
Journal of

Low Power Electronics
and Applications

Article

Design of In-Memory Parallel-Prefix Adders

John Reuben

����������
�������

Citation: Reuben, J. Design of

In-Memory Parallel-Prefix Adders. J.

Low Power Electron. Appl. 2021, 11, 45.

https://doi.org/10.3390/

jlpea11040045

Academic Editors: Alex Serb and

Adnan Mehonic

Received: 14 October 2021

Accepted: 17 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Chair of Computer Architecture, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
91058 Erlangen, Germany; johnreuben.prabahar@fau.de

Abstract: Computational methods in memory array are being researched in many emerging memory
technologies to conquer the ‘von Neumann bottleneck’. Resistive RAM (ReRAM) is a non-volatile
memory, which supports Boolean logic operation, and adders can be implemented as a sequence of
Boolean operations in the memory. While many in-memory adders have recently been proposed,
their latency is exorbitant for increasing bit-width (O(n)). Decades of research in computer arithmetic
have proven parallel-prefix technique to be the fastest addition technique in conventional CMOS-
based binary adders. This work endeavors to move parallel-prefix addition to the memory array
to significantly minimize the latency of in-memory addition. Majority logic was chosen as the
fundamental logic primitive and parallel-prefix adders synthesized in majority logic were mapped to
the memory array using the proposed algorithm. The proposed algorithm can be used to map any
parallel-prefix adder to a memory array and mapping is performed in such a way that the latency
of addition is minimized. The proposed algorithm enables addition in O(log(n)) latency in the
memory array.

Keywords: resistive RAM (ReRAM); non-volatile memory (NVM); majority logic; memristor;
1Transistor-1Resistor (1T–1R); in-memory computing; processing-in-memory; parallel-prefix adder;
logic-in-memory; memristive logic

1. Introduction

Conventional computer architecture is facing an acute problem—the ‘von Neumann
bottleneck’ or ‘memory wall’. The shuffling of data between processing and memory units
is energy-consuming and time-consuming and degrades the performance of contemporary
computing systems [1,2]. In other words, the energy needed to move data (between
memory and processing units) forms a significant portion of the computational energy.
To overcome the memory wall, the processor and memory unit must be brought closer to
each other. A 3D stacking of DRAM dies over logic die, often referred to as near-memory
computing [3], was pursued earlier to reduce the latency and energy for data movement
between processor and memory. The recent trend is to move computing to the location of
the data, i.e., in-memory computing.

In in-memory computing, the data are processed at their location (i.e., in the memory
array) and not moved out of the memory array to a separate processing unit. At present,
diverse operations from arithmetic operations to cognitive tasks such as machine learning
and pattern recognition are being explored in memory arrays [4]. This article focuses
on arithmetic operations and how adders can be implemented in memory. It should
be noted that in-memory computing is pursued in many memory technologies—both
conventional (SRAM, DRAM) and emerging non-volatile memories (Resistive RAM, STT-
MRAM, PCM, FeFET). However, in this article, we restrict our focus to Resistive RAM
technology to achieve a greater focus on the design of parallel-prefix adders. Resistive
RAM device is a two-terminal Metal–Insulator–Metal structure in which data can be
stored as resistance. A positive voltage across the structure forms a conductive filament
(low resistance state) and a negative voltage ruptures the filament (high resistance state),
leading to two stable resistances. Boolean gates can be implemented in the memory
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array by altering the structure of the memory array, the peripheral circuitry around the
array, or both. Arithmetic circuits such as adders can be implemented as a chain of such
Boolean operations.

Although different in-memory adders have been proposed in the literature, the latency
of in-memory adders is a severe disadvantage in in-memory computing, i.e., an addition
operation needs a long sequence of Boolean operations. A poorly optimized in-memory
adder may take longer to compute (add two n-bit numbers) than the combined time it takes
to fetch data from memory and add them in a CMOS-based processor. In a computing
system, adders constitute the basic computational unit. In-memory adders have not
had their latency studied and optimized for an increasing bit-width (n-bit operand). In
practice, 32-bit/64-bit in-memory adders require hundreds of cycles due to O(n) latency
requirements. It was originally proposed that parallel-prefix (PP) adders could bring down
the latency caused by the rippling of carry in CMOS-based adders. PP adders are the fastest
adders in conventional CMOS technology [5,6]. To improve the latency of in-memory
adders, it is necessary to learn lessons from the decades of research on CMOS adders and
adopt them for in-memory addition. Therefore, parallel-prefix adders were pursued in this
work to improve the latency of in-memory adders. More specifically, we propose a generic
methodology to design any PP adder in memory. As an example, we consider the Ladner–
Fischer type of PP adder and demonstrate how this can be implemented in-memory in
O(log(n) latency. The presented method requires no major modifications to the peripheral
circuitry of the memory array and is also energy-efficient.

