers, 2020.
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oscillatory network as a computing engine for the implemen-
tation of optimization algorithms. The fact that, for general
inappropriate initial conditions, the network converges to a
local solution, was deemed to be the main reason why the
system did rarely determine the graph chromatic number. By
implementing the concepts of crossovers (section IV-C) and
the pulse destabilization (section IV-D), on the memristive
network, local solutions may be bypassed, and, in most graph
coloring problems analyzed in this paper, the global solution
is finally attained. The utilization of these concepts to solve
vertex coloring problems leads to a far superior performance,
with fewer color groups as compared to those identified via
other means in other significant studies reported recently in
the literature, as shown in Table II from section V.
According to our research agenda, the next step will tackle the
hardware implementation of an array of oscillators with freely
configurable connections between the cells. Furthermore, other
concepts or better strategies for the given concepts, allowing
the network to identify the chromatic number faster or with
less effort, shall be investigated. Furthermore, the thermal
noise of memristors should be included in future simulations
to determine if it might have a beneficial effect on the
network performance, similarly as in a simulated annealing
optimization process.
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oscillatory network as a computing engine for the implemen-
tation of optimization algorithms. The fact that, for general
inappropriate initial conditions, the network converges to a
local solution, was deemed to be the main reason why the
system did rarely determine the graph chromatic number. By
implementing the concepts of crossovers (section IV-C) and
the pulse destabilization (section IV-D), on the memristive
network, local solutions may be bypassed, and, in most graph
coloring problems analyzed in this paper, the global solution
is finally attained. The utilization of these concepts to solve
vertex coloring problems leads to a far superior performance,
with fewer color groups as compared to those identified via
other means in other significant studies reported recently in
the literature, as shown in Table II from section V.
According to our research agenda, the next step will tackle the
hardware implementation of an array of oscillators with freely
configurable connections between the cells. Furthermore, other
concepts or better strategies for the given concepts, allowing
the network to identify the chromatic number faster or with
less effort, shall be investigated. Furthermore, the thermal
noise of memristors should be included in future simulations
to determine if it might have a beneficial effect on the
network performance, similarly as in a simulated annealing
optimization process.
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Figure 13. Evidence for the capability of a 25-cell network, preliminarily compensated for the
unbalance in the number of connections per oscillator, and for the inter-device variability inherent to
memristors, to converge toward the optimal solution of the vertex coloring problem for the graph
queen5_5 [50]. The cyclic application of a pulse stimulus of fixed length and appropriate amplitude to
an ad-hoc oscillator of the network guides the phase dynamics toward the global minimum solution.
(a) Phase diagram visualising the time evolution of the phase of each oscillator j ∈ {1, . . . , 24} relative
to the phase of the reference oscillator 0. (b) Time waveform of the optimisation goal function G(ϕ).
(c) Progression of the outcome of the iterative vertex coloring procedure of Section 4 over time.
Throughout the second half of the simulation the minimum number of color groups, assigned to the
vertices of the graph queen5_5, visualised in the inset of plot (b), is fixed to the chromatic number
n = 5 of the graph itself, despite the network is subject to further pulse-based perturbations.

Table 3 shows a comparison between the solutions of the node coloring task for a
number of graphs [50] pertaining to the 2nd algorithm implementation challenge for NP-
hard problems in Discrete Mathematics and Theoretical Computer Science (DIMACS) [51],
derived from the application of various techniques, namely an algorithmic approach
known as Brélaz heuristic [52], methods based upon the analysis of the phase dynamics of
capacitively-coupled arrays of locally-active memristor oscillators without a control strategy
for bypassing local minima solutions, as respectively presented in [42], and in Section 4,
and, finally, paradigms including either a reconfigurability of the oscillators’ couplings,
as discussed in Section 5.1, or a perturbation of the memristive array, as presented in
Section 5.2, to enable the dynamical system to exit an impasse state, and to resume the
calculations of the problem solution, thereafter.

