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Abstract: Data collection is one of the most relevant topics of modern automation and industry. It
is usually a costly and time-consuming task, especially in continuous processes. Our case study
takes place in a sugar cane mill. The required continuous operation of a belt conveyor for bagasse
transportation makes it a critical system in the overall production process. Therefore, a predictive
maintenance tool is highly applicable here. We identified bearing housings as critical points for data
collection intended for prognostics of the conveyor. However, given the number of points, the cost of
a commercial solution becomes unfeasible by our company. This paper reports the development of
low-cost devices for measurements and wireless transmission of vibration and temperature data from
bearing housings. We assessed several sensor options and made decisions based on a cost-suitability
commitment, which led to the design of the electronic devices. The devices were tested for correct
operation, reliability (99%), and relative measurement errors under 1.2%. From the tests, we conclude
that our proposal is appropriate for our case study’s industrial needs and budget restrictions.

Keywords: sensing network; LoRa; machinery prognostics; belt conveyor

1. Introduction

Maintenance is one of the most important topics for a reliable and long lifecycle
of industrial equipment. There are several maintenance methodology approaches for
operational cost and life-use optimization. The latest and probably the most effective
approach long-term is predictive maintenance. Accurate and reliable data measurement
and acquisition to predict failure events is the general goal of this approach. The use
of measurement systems for data collection and pattern analysis has shown promising
applicability in this field [1,2].

To achieve efficient maintenance, prognostics is essential for task scheduling that
reduces operating costs and improves productivity. A prognostic is an estimation of
the current condition of the target system; this estimation is based on several models,
including past event information, real-time observations, life-use (LU), and operational
models. In general, all of these appraisal models are fitted, adjusted, and based on data,
i.e., information collected from measurement systems located on the equipment. Thus, the
quality of the predictions is highly dependent on the quality of the data.

In Colombia, industry is foraying its transformation towards Industry 4.0. which
entails the enforcement of high-end technology for both production and maintenance tasks.
However, some technologies remain unaffordable for certain small and midsize enterprises.

Specifically, our case study takes place in a sugar cane mill. A belt conveyor there
needs to operate continuously since it carries bagasse to a steam boiler for electricity
generation. Furthermore, it needs to keep low down-times, and failures appear sometimes
on bearing, rollers, and other moving parts. Given the above, variables such as temperature
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and vibration are critical for monitoring and analysis; nevertheless, installing standard
industrial sensing networks for continuous monitoring is unsuitable for our factories and
mills due to the high price of each sensor. Vibration analysis equipment, for example, costs
several hundreds of dollars and can only be used in a single rolling point at a time.

Currently, the maintenance department of the sugar cane mill performs a vibration
analysis once every two weeks over only two out of twelve bearings and measures temper-
ature once each working day. The belt conveyor we studied operates 24 h per day every
day; however, the maintenance department stores only a one-minute time window for each
vibration record and manually saves the instantaneous temperature. The aforementioned
implies high intervals between samples and low standardization on the measurement pro-
cedure. In this sense, the measurements are not repeatable nor reproducible and therefore
are not adequate to estimate the belt conveyor condition and subsequent prognostics.

In order to improve data collection and achieve a better prognostic maintenance within
a low-budget constraint, we propose a system with low-cost electronic devices, which are
affordable for small and mid-size enterprises in developing countries such as Colombia.
The devices need to perform the measurement in the field and transmit the chosen variables
to a central receptor where a data analytic software evaluate the health of the conveyor.

We did a wide assessment of the belt conveyor looking for operating points, measure-
ments, and communication requirements. In addition, we also developed and proposed
the following items, considering the suggestions of recent studies.

• A low-cost 3-axial vibration sensor for industrial usage.
• A low-cost temperature sensor for industrial usage.
• A low-cost communication module using Long-Range (LoRa) technology for ours and

similar industrial applications.
• A Low-Power Wide Area Network (LPWAN) operating on an industrial setup.

In order to guarantee the reliability of our devices and make an overall assessment, we
executed multiple laboratory experiments, simulations, and field tests. The characterization
of the conveyor for measurement conditions was aided by thermography and vibration
tests. The mechanical stability, isolation, and Ingress Protection (IP) were backed by a
vibrational mechanical stability assessment and Computational Fluid Dynamic (CFD)
tests. Finally, the operational tests using a statistical experiment supported the operation
reliability study. The results of the tests mentioned above allowed us to state the following
features:

• Our measurement module provides vibration measurements with an uncertainty
interval below 0.12% and 1% in worst-case scenarios (peaks).