The rest of the paper is organised as follows. Section 2 reviews the state-of-the-art
in-memory adders and classifies in-memory adders on the basis of state fullness, logic
primitive and architecture. The review identifies the exorbitant latency of adders with
increasing bit-width, as a significant issue that needs attention. Section 3 presents PP
adders as a solution to the long latency incurred by the rippling of carry. Section 4.1
reviews the in-memory majority gate, which is the fundamental logic gate used in this
work to implement the PP adder in the memory array. Section 4.2 elaborates how PP
adders can be synthesized using majority logic. Having synthesized PP adders in majority
logic, Section 4.3.3 elaborates how they can be mapped to the memory array. We present
the simulation methodology in Section 5.1. In Section 5.2, we analyse how the latency of
the proposed adder grows with increasing bit-width. Sections 5.3 and 5.4 analyse how the
energy and area of the proposed adder grow with increasing bit-width. In Section 5.5, we
compare the proposed adder with other adders reported in the literature, followed by the
Conclusion in Section 6.

2. In-Memory Adders: A Brief Review

Conventionally, adders were designed using logic gates built from CMOS transistors.
In contrast, an in-memory adder is designed using a ‘functionally complete’ Boolean
logic primitive. NOR, for example, is functionally complete, since any Boolean logic can
be expressed using NOR gates. Therefore, if an NOR gate can be implemented in the
memory array, any arithmetic circuit can be implemented in the memory array. NAND,
IMPLY + FALSE [7] and Majority + NOT [8] are other functionally complete logic primitives.
In the last 5 years, several in-memory adders have been proposed. They can be classified
as the following:

1. State variable used for computation—stateful or non-stateful;
2. Logic primitive used for computation—NAND or NOR or IMPLY or MAJORITY or

XOR or a combination of these;
3. Adder architecture—how is the carry propagated?

Stateful in-memory adders perform an addition by logic gates, where each gate is exe-
cuted by manipulating the resistance of a memristor (i.e., the internal state) rather than by a
mix of resistance and voltage [9]. If voltage is also used, in addition to resistance, the logic
gate and the adder are said to be non-stateful (Figure 1a). This is one of the characteristics
of in-memory adders that, with certain modifications to conventional memory, a particular
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logic primitive can be realized and other logic primitives need to be realized in terms of this
logic primitive. The NOR-based memristive logic family (MAGIC), for example, requires
that all other gates (AND, OR, XOR) are expressed in terms of NOR gates and then used in
the memory array. Similarly, in the NAND-based adder reported in [10], an XOR gate is
implemented as NAND gates (one XOR requires four memory cycles). Figure 1b illustrates
a one-bit full adder expressed solely as NOR/NAND/Majority gates (expressing a circuit
using single logic primitive is preferred for in-memory implementation). Finally, an issue
that is often overlooked in this emerging area is the issue of carry-propagation. The manner
in which carry is propagated from LSB to MSB decides the speed of the in-memory adder.
In the in-memory community, different adder architectures, from ripple carry (slowest) to
parallel-prefix (fastest) adders, have been proposed.
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Figure 1. (a) An in-memory logic gate (adder) is stateful if its only state variable is resistance.
Non-stateful logic gates (adder) also use voltage in conjunction with resistance. (b) In-memory
adder implementation favors homogeneity of logic primitives; 1-bit full adder in terms of NOR
gates [11], NAND gates [12] and majority gates [13]; (c) Different carry-propagation techniques result
in different adder architectures.

Table 1 lists different in-memory adders that have been reported recently and their
latency for 8-bit and n-bit. The adders are also classified based on the three characteristics
we reviewed—state variable, logic primitive and adder architecture. A key observation
is that logic primitive plays an important role in determining the latency. IMPLY is a
weak logic primitive, and generally incurs more latency than all other logic primitives.
XOR and the majority are generally stronger logic primitives than OR/AND/NOR. This is
evident from the fact that XOR-based and majority-based ripple-carry adders are faster than
NAND/NOR-based ripple-carry adders [13]. In other words, with the adder configuration
being the same (ripple-carry), logic primitive plays an important role in determining the
latency of in-memory addition. Another important finding is that the adder architecture
plays a key role in deciding the latency for increasing bit-width. This is evident from the
latency of OR + AND-based adders in Table 1. Both adders used the same logic primitive
(OR + AND), but [14] uses ripple-carry architecture, achieving a latency of 6n + 1 while [15]
uses a parallel-prefix configuration to achieve a latency of 8log2(n) + 13. As an example, a
32-bit adder based on OR + AND logic will require 193 cycles and 53 cycles for ripple-carry
and parallel-prefix architectures, respectively. Hence, for larger bit-widths, architecture
(carry propagation technique) plays an important role in latency. In summary, both adder
architecture and logic primitive influence the latency of in-memory adder. Therefore,
majority logic primitive and parallel-prefix adder architecture were chosen in this work to
drastically minimize the latency of in-memory adders.
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Table 1. Latency of recently reported in-memory adders (8-bit and n-bit).

Stateful Primitive Architecture Latency (8 bit) Latency (n-bit) Ref.