The results obtained through the analysis of the phase dynamics in memristive os-
cillatory networks—refer to the approach employed in [42] and to our iterative strategy
from Section 4, where no technique to bypass local minima solutions is set in place, are
comparable to the corresponding ones of the Brélaz heuristic algorithm. As may be evinced
from Table 3, the graph coloring paradigm implemented through capacitively-coupled
memristive oscillators in [42] classifies the vertices of all investigated graphs, with the
exception of the one called queen6_6 [50], into a number of color groups equal to or lower
than the number of colors assigned to the nodes of the corresponding graphs through the
proposed iterative strategy from Section 4. However, it should be pointed out that, while
the nominal parameter setting in cell and coupling circuits is unaltered in the numerical
investigations of the networks of all the graphs in Table 3, it is unclear whether the same
values were assigned to the physical attributes of the components of the array for the
simulations of the corresponding systems in [42]. Furthermore, while the mathematical
characterisation of our NbOx resistance switching memory is rooted on strong physics foun-
dations, and is endowed with device-to-device variability control, the simplistic, model
adopted to characterise the locally active VO2 memristor in [42], has no physics basis,
assuming that the two-terminal element may feature at any given time one of two conduc-
tance values, denoting the metallic and insulating state, respectively, depending upon the
voltage falling across it, and does not account for the inherent spread in the device static
and dynamic properties from sample to sample. The application of our iterative graph
coloring strategy to the vertex orderings derived from the simulations of the networks from
Table 3, for the case where the tendency of the oscillators’ phase shifts to approach local
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minima solutions is counterbalanced through the implementation of either the crossover or
the pulse destabilisation control paradigms, leads to an evident performance improvement.
With reference to each of the graphs—namely mycie15, queen5_5, queen6_6, queen7_7,
and queen8_8—whereby, according to the iterative strategy from Section 4, our memristive
network is unable to identify the chromatic number n on its own, the periodic application
of either of the two control paradigms from Sections 5.1 and 5.2 allows the lowest number
of colors assigned to the N vertices to decrease, and, in most cases, the final phase pattern
of the memristive oscillatory array allows to determine the global minimum solution. As an
example, which also reveals how further studies are necessary to improve the performance
of our memristive networks in coloring the vertices of complex graphs, Figure 14(a) shows
the phase dynamics of a balanced network implementing the queen6_6 graph [50], for
the case where the mismatch in the number of couplings per oscillator and the memristor
device-to-device variability are respectively compensated via the methodologies described
in Sections 3.2 and 3.3, and a periodic application of the crossover control paradigm of
Section 5.1, involving a distinct pair of oscillators from cycle to cycle, is set in place. In
this case, the network keeps in a transient phase throughout the simulation. As may be
evinced by inspecting the time evolution of the optimisation goal function G(ϕ), shown
in plot (b), and the evolution of the outcome of our iterative vertex coloring strategy over
time, illustrated in plot (c), the dynamical system does not exhibit a monotonic decrease
toward the global minimum solution, escaping the best solution, computed around 50 ms,
to approach higher local minima thereafter. With regard to our intention to enhance the
local minima bypass paradigms further, the analysis of the potentially-beneficial impact of
the memristor thermal noise source on the capability of the dynamical system to descend
monotonically toward the global minimum solution is one of the future research activities
in our agenda.