• Our measurement module provides temperature measurement with an uncertainty
interval below 0.5%.

• Our transmission module provides a LPWAN that operates on distances up to 150 m.
• Both uncertainty intervals and transmission assessment have a confidence interval

above 99% with an estimation error below 5%.

This paper is organized as follows: Section 2 presents a background of related
works using wireless LoRa systems, instrumentation design, and measurement networks.
Section 3 presents some guidelines and introduces the context to mark off the design re-
quirements and carry out the circuitry syntheses and detailed specifications of the designed
devices. Section 4 explains some experiments and operational tests carried out using
the whole system. Finally, Section 5 presents a discussion of the previously mentioned
experiments.

2. Related Works

For the proposed case study, we explored an alternative to improve the maintenance
efficiency of belt conveyors. As a starting point, we considered traditional inspection
methods to look for the identification of critical variables and measurement equipment. As
we contemplated that the sensing system should be remote, we inquired into wireless sen-
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sors networks in industrial applications; consequently, recent breakthroughs in electronics
towards the Industrial Internet of Things (IIoT) are of great interest for this project.

Vibration and acoustic signal analyses are reliable methods to diagnose the condition
of belt conveyors [3]. These techniques are usually applied to bearings, pulleys, rollers, and
other rotating parts while the conveyor is operating. On the other hand, belt inspection is
traditionally done when the conveyor is not working. Moreover, the recent research [4]
shows promising results on belt fault detection techniques for prognostics. In [5], authors
used an autonomous legged inspection robot to collect acoustic signals around a belt
conveyor in the mining industry; however, in the sugar cane mill, many corridors around
belt conveyors are too narrow, have a slope, or do not exist. According to various academic
sources, vibration analysis of bearing housings stands out for being widely used, where
the preferred instrument is consistently the accelerometer [6–9].

Temperature logs are also crucial for the monitoring of machine mechanics. This
statement arises from the fact that variations from the regular patterns of operating tem-
perature are a common symptom of machinery malfunction [3,10,11]. There are various
methods to measure temperature in industry. To begin with, familiar tools for direct contact
transduction are Resistance Thermometer (RTD), thermocouple, and Negative Tempera-
ture Coefficient thermistor (NTC) sensors. However, there are no contact devices such as
infrared thermometers and cameras to perform thermographic analysis [7,8,12].

In addition to the variables mentioned above, numerous authors suggest alternative
methods for prognostics of a belt conveyor system. The basis of the proposed techniques is
the measurement of the operational parameters of the machine: time, belt speed, rotational
speed, and load, among others are the most common examples. The next step is to compare
the collected data with the LU cycle of the conveyor components [7,8,13]. Mazurkiewicz
introduces in [7] the use of a magnetic field sensor, a magnet, and a pulse counter to
monitor the belt conveyor integrity and other operating parameters like time, speed, and
length.

The industrial revolution 4.0 relies on the use of Cyber Physical Systems (CPS) to
interconnect devices in regards to the industry automation [14]. CPSs communicate with
one another and with humans over an IoT infrastructure by “enabling intelligent industrial
operation using advanced data analytics” [3,15,16]. Industrial IoT (IIoT) can be defined as
the application of IoT on the industry.

An IoT solution is typically built as a three-layer architecture. First, a physical layer
that includes sensors on end devices that collect data directly from the machinery. Then,
there is a network layer that provides the infrastructure for remote communication with
the physical layer. Finally, the application layer provides the ultimate functionality; this is
the stage where the collected data are stored, processed, and analyzed [17,18].

A recent study shows the design of a vibration-based condition monitoring system
in which the authors analyzed the design challenges for the required IoT architecture,
prioritizing data volume. They also reviewed and compared multiple different potential
technologies for the construction of end devices. When looking at the criteria they used for
classifying the electronic components, the authors uncovered the importance of assuring a
reliable performance for communicating large numbers of data. This assertion is accurate
because of the quantity of raw data that a vibration analysis requires. Secondly, they intend
to optimize the energy consumption, especially for portable end devices that are more likely
to depend solely on the energy provided by the battery. Finally, the authors considered that
obtaining a real-time response is important, since it allows the system to execute control in
real-time. Therefore, transmission speed is also critical according to the authors [17].