Yes IMPLY Ripple carry 58 5n + 18 [7]

Yes IMPLY Parallel-serial 56 5n + 16 [16]

Yes IMPLY + OR Ripple carry 54 6n + 6 [17]

Yes IMPLY Semi-parallel 136 17n [18]

Yes NOR Ripple carry 83 10n + 3 [19]

Yes NOR Look-Ahead 48 5n + 8 [20]

No OR + AND Ripple carry 49 6n + 1 [14]

Yes ORNOR Parallel-clocking 31 2n + 15 [21]

Yes RIMP/NIMP∗ Pre-calculation 20 2n + 4 [22]

Yes XOR Ripple carry 18 2n + 2 [23]

No XOR + MAJ Ripple carry 18 2n + 2 [24]

Yes XNOR/XOR Carry-Select 9 – [25]

No OR + AND Parallel-prefix 37 8log2(n) + 13 [15]
In a Complementary Resistive Switch (CRS) adder, RIMP/NIMP∗ denotes reverse implication and inverse
implication.

3. Parallel-Prefix Adders: A Solution for the Carry-Propagation Problem

When two n-bit binary numbers A (an−1an−2 · a0) and B (bn−1bn−2 · b0) are added, the
sum bit Si at the ith bit position is computed as,

Si = Hi ⊕ Ci−1 (1)

where, Hi = Ai ⊕ Bi and Ci−1 is the carry computed in the previous bit position. To
compute the sum bits of the next significant bit position, the incoming carry Ci−1 is
propagated to the next position. This is accomplished using carry generate bits (Gi = Ai · Bi)
and carry propagate bits (Pi = Ai + Bi). The carry-out (Ci) of a particular bit position
is always a function of the carry from the previous bit (Ci−1), and they are expressed
as follows:

Ci = Gi + Pi · Ci−1 (2)

Thus, during the 8-bit addition of a7a6a5a4a3a2a1a0 and b7b6b5b4b3b2b1b0, sum bit
S6 = H6 ⊕ C5 and C5 is a function of a5, b5, C4 according to Equations (1) and (2). In other
words, S6 cannot be computed until C5 is computed, which recursively depends on the
carry-out of the lower significant bit. This is the decades old carry-propagation problem
and significantly affects the speed of n-bit addition as n grows. Ripple-carry adders
are extremely slow for 32-bit/64-bit addition due to this carry propagation. To improve
this situation, carry-skip adders were proposed, which allowed for carries to skip across
block of bits instead of rippling through them. This was followed by Carry-lookahead
adders, where carries were computed in parallel and achieved logarithmic logic depth [26].
Parallel-prefix (PP) adders improved on the carry-look ahead adder by expressing carry-
propagation as a prefix computation [27]. They are the fastest family of adders [5,6] in
conventional transistor-based implementations.

PP adders have a ‘carry-generate block’, followed by a ‘sum-generate block’ (Figure 2).
Internally, the carry-generate block has a pre-processing stage, which computes Gi, Pi, Hi
for every bit. Using them, carry bits CoutCn−1 · C1C0 are computed using the prefix com-
putation technique. This is followed by the sum-generate block, where Si = Hi ⊕ Ci−1
is computed. The reader is referred to [27,28] for a detailed explanation of the stages of
a parallel-prefix adder. Kogge–Stone, Ladner–Fischer, Brent–Kung, Sklansky, Ling, etc.,



J. Low Power Electron. Appl. 2021, 11, 45 5 of 16

are examples of PP adders. According to the taxonomy of PP adders [29], these adders
essentially form a compromise between logical depth, fan-out and wiring tracks. PP adders
can reduce the logical depth to O(log(n)), for n-bit adders [30].
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Figure 2. Generic Structure of PP adders: A ‘carry-generate block’ calculates carry by prefix compu-
tation and is then followed by a ‘sum-generate block’ ([30]).

4. In-Memory Implementation of Parallel-Prefix Adders
4.1. In-Memory Majority Gate

Before their implementation in memory, the PP adders must first be synthesized in
terms of logic gates which can be implemented in memory. As stated, different logic
primitives require different modifications to the memory array or its peripheral circuitry (or
both). Therefore, for the in-memory implementation of adders, it is important to minimize
the different types of logic primitives used. Consequently, it is beneficial to express the
adder using one logic primitive, rather than four different logic primitives. Recently, an
in-memory majority gate was proposed in [31,32]. The three inputs to the majority gate are
the three resistances of the memory cells, and the output majority is computed as a READ
operation (Figure 3a). This majority gate does not necessitate any major modifications to the
peripheral circuitry of a regular memory array, and is also energy-efficient (access transistor
for each memory cell minimizes sneak currents, thus lowering energy consumption when
compared to other adders implemented in 1S–1R configuration). As depicted in Figure 3b,
multiple majority gates can be executed in array columns, which suits PP adders with a
similar structure.