Remark 4. The first priority in our research agenda is to realize a hardware prototype able to solve
various graph coloring problems of small/medium size on the basis of the oscillators’ phase dynamics.
In order to allow a hardware implementation of the proposed memristive computing engine to solve
a number of different graph coloring problems, the connections between the processing units need to
be adjustable on a case by case basis, which calls for the use of a coupling arrangement typical of
a Hopfield neural network, with the introduction of a transistor switch, controllable via some ad
hoc multiplexer, in series with each capacitor CC. While hardware architecture considerations for
large networks are still quite premature, we believe that scaling up the size of the computing engine
would require the use of an array-like structure, as typically used for memories, to implement the
programmable coupling circuitry. Except for the memristors, which could be arranged in crossbar
configuration across the metal layers, the rest of the circuitry, necessary to implement the oscillatory
cells, would be laid out on the CMOS substrate. In later generations of the proposed hardware, also
back-end of line (BEOL) transistors can be envisioned so as to further increase the area efficiency
of the computing platform. From a problem-solving perspective, scaling up the network size to
tackle problems of bigger dimension, envisaging, in general, a larger number of connections between
the vertices of the associated graphs, shall result in an inevitable increase in the number of local
minima for the optimization goal function, which complicates the operation of the control circuitry,
as it tries to guide the oscillators’ phases toward the optimal grouping at steady state. This is a
general problem for all state-of-the-art software algorithms and hardware platforms, which aim
to minimize non-convex optimization goal functions. In order to solve graph coloring problems
of higher complexity, some fine tuning of the control strategies, proposed in this manuscript, as
inspired by the most efficient NP-hard optimization problem solvers, available today, is expected to
be necessary.
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Table 3. Comparison between the solutions of the vertex coloring problem for various graphs [50] for
the 2nd algorithm implementation challenge for NP-hard problems in DIMACS [51], obtained through
the application of a specific algorithm, known as Brélaz heuristic [52], by means of methods exploiting
the phase dynamics of capacitively-coupled memristive networks without a control strategy for
bypassing local minima solutions, namely the technique proposed in [42], and the iterative node
coloring procedure, presented in Section 4, and via the iterative node coloring procedure augmented
with strategies, based upon crossover and pulse destabilisation, presented in Sections 5.1 and 5.2,
respectively, and aimed to overcome local minima solutions [31]. The results tabulated in the last
three columns were computed through the analysis of 100 ms long numerical simulations.

Minimum Number of Color Groups for the Classification of the Vertices of the Associated Group

graph vertices n Brélaz algorithm [42] iterative strategy iterative strategy and crossover control iterative strategy and pulse destabilisation control
mycie13 11 4 4 4 4 4 4
mycie14 20 5 5 5 5 5 5
mycie15 47 6 6 6 7 6 6