The middle layer of IoT solutions for monitoring requires a Wireless Sensor Network
(WSN) to communicate data from one host to another; ZigBee, Z-Wire, and 6loWPAN are
some technologies available for this purpose [18]. Shahzad and O’Nils deliberated over
technologies such as WLAN, Bluetooth Low-Energy (BLE), and Zigbee; others were taken
into account but discarded for experimentation. Furthermore, two types of hardware for
on-device processing were also evaluated: microcontroller and FPGA. The experimentation
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they performed consisted of registering the devices energy consumption over different data
throughput. The results showed how the energy consumption for WiFi is very consistent
but not justifiable for throughput under 800 kB [17].

Over the last decade, LoRa has been proposed as a potential solution to be imple-
mented in short-range industrial applications. It has been considered even as a replacement
for traditional technologies such as cellular networks and other short-range protocols com-
monly used [19]. Haxhibeqiri et al. note in their work that “LoRa is a candidate technology
for low bandwidth industrial applications with a high number of communication devices
spread across large areas” [20]. The low cost of the device and the low energy consumption
are the main reasons multiple authors propose LoRa-based solutions for a variety of ap-
plications including IoT, smart homes, medicine, and industry, where they are exposed to
rough environments both outdoor and indoors [20–22]. On their experiment, Haxhibeqiri
et al. successfully simulated LoRa-based communication between two nodes separated up
to 400 meters with a spreading factor of 12. They also performed indoor experimentation
involving multiple nodes supported a single gateway [20]. LoRa is a new world for network
solutions for IoT, and many boards have been developed over the years, but Leonardi et al.
gave special attention on their work to three different LoRa-based technologies because
of their performance on noisy environments and potential Industrial applications. Those
three variations of LoRa are LoRaWAN, Industrial LoRa, and RT LoRa features [19].

3. Materials and Methods

The overarching goal of this project is to design a remote sensing system in bearing
housings for belt conveyor prognostics based on LoRa technology and over an industrial
IoT architecture. In order to achieve this goal, we followed four strategic steps, where
beforehand we established the application requirements and environmental conditions.
Then, we drafted the possible solution to answer the requirements found on the previous
belt conveyor characterization. Subsequently, the proposed solution structure led to the
mechanic, electronic, and software design syntheses. The next stage was the manufactur-
ing process of the designed devices. Finally, we verified the solution with a validation
procedure, discussed in Section 4.

An initial study of the critical variables, operating conditions, and preventive mainte-
nance activities of the target conveyor was carried out. It showed that the vibration and
temperature of bearing housings are key variables for maintenance programming.

The maintenance department analyzes vibration empirically and only takes correc-
tive actions when the failure condition is evident. The historical data of vibration and
temperature records have also been intended for basic preventive maintenance. These
data, together with the conveyor characterization and on field tests, described in Section 4,
provided the initial parameters to guide the design process and instrument selection. The
measurements data allow us to identify the range of the variables, expected peaks, and the
required resolution.

Finally, given the environmental conditions around the target conveyor, the devices
that are to be deployed on the field must be protected against dust and withstand exposure
to rain. Therefore, we must consider a high Ingress Protection (IP [23]) on the mechanical
design. On the other hand, the environmental conditions did not allow us to locate the
processing data point (gateway) near the target transporter. This constraint brought the
need to design a wireless network to reach remote device communication. Figure 1 shows
that the gateway (b) is located about 150 m away from the belt conveyor (a) where the
sensor modules are installed.
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(a)
150m

Figure 1. Geographic distribution of the communication points in the sugar cane mill under study.
(a) Location of the belt conveyor of our study and the 12 measurement points of interest. (b) Location
of the gateway. Source: Authors, Google Maps.

3.1. Electronic Design Goals

To carry out the electronic design, it was crucial to consider the behavior of several
internal variables of the target system. Furthermore, some external variables such as
environmental conditions should be considered since they affect both the production
process and the measurements of the variables. We conducted an analysis of those variables
and found that the vibration and temperature are critical components of failure analysis in
our belt conveyor. Therefore, the system must take them both into account for performing
failure predictions.