4.2. Homogeneous Synthesis of Parallel-Prefix Adders

Conventionally, PP adders are synthesized in terms of AND, OR and XOR gates for
CMOS implementation. Figure 4a depicts an eight-bit PP adder of the Ladner–Fischer type.
Three different logic primitives are required—AND, OR and XOR. As stated, different logic
primitives require different modifications to the memory array and its peripheral circuitry.
If a particular Boolean logic gate cannot be implemented in the memory array, it has to
be re-formulated in terms of a logic gate that can be implemented in the memory array.
For example, in the NAND-based logic family reported in [10], the XOR gate cannot be
implemented; therefore, it is expressed as four NAND gates. As depicted in Figure 4a,
a single XOR becomes three levels of NAND logic, increasing its latency. In contrast, by
expressing a PP adder purely in terms of MAJORITY+NOT gates, the PP adder can be
efficiently implemented in the memory array. Furthermore, a majority-based PP adder
achieves a marginal reduction in logical depth compared to conventional AND-OR-XOR
implementation (Figure 4). This is due to the majority being a stronger logic primitive
than NAND/NOR/IMPLY [13]. To synthesize PP adders in terms of majority gates, logic
synthesis tools can be used. A logic synthesis tool is proposed in [8], which takes any
AND-OR-INVERT-based logic and synthesizes it purely in terms of majority and NOT
gates. Boolean logic minimization techniques such as re-shaping, push-up, node merging,
etc., are used to re-synthesize and optimize conventional AND-OR-INVERT logic in terms
of MAJORITY-INVERT [33–38]. Since the majority is the fundamental logic primitive for
many emerging nanotechnologies, there are also works which pioneered the synthesis of
PP adders solely in terms of majority gates. The reader is referred to [5,30,39] for such
works. Therefore, a variety of techniques can be used to transform PP adders in terms of
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majority and NOT gates. Figure 4b depicts a 8-bit PP adder, synthesized solely in terms
of majority and NOT gates. In addition to achieving homogeneity, the majority-based PP
adder incurs one level of reduction in logical depth compared to the AND-OR-XOR-based
PP adder.
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Figure 4. (a) Eight-bit PP adder of Ladner–Fischer type expressed in terms of AND, OR , XOR gates.
(b) Re-synthesized and optimized in terms of MAJORITY and NOT gates [5,30].

4.3. Mapping Methodology

Having synthesized the PP adder in terms of majority and NOT gates, they can be
implemented in memory using the in-memory majority gate described in Section 4.1. The
NOT gate can be implemented as a simple READ operation with the output inverted.
The design of in-memory PP adders presented in this paper is generic and can be used to
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implement any PP adder. However, in this section, the Ladner–Fischer adder of Figure 4b
is chosen and the in-memory implementation (mapping) steps are elaborated.

4.3.1. In-Memory Mapping as an Optimization Problem: Objectives

The mapping of the majority-based PP adder to the memory array can be treated as
an optimization problem. Any optimization problem has objectives or goals, which should
be achieved in the presence of certain constraints. The objectives of in-memory mapping
are as follows:

1. Latency of in-memory PP adder must be minimized (O1);
2. Energy consumption during addition must be minimized (O2);
3. Area of the array used during computation must be minimized (O3).

The aforementioned objectives are no different from the objectives of any VLSI circuit.
All objectives cannot be met simultaneously in this mapping, and trade-offs must be made
between latency of addition (O1) and the area of array that is used (O3). Any arithmetic
circuit implemented in memory is bound to be very slow due to the high latency of in-
memory adders. The latency of in-memory adders reported in the literature grows, as O(n)
and 32-bit/64-bit in memory require hundreds of cycles [9]. Therefore, in this mapping, we
focus on and minimize the latency. Minimizing the latency might result in the array area
being compromised. However, latency is the more serious issue compared to array area in
in-memory addition, for the following reasons:

1. A conventional adder (in CMOS) is devoted to addition while we re-use the existing
memory array in in-memory computation. Hence, the increased array area required
during addition is not a disadvantage, as long as computation can be performed in
the memory array without an extra array;

2. ReRAM memory cell or memristor is a nano-device and does not significantly con-
tribute. For example, a single 1T-1R cell in 130 nm CMOS occupies 0.2 µm2 [40].

A significant portion of the energy consumed during in-memory addition is dissipated
in the memory array. This is predominantly due to sneak-currents in the 1S–1R array. In
contrast, our proposed PP adder is implemented in a transistor-accessed memory array
(1T–1R); therefore, the energy dissipation in the array is negligible. The major energy
consumption is the energy consumed while the cells switch states (WRITE) and the majority
operation (READ). Therefore, the energy consumed during addition is minimized if latency
is minimized. In other words, latency (O1) is the most important objective to be minimized.

4.3.2. In-Memory Mapping as an Optimization Problem: Constraints

The constraints are specific to this design methodology and can be summarized
as follows:

1. Majority operation must be executed at three consecutive rows (C1);
2. Due to the bounded endurance of ReRAM devices, the number of times a cell is

switched must be minimized. (C2).