queen5_5 25 5 7 6 7 5 5
queen6_6 36 7 10 12 11 8 8
queen7_7 49 7 12 12 14 10 10
queen8_8 64 9 15 14 15 13 13
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oscillatory network as a computing engine for the implemen-
tation of optimization algorithms. The fact that, for general
inappropriate initial conditions, the network converges to a
local solution, was deemed to be the main reason why the
system did rarely determine the graph chromatic number. By
implementing the concepts of crossovers (section IV-C) and
the pulse destabilization (section IV-D), on the memristive
network, local solutions may be bypassed, and, in most graph
coloring problems analyzed in this paper, the global solution
is finally attained. The utilization of these concepts to solve
vertex coloring problems leads to a far superior performance,
with fewer color groups as compared to those identified via
other means in other significant studies reported recently in
the literature, as shown in Table II from section V.
According to our research agenda, the next step will tackle the
hardware implementation of an array of oscillators with freely
configurable connections between the cells. Furthermore, other
concepts or better strategies for the given concepts, allowing
the network to identify the chromatic number faster or with
less effort, shall be investigated. Furthermore, the thermal
noise of memristors should be included in future simulations
to determine if it might have a beneficial effect on the
network performance, similarly as in a simulated annealing
optimization process.
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oscillatory network as a computing engine for the implemen-
tation of optimization algorithms. The fact that, for general
inappropriate initial conditions, the network converges to a
local solution, was deemed to be the main reason why the
system did rarely determine the graph chromatic number. By
implementing the concepts of crossovers (section IV-C) and
the pulse destabilization (section IV-D), on the memristive
network, local solutions may be bypassed, and, in most graph
coloring problems analyzed in this paper, the global solution
is finally attained. The utilization of these concepts to solve
vertex coloring problems leads to a far superior performance,
with fewer color groups as compared to those identified via
other means in other significant studies reported recently in
the literature, as shown in Table II from section V.
According to our research agenda, the next step will tackle the
hardware implementation of an array of oscillators with freely
configurable connections between the cells. Furthermore, other
concepts or better strategies for the given concepts, allowing
the network to identify the chromatic number faster or with
less effort, shall be investigated. Furthermore, the thermal
noise of memristors should be included in future simulations
to determine if it might have a beneficial effect on the
network performance, similarly as in a simulated annealing
optimization process.
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oscillatory network as a computing engine for the implemen-
tation of optimization algorithms. The fact that, for general
inappropriate initial conditions, the network converges to a
local solution, was deemed to be the main reason why the
system did rarely determine the graph chromatic number. By
implementing the concepts of crossovers (section IV-C) and
the pulse destabilization (section IV-D), on the memristive
network, local solutions may be bypassed, and, in most graph
coloring problems analyzed in this paper, the global solution
is finally attained. The utilization of these concepts to solve
vertex coloring problems leads to a far superior performance,
with fewer color groups as compared to those identified via
other means in other significant studies reported recently in
the literature, as shown in Table II from section V.
According to our research agenda, the next step will tackle the
hardware implementation of an array of oscillators with freely
configurable connections between the cells. Furthermore, other
concepts or better strategies for the given concepts, allowing
the network to identify the chromatic number faster or with
less effort, shall be investigated. Furthermore, the thermal
noise of memristors should be included in future simulations
to determine if it might have a beneficial effect on the
network performance, similarly as in a simulated annealing
optimization process.
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Figure 14. (a) Phase dynamics of the network associated to the graph queen6_6 [50], after its
preliminary compensation for the unbalance in the number of connections per oscillator, and for the
inter-device variability inherent to memristors, upon the periodic interchange between the couplings
of two specific oscillators. In this case the phase dynamics of the network keep in a transient state
throughout the 100 ms-long simulation. (b) Evolution of the optimisation goal function G(ϕ) over
time. (c) Minimum number of colors, assigned to the nodes of the graph queen6_6 through the
iterative vertex coloring procedure of Section 4, applied once every cycle, versus time. Half way
through the simulation the nodes of the graph, illustrated in the inset of plot (b), are classified into
8 color groups, one more than the correct number (refer to Table 3), but this solution proves to be
unstable, when the network, thereafter, is subject to further crossover-based perturbations.

6. Conclusions

The local activity [26] of NbOx memristors ([27,28]) allows the emulation of neuronal
dynamics ([9,11]), the implementation of bio-inspired signal processing paradigms [53],
and the reproduction of complex phenomena [30] emerging in systems from cellular
biology [44]. This manuscript serves as a pedagogical tutorial to the operating principles
of a cellular nonlinear network of oscillators, coupled through linear capacitors, and
employing one locally-active memristor [43] each, recently introduced in [31] to solve
a non-deterministic polynomial (NP)-hard combinatorial optimization problem, known
as vertex coloring. While, due to page limitation, only a compact description of the
signal processing paradigm, implemented by the proposed Memristor Oscillatory Network,
was reported in [31], this tutorial reports all the details of the mechanisms underlying
its modus operandi. Importantly, control methods [33] to compensate for the inherent
variability of memristor devices, to counteract the imbalance between the load capacitances
of the oscillators, as well as, most importantly, to prevent the bio-inspired network to
attain a sub-optimal steady state, are developed and implemented in circuit form. The
Memristor Oscillatory Network, endowed with the proposed control circuitry, is found to
outperform state-of-the-art software and hardware competitor alternatives, identifying, for
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each graph from a wide selection, the lowest number of color groups for the respective
vertices. As a more general conclusion, the potential of all locally-active devices, including
niobium ([28,43,54]) or vanadium dioxide [55] threshold switches, and ovonic threshold
switches [56,57], is expected to be subject to a thorough exploration, in the years to come,
for a possible exploitation of their small-signal amplification capability for electronics
applications, e.g. to build nano-oscillators with tuneable frequency ([58]), to solve NP-hard
combinatorial optimization problems, as discussed in this manuscript, for reproducing
complex biological phenomena [44], for exploring new forms of computing via pattern
formation dynamics [59], or for designing bio-plausible neuromorphic circuits [10].
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