Our design requires the definition of the electronic components on each stage. First,
the selection of an accelerometer and temperature sensor is discussed in Section 3.2. Sub-
sequently, in Section 3.3, we describe the communication devices, focusing on the LoRa
technology behind them.

On the other hand, one of the main challenges in the wireless communication system is
the distance between the key points and the data acquisition gateway (≈150 m on average;
see Figure 1). The measurement nodes need to be located fixed at specific points in the
conveyor’s structure inside area (a) marked in Figure 1 and they will not be relocated in
the future. The data acquisition gateway is to be located in area (b) (see Figure 1), where
tools and equipment are available to connect the gateway to a Supervisory Control and
Data Acquisition (SCADA) system.

The global proposed solution for the predictive maintenance system to be imple-
mented in the mill under study is based on the IIoT strategy drawn in Figure 2, and it
was designed as follows: in the first place, twelve bearing monitoring modules need to
be located in the conveyor, composing the physical layer of the IoT architecture. Each
monitoring module has a sensor in direct contact with the bearing housing. They are also
connected to its corresponding signal conditioning and data acquisition system (DAQ).
The transmission node embedded in the DAQ uses LoRa technology to open the link to the
wireless network layer. This is located on the structure of the conveyor for major stability.
The gateway completes the communication stage and establishes an interface to a computer
with the SCADA application. This comprises the application layer.
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Figure 2. General conceptual scheme for predictive maintenance IoT Network in the sugar cane mill. The MP block
represents the Motion Processing (MP) unit. Source: Authors.

3.2. Sensors

Our design requires a sensor profiling, which was carried out based on the range and
sampling rate requirements of the overall system. We obtained these requirements from
the technical report of the belt conveyor characterization. Subsequently, we focused on the
bearing specifications and operational conditions. We must consider that the device will be
exposed to a dusty environment and vibrations.

In the first place, it is required to measure axial, horizontal, and vertical acceleration in
the main shaft of the reference bearing. The maintenance department does an assessment
of velocity and the acceleration envelope to estimate the condition of the bearings. Given
the above, it becomes crucial to analyze the measurements to obtain velocities and peak
patterns. Historical data show that peaks of velocity can go between 0.31 mm

s and 11.48 mm
s .

For the acceleration envelope, they only measure the horizontal axis of the bearings, where
the trend reaches 0.33 gE. Finally, acceleration values do not pass 1 g in optimal conditions.
According to the evaluation from the vibration analyst in the sugar cane mill based on the
severity chart of the ISO 1086 standard, vibration readings higher than 2 g − RMS trigger a
fault alarm. However, some experts claim that the analysis of the intensity of the historical
trend is more significant than just its instantaneous values [24,25].

The sampling rate plays also an important role in vibration analysis, since it depends
on the rotational velocity of the bearings. The fastest shaft in the conveyor rotates at 99 rpm
(1.65 Hz); we consider this the operational frequency (Fo). The Charlotte vibration chart is
used to classify the type of fault according to the frequency spectrum [25]. This standard
suggests that most of the faults are exposed between the first ten (10) multiples of Fo on the
frequency spectrum. When applying the Charlotte Standard in our project, as shown in
Equation (1), the maximum frequency of the variable for the fastest shaft is calculated at
16.5 Hz.

Fo = 1.65[Hz]

Fmax = Fo · 10 (1)

Fmax = 16.5[Hz]

The Nyquist–Shannon theorem states that the sampling frequency to reconstruct a
signal should be at least two (2) times higher than Fmax. Yet, we should consider the
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unwritten rule of a multiplier factor r > 15 instead of two to guarantee proper signal
reconstruction [26]. Equation (2) shows the desired sample rate expression. As a result, an
acceptable Sampling Frequency should be Fs > 248 [Hz]. Thus, all faults described in the
Charlotte vibration chart shall be detected.

Fs = r · Fmax (2)

Vibration analysis is carried out using acceleration measurements. In this study, we
assessed multiple accelerometer sensors, and the most relevant ones are listed in Table 1.

Table 1. Accelerometer sensors specifications.