C1 must be satisfied during mapping because, during majority operation, three rows must
simultaneously be selected. In principle, the three selected rows need not be contiguous
and can be in different locations in the memory array (e.g., row 5, 8, 15 of a 64 × 64 array).
However, row-decoding will become complicated. For practical in-memory implemen-
tation, the mapping must be ‘peripheral circuit friendly’. In [32], a triple-row decoder is
proposed for triple row-activation during majority operation. To implement this decoder,
multiple single-row decoders were interleaved. Furthermore, the same row-decoder must
be able to perform single-row decoding and triple-row decoding. This is because, during
normal memory operation, a single row must be selected and, during majority, three rows
must be selected. To this end, an address translator circuit is used in the row decoder,
which seamlessly switches between single-row activation and triple-row activation. The
triple-row decoder [32] is designed in such a way that only three consecutive rows can
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be selected. Therefore, while mapping, the inputs of the majority gate (to be executed in
memory in the next step) must be written in three consecutive rows.

Constraint C2 is posed by a characteristic of non-volatile memories called endurance.
A memory device’s endurance refers to its ability to switch between two stable states while
maintaining a sufficient resistance ratio. Experimentally reported endurances vary from
106 to 1012. Due to this limited endurance, the number of times a memory cell is switched
during addition must be minimized.

4.3.3. Algorithm

Having identified the objectives and constraints, we formulate a generic methodology
to map any PP adder to the memory array. As stated, if the PP adder is available in terms
of AND-OR-XOR gates, they must be re-synthesized in terms of the majority and NOT
gates using logic synthesis techniques/tools. Given a majority-based PP adder, optimal
in-memory implementation is an optimization problem—minimize O1, while meeting C1
and C2.

The following steps implement the PP adder in the memory:

1. Start with Logic level 1;
2. Simultaneously execute all majority gates of a logic level in the columns of the

array (O1);
3. Write the outputs of the majority gates to the precise locations where they are needed

in the next logic level such that all the majority gates of the following level can be
executed simultaneously (O1);

4. During Step 3, write the outputs of the majority gates to a new location and do not
overwrite the existing data (C2);

5. During Step 3, write the outputs of the majority gates to contiguous locations in the
memory array (C1);

6. Repeat Steps 2–5 for the remaining logic levels.

Figure 5 illustrates the mapping of an 8-bit PP adder to the memory array. Majority
gates 1–8 of the first logic level are executed simultaneously in one memory cycle. Since
we know that, at the next level, majority gates 9, 10, 11, 12, 13, 14 need to be executed, we
write the outputs of the first logic level (m1, m2, m3, m4, m5, m6, m7, m8) to the exact location
where they will be needed. When we write the output of the majority gates back to the
array, they are written in consecutive rows (C1) and are not overwritten on existing data
(C2). The in-memory steps are highlighted in yellow in Figure 5. The in-memory steps
corresponding to logic levels 1 and 2 are:

1. Majority at col. (1, 9, 26, 33, 42, 49, 58, 65) rows 4–6 as a READ operation;
2. Write (m1m1m3m5m7) at col. (2, 10, 34, 50, 59) , row 4;
3. Write (m2m2m4m6m8) at col. (2, 10, 34, 50, 59), row 5;
4. Write (m3m4m3m4) at col. (2, 10, 17, 25) , row 6;
5. Majority at col. (2, 10, 17, 25, 59, 73) rows 4–6 as a READ operation.
6. . . . . . . . . .

In this manner, the seven logic levels of an 8-bit adder can be executed in memory in
18 cycles. A detailed mapping of all seven logic levels is presented in Appendix A.
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a7 a7 a6 a6 a5 a5 a4 a3 a3 a2 a1 a1 a0  4
b7 b7 b6 b6 b5 b5 b4 b3 b3 b2 b1 b1 b0  5
a6 b6 a4 b4 a2 b2 a0 Cin b0 Cin  6

m1 m2 m3 m4 m5 m6 m7 m8  

a7 m1 a7 m1 a6 a6 a5 a5 m3 a4 a3 a3 m5 a2 a1 m7 a1 a0  4
b7 b7 b6 b6 b5 b5 b4 b3 b3 b2 b1 b1 b0  5
a6 b6 a4 b4 a2 b2 a0 Cin b0 Cin  6

a7 m1 a7 m1 a6 a6 a5 a5 m3 a4 a3 a3 m5 a2 a1 m7 a1 a0  4
b7 m2 b7 m2 b6 b6 b5 b5 m4 b4 b3 b3 m6 b2 b1 m8 b1 b0  5
a6 b6 a4 b4 a2 b2 c2 c2 a0 Cin b0 Cin  6

a7 m1 a7 m1 a6 a6 a5 a5 m3 a4 a3 a3 m5 a2 a1 m7 a1 a0  4
b7 m2 b7 m2 b6 b6 b5 b5 m4 b4 b3 b3 m6 b2 b1 m8 b1 b0  5
a6 m3 b6 m4 m3 m4 a4 b4 c4 c4 a2 b2 c2 c2 a0 Cin b0 Cin  6

 

a7 m1 a7 m1 a6 a6 a5 a5 m3 a4 a3 a3 m5 a2 a1 m7 a1 a0  4
b7 m2 b7 m2 b6 b6 b5 b5 m4 b4 b3 b3 m6 b2 b1 m8 b1 b0  5
a6 m3 b6 m4 m3 m4 a4 b4 a2 b2 a0 Cin b0 Cin  6

m11 m12 m13 m14  c2  c1

  1    2    3    9   10   11 17  18  19  25  26  27  33 34  35   41  42  43 49  50  51  57  58  59 65  66  67  73  74  75

       SA1           SA2           SA3           SA4         SA5          SA6          SA7            SA8          SA9          SA10

Column #

 Row #

Majority

WRITE 
to row 4

WRITE 
to row 5

WRITE 
to row 6

Majority

m3 m4 m5 m6 m7 m8

m11 m12m13 m14

m2m1

Figure 5. Illustration of mapping of the first two logic levels to a memory array. Since each majority
operation is executed as a READ operation, it can be written to the exact location it is needed
at the next logic level while satisfying C1 and C2. In the above mapping, eight columns share a
sense amplifier.

5. Performance of In-Memory Parallel-Prefix Adders
5.1. Simulation Methodology

To verify the proposed in-memory adder through simulation, the 1T-1R memory array
and its peripheral circuitry were designed in IHP’s 130 nm CMOS process. The memory
array was composed of 1T-1R cells in which the ReRAM is modelled using the Stanford-
PKU model with a 130 nm NMOS transistor as access transistor. A time-based sense
amplifier [9] was used to read from the array (majority operation) and an op-amp was used
to simultaneously write multiple bits into the array. A triple-row decoder was designed by
interleaving multiple single-row decoders. Detailed schematics of the peripheral circuitry
are given in [9]. A simultaneous reading (majority operations) and writing across columns
of the array was verified by simulation. As described in Section 4.3.3, the adder can be
executed in memory as a sequence of READ (majority) and WRITE operations, which
are orchestrated by the memory controller (the memory controller can be designed as a
finite-state machine and was not designed in this work).
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5.2. Latency of In-Memory PP Adders with Increasing Bit-Width

The latency of PP adders grows as log (n). From Figure 6, one can observe that, from
8-bit to 16-bit, the number of logic levels increased by only a single level, i.e., from seven
levels to eight levels. The major advantage of the PP adder lies in this (O(log(n)) logic
levels), and we aim to extend this advantage to our in-memory implementation. For the
16-bit version, we have to add an extra level of logic to the carry-generate block to calculate
the carry (sum generate block remains at three logic levels; see Figure 6). In general, the
number of logic levels, l is given by

l = log2n + 4 (3)

for the n-bit PP adder (Ladner–Fischer type) synthesized in majority logic [30]. When
this 16-bit adder was mapped to the memory array following the procedure used for an
8-bit adder (Section 4.3.3), 22 cycles were incurred. As a result of the interconnections
between logic levels, the number of in-memory cycles is always higher than the number of
logic levels. For an 8-bit adder (Figure A1), a careful comparison of the in-memory cycles
indicated that every logic level is translated into at least two cycles, i.e., 2l in-memory cycles.
The first few logic levels of the carry–generate block required two more WRITE cycles in
addition to the aforementioned WRITE cycles. This additional requirement applies for
(l − 5) of the l levels. Consequently, the number of cycles required for l logic levels of an
n-bit PP adder can be calculated as follows:

Cyclesin−memory = (2l) + 2(l − 5)

= 4l − 10

= 4(log2n + 4)− 10

= 4 · log2n + 6

(4)

Therefore, any PP adder can be implemented in O(log2n) cycles, which is the fastest
in-memory adder reported to date (a detailed comparison is given in Section 5.5).

5.3. Energy of In-Memory PP Adders with Increasing Bit-Width

The energy consumed during in-memory addition is composed of the actual energy
consumed due to addition (switching ReRAM cells during writing; energy consumed
in the SA during majority operation) and the array leakage energy. The array leakage
energy is the inherent energy consumption due to sneak currents in transistor-less arrays
(e.g., some works, such as [41], used a diode to suppress these sneak currents). However,
the proposed adder is executed in a 1T–1R array where the sneak currents are negligible.
Hence, array leakage energy can be neglected. The energy used to write into an ReRAM
cell is EWRITE ≈ 12 pJ/bit for IHP’s ReRAM. The energy used for majority operation is the
energy consumed in the SA, and is given by, EMAJ ≈ 0.63 pJ/majority operation. As can be
seen in Figure A1, during eight-bit addition, there are 36 majority operations; 8 NOT and
85 bits are written to the array. Neglecting the energy of an NOT operation (which is only
0.13 pJ/bit), the energy needed for eight-bit in-memory addition is

Energy8−bit = 36× EMAJ + 84× EWRITE (5)

Observing that EWRITE is 20 × EMAJ , the in-memory addition energy is dominated by
the energy that is needed to write into the array.

Energy8−bit ≈ 84× EWRITE (6)
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where EWRITE is the energy that is needed to write to a single bit. Similarly, during 16-bit
addition in memory, 180 cells are written [9]. In general, for n-bit addition, (2n− 2) × 6
cells are written, making the energy for n-bit addition,

Energyn−bit ≈ (2n− 2)× 6× EWRITE (7)

To summarize, the energy for the proposed in-memory adder grows as ≈ 12n times
the WRITE energy/bit.
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Figure 6. Eight-bit and 16-bit PP adder (Ladner–Fischer type) expressed in majority logic [5,30]. From
8-bit to 16-bit, the number of logic levels increased from 7 to 8, i.e., (O(log(n)) latency in terms of
logic levels, before mapping to the memory array.