Sensor Device Number of Axes Acceleration Range Sampling Frequency Resolution/ Sensitivity Price

PCE-AC500G 1 ±500 g 0.65 ... 23,000 Hz 10 mV/g 344.66 USD

CISS Bosh 3 ±16 g ±100 Hz 14 bit 454.80 USD

ADXL345 3 ±16 g 6.25 to 3200 Hz 13 bit 25.33 USD

MPU 9250 3 ±16 g 1000 Hz 16 bit 13.68 USD

The PCE-AC500G has a wide operational range of ±500 g, and it has the highest
sampling rate out of the four sensors; this sensor is especially used in spacecraft applications
such as rockets. The Bosch CISS is a smart sensor with a smaller but sufficient operational
range and integrates USB communications. However, this sensor provides the lowest
sampling frequency, which does not meet the system requirements. The ADXL354 is a
low-cost accelerometer with a full-scale range of ±16 g and I2C communication hardware
integrated. On the other hand, the MPU9250 has similar characteristics to the ADXL354 but
with lower sampling rate. Even so, a 1 kHz samplig rate is still acceptable for the present
application. Given that almost all sensors fulfill the desired specifications, the sensor price
conditioned the final decision. Therefore, we chose the commercial MPU9250. Figure 3
shows the schematic and board of the sensor.
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Figure 3. Electrical scheme of sensor module MPU9250. Source: Adafruit Industries.

From historical reports, the mean temperature was taken to be 31.32 ◦C. The lowest
reported measure was 24 ◦C on night shifts, while the expected maximum temperature
is 40 ◦C. The maintenance department considers a possible fault when the temperature
value goes higher than 40 ◦C. For the selection of the temperature sensor, we considered
instruments that provided at least 80 ◦C of maximum temperature. The MLX90614 and
AMG8833 are non-contact sensors that comply with the temperature range requirements;
however, they are not ideal for an industrial application with a lot of environmental dust.
The belt transportation system for bagasse on the sugar cane mill is very susceptible to
spilling its content which accumulates on the bearing housing surface where tick layers are
formed. Because of this, all contact temperature sensors are adequate for the environment
of our project. Contact sensors similar to the SHT10 are more suitable; nevertheless, the
MPU9250 has an embedded temperature sensor with a wide enough range from −40 ◦C to
85 ◦C and a digital output signal.
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3.3. Transmission Device

The network layer of our application needs thirteen transmission nodes, one for each
monitoring module, and an extra one for the gateway. We designed the twelve transmission
devices to be located close to each bearing, while the gateway location was selected looking
to guarantee the best signal strength and attempting to reduce communication interference.
In accordance with the internal business restrictions, the best possible location for the
gateway was 150 m away from the measurement points, as shown in Figure 1.

To select the appropriate technology, four of our applications we evaluated the fol-
lowing factors: operation range, price, energy consumption, and outdoor experimentation
performed. The data rate was not a decisive factor because measurements are first collected
in place and then sent with a small delay.

Both the measurement nodes and the gateways use a LoRa32U4 device as the main
component. Furthermore, the on-device transmission module uses a Real-Time Clock
(RTC) (DS3231) and an Electrically Erasable Programmable Read-Only Memory (EEPROM)
as complementary elements that interconnect through an Inter-Circuit Interface Commu-
nication (I2C) protocol. Figure 4 shows the internal structure of both the gateway and
measurement nodes.

Antena

SX1276

MCU

ATMEGA32u4

TP4056

5V DC

Powe Source

3.7 Battery

EEPROM

AT24C32

DS3231

MPU9250

I2C

I2C

I2C

(a)

Antena

USB

SX1276

MCU

ATMEGA32u4

SCADA

Power Source

(b)

Figure 4. Block diagram of the network layer components: (a) Structure of measurement node. (b)
Structure of gateway. Source: Authors.

Figure 4 shows the internal communication structure of the acquisition/transmission
(a) and reception (b) modules. The vibration and temperature sensor (MPU9250) takes the
data and communicates them to the processing block and transmission (ATMEGA32u4 and
SX1276). In (a), there is also a battery management system (TP4056) for when the module
loses external power, while the Real-Time clock (RTC) module (DS3231) is used to keep
a timestamp of each measurement. In (b), internal components of the reception module,
also gateway, are displayed; this Microcontroller Unit (MCU) is the master of the LoRa
communication and coordinates the reception of the data and its subsequent transfer to the
SCADA.