5.4. Area of In-Memory PP Adders with Increasing Bit-Width

In all in-memory adders, the peripheral circuitry of the array is modified to support
logic operations, resulting in an increase in the CMOS peripheral circuit area. This increase
is a significant factor to consider, since this increase in the silicon area is used solely to make
the array ‘computable’. Therefore, a holistic comparison between in-memory adders should
consider both the increase in the peripheral circuitry area and the array area (occupied
during addition), with the former being the more significant factor. In this work, the
triple-row decoder is the only change required, while all other parts of the peripheral
circuitry do not change, since computation is performed using normal memory operations
(READ and WRITE). The array area used during the addition is simple to calculate—only
six rows are needed, independent of the adder size (see Figure A1). In the of Figure A1
mapping, it is assumed that eight columns share a sense amplifier (this is the case when
considering pitch-matching, although there are works which assume a sense amplifier for
each column). For 8-bit addition, 80 columns are needed, and for n-bit addition, 8n + 16
columns are needed. Therefore, for n-bit addition, the required array area is 6 × (8n + 16).
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5.5. Comparison with Other In-Memory Adders

In this section, we compare the presented in-memory PP adder design methodology
with other adders and evaluate the latency with increasing bit-width. In Table 2, the
latency of the proposed in-memory PP adder is compared with the latency of in-memory
adders summarized in Table 1. With the exception of the two PP adders, the latency of
all other adders is O(n). The sklansky PP adder of [15] incurs a delay of 8log2(n) + 13,
while the majority-based PP adder presented in this work incurs a latency of 4log2(n) + 6.
With a PP architecture, majority logic-based implementation outperforms the OR/AND
implementation of [15] in terms of latency. This proves that majority is a stronger logic
primitive than OR/AND. The issue of latency becomes more evident when we observe
the latency for increasing bit-width. For an 8-bit addition, the XOR-based ripple-carry
adders [23,24] incur a latency of 18, which is the same latency as that incurred by the
majority-based PP adder. A superficial observation may lead one to conclude that logic
primitive alone plays a key role, and both XOR and MAJ are equally good, irrespective
of the architecture used. However, the latency of XOR-based adders [23,24] grows to 2n
+ 2, while that of majority-based PP adder grows to 4log2(n) + 6. In other words, for a
32-bit addition, the XOR-based adders incurs 66 cycles, while the proposed majority-based
PP adder will incur only 26 cycles. This disparity further increases for 64-bit additions.
In Figure 7, the latency of in-memory adders is plotted for increasing bit-width to better
visualize this trend. As plotted in Figure 7, the proposed adder is one of the in-memory
adders with the least latency, since it logarithmically depends on n. This latency advantage
is obtained with only a minor modification to the row-decoder of a conventional memory. It
must be noted that most other in-memory adders, compared in Table 2, require significant
modifications to the peripheral circuitry. The energy consumption of the proposed in-
memory adder is mainly due to the HRS ↔ LRS switching energy of the cells during
addition. The leakage energy, due to sneak-path currents (which constitutes a significant
portion of the total addition energy in 1S–1R adders), is avoided by the access transistor.

Table 2. Latency comparison of in-memory adders (8-bit and n-bit).

Logic Primitive Architecture Latency (8 bit) Latency (n-bit) Ref.

IMPLY Ripple carry 58 5n + 18 [7]

IMPLY Parallel-serial 56 5n + 16 [16]

IMPLY + OR Ripple carry 54 6n + 6 [17]

IMPLY Semi-parallel 136 17n [18]

NOR Ripple carry 83 10n + 3 [19]

NOR Look-Ahead 48 5n + 8 [20]

OR + AND Ripple carry 49 6n + 1 [14]

ORNOR Parallel-clocking 31 2n + 15 [21]

RIMP/NIMP Pre-calculation 20 2n + 4 [22]

XOR Ripple carry 18 2n + 2 [23]

XOR + MAJ Ripple carry 18 2n + 2 [24]

XNOR/XOR Carry-Select 9 – [25]

OR + AND Parallel-prefix 37 8log2(n) + 13 [15]

Majority + NOT Parallel-prefix 18 4log2(n) + 6 This work
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Figure 7. Latency of in-memory adders with increasing bit-width, n. An adder with O(log(n))
latency is required for 32-bit/64-bit addition to harness the power of in-memory computation.

6. Conclusions

The latency of in-memory adders is a severe disadvantage in in-memory comput-
ing, i.e., any adder is implemented in the memory array as a long sequence of Boolean
operations. A poorly optimized in-memory adder may take longer to compute than the
combined time it takes to fetch data from memory and compute in a CMOS processor.
In-memory adders have not had their latency analyzed and optimized for higher bit-width,
and consequently incur O(n) latency for n-bit addition (32-bit/64-bit adders, typically
used in microprocessors, will require hundreds of cycles). In this work, a design method-
ology is presented to tackle the exorbitant latency of in-memory adders. The strength
of the majority logic primitive is coupled with the parallel-prefix (PP) adder architecture
to achieve a latency of 4log2(n)+6 for parallel-prefix additions in the memory array. The
main contribution of this work is a generic mapping methodology, used to map a parallel-
prefix adder circuit (synthesized in majority logic) to the memory array with minimum
latency. Multiple majority operations can be performed simultaneously in the columns of
the array, and could achieve a O(log(n)) latency for any PP adder. Using the proposed
design methodology, 32-bit and 64-bit adders (used in processors) can be implemented in
26 and 30 memory cycles, respectively. This can pave the way for arithmetic and similar
computing tasks to be efficiently performed at the data location.
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Appendix A. Mapping of 8-Bit Ladner-Fischer Adder to Memory Array
                                                      

a7 a7 a6 a6 a5 a5 a4 a3 a3 a2 a1 a1 a0  4
b7 b7 b6 b6 b5 b5 b4 b3 b3 b2 b1 b1 b0  5
a6 b6 a4 b4 a2 b2 a0 Cin b0 Cin  6

m1 m2 m3 m4 m5 m6 m7 m8

a7 m1 a7 m1 a6 a6 a5 a5 m3 a4 a3 a3 m5 a2 a1 m7 a1 a0  4
b7 m2 b7 m2 b6 b6 b5 b5 m4 b4 b3 b3 m6 b2 b1 m8 b1 b0  5
a6 m3 b6 m4 m3 m4 a4 b4 a2 b2 a0 Cin b0 Cin  6

m11 m12 m13 m14  c2  c1

a7 m1 m11 a7 m1 m13 a6 a6 a5 a5 m3 a4 a3 a3 m5 a2 a1 m7 a1 a0  4
b7 m2 m12 b7 m2 m14 b6 b6 b5 b5 m4 b4 b3 b3 m6 b2 b1 m8 b1 b0  5
a6 m3 b6 m4 m3 m4 a4 b4 a2 b2 c2 c2 a0 Cin b0 Cin  6

 c4   c3  

a7 m1 m11 a7 m1 m13 a6 a6 a5 a5 m3 a4 a3 a3 m5 a2 a1 m7 a1 a0  4
b7 m2 m12 b7 m2 m14 b6 b6 b5 b5 m4 b4 b3 b3 m6 b2 b1 m8 b1 b0  5
a6 m3 c4 b6 m4 c4 m3 m4 a4 b4 c4 c4 a2 b2 c2 c2 a0 Cin b0 Cin  6

 Cout   c7  c6  c5

Cout c7 c6 c5 c4 c3 c2 c1 Cin 2
3

a7 m1 m11 a7 m1 m13 a6 a6 a5 a5 m3 a4 a3 a3 m5 a2 a1 m7 a1 a0 4
b7 m2 m12 b7 m2 m14 b6 b6 b5 b5 m4 b4 b3 b3 m6 b2 b1 m8 b1 b0 5
a6 m3 c4 b6 m4 c4 m3 m4 a4 b4 c4 c4 a2 b2 c2 c2 a0 Cin b0 Cin 6

Cout c7  c6   c5  c4  c3  c2  c1 

Cout c7 c6 c5 c4 c3 c2 c1 Cin 2
Cout c7 c6 c5 c4 c3 c2 c1 3

a7 m1 m11 a7 m1 m13 a6 a6 a5 a5 m3 a4 a3 a3 m5 a2 a1 m7 a1 a0 4
b7 m2 m12 b7 m2 m14 b6 b6 b5 b5 m4 b4 b3 b3 m6 b2 b1 m8 b1 b0 5
a6 m3 c4 b6 m4 c4 m3 m4 a4 b4 c4 c4 a2 b2 c2 c2 a0 Cin b0 Cin 6

m21 m22 m23 m24 m25 m26 m27 m28

m21 m22 m23 m24 m25 m26 m27 m28 1
Cout c7 c6 c5 c4 c3 c2 c1 Cin 2

Cout c7 c6 c5 c4 c3 c2 c1 3
a7 m1 m11 a7 m1 m13 a6 a6 a5 a5 m3 a4 a3 a3 m5 a2 a1 m7 a1 a0 4
b7 m2 m12 b7 m2 m14 b6 b6 b5 b5 m4 b4 b3 b3 m6 b2 b1 m8 b1 b0 5
a6 m3 c4 b6 m4 c4 m3 m4 a4 b4 c4 c4 a2 b2 c2 c2 a0 Cin b0 Cin 6
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Figure A1. Mapping of the eight-bit LF adder of Figure 5 to memory array. All the majority gates in
a level are simultaneously executed (red boxes). During parallel-prefix addition, mi represents the
output of the ith majority gate, and ci is the carry (denoted in green color, since it is read as a voltage
before being written into the array). 3 WRITE denotes writing cycles to 3 different rows, where more
than 1 bit may be written in each row.
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