The LPWAN connection topology is a direct connection between the nodes, and there
are no intermediate systems or modules called single-hop stars. The end devices are
connected directly to the base station via media access control (MAC) protocols. This
type of connection between the elements of the system simplifies the network, gives it
robustness, and generates centralized control [27]. Due to the characteristics of simplicity
and robustness, it is chosen to be applied in the project.
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LoRa

LoRa technology is an example of an LPWAN system communication. It is similar
to wireless data transmission networks such as WiFi, Bluetooth, LTE, or SigFox. In its
beginning, LoRa was an initiative of a group of enterprises such as Semtech, IBM, and
Actility, among others. They make up the LoRa Alliance. This technology uses a proprietary
radiofrequency modulation technique patented by the LoRA Alliance [28].

LoRa-based communication networks have been shown to be highly suitable for IoT
applications, where devices are generally unplugged from the network power supply.
Recent works such as [19,29,30] show the applicability of LoRa technology in an industrial
environment, as mentioned in Section 3.3. To establish an IoT connection using LoRa
technology, we must create a Wireless Personal Area Network (WPAN). Thus, it was
needed to develop our gateway and node devices. Fortunately, it is possible to adapt the
communication network to the needs of a particular application.

The LoRa 32u4 has an ATMega32u4 microcontroller (MCU) in charge of the commu-
nication protocol and data management. This MCU is interconnected to a SX1276 that
enables the LORA wireless communication; the SX1276 module uses a Radio Frequency
Modulation (RFM) set up at 915MHz that is represented in the schematic shown in Figure 5.
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Figure 5. Electrical scheme of LoRa 32u4 II module. Source: Adafruit Industries.

The data transmission module must be able to send the information fast enough to be
processed by the SCADA software and have the power so the elements that can generate
interference do not deteriorate the condition of the transmitted data. For the application
within the system, the LoRa device is chosen with the following features:

• Dimensions 51 mm × 23 mm × 8 mm
• Weight 5.5 g
• Processor ATmega32u4—8 MHz
• Number of Pins 20 GPIO
• Number of PWM Pins 7
• Number of Analog Inputs 10
• Hardware Support I2C
• Radio Module 868/915 MHz

Figure 4 shows the architecture of the connections of the monitoring and transmission
module. There is a voltage regulator as a safety element for the components that make up
the described system. In both there is an ATMega32u4 microcontroller that is responsible
for the reception and management within the transmission module of the data obtained by
the sensor placed on the bearing.

On the transmission node, the ATMega32u4 coordinates tasks of reading data from the
sensor upon receiving an order from the gateway. It also coordinates the communication
protocol to send the collected data to the gateway. Figure 6 shows the flowchart of the
algorithm on the monitoring module, identifying the three decision sequences that the
module can take: 1, Send service information about the module such as ID, name of bearing,
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and sampling parameters; 2, Measure temperature value for alarm detection; 3, Enable
acceleration sampling sequence.

Preventive 
restart

No

Yes

No

No

Start

Module setup

message==
service

Send data monitor

Yes

Receive message

Yes

Measure temperature

Data collection

No
message==

temperature 
alarm

Yes

Send temperature data
Send data

Start data frame

End data frame

General measurements

Data collection

Figure 6. Block diagram of sensing and communication routines. Source: Authors.

Internal communication between modules is based on a command–response protocol.
It is governed by the reception module, which is assigned as the master and is identified
with the ID 00. Each transmission module is a slave identified with a unique ID. The
firmware was programmed so that every request sent by the master is repeated up to
four times. If a transmission module where the data are collected does not respond, a
communication alert is generated that goes directly to the SCADA.

The reception module can be set up either on manual or automatic mode. This setting
is sent through the serial port as well as the codes of the commands when operating on
manual. When configured on automatic, the receiver first requests for the state of the
temperature alarms to each transmission module and then asks for the acceleration data of
the first slave. Then the master asks again for all the alarms status before continuing with
the second slave; this sequence is repeated indefinitely.

In the data structure for the acceleration, the measures are quantified. This number is
sent within a frame indicator inside the package that contains data of three axes. When the
master receives an acceleration package, the frame indicator is compared internally. If the
indicator is confirmed, the master sends a validation code to the slave. With the confirma-
tion from the master, the slave continues the transmission of the next package. Otherwise,
an error message is sent so the slave repeats the transmission of the last package.This cycle
can be repeated up to four times; if the error continues the communication is considered as
lost, and an alarm is triggered.

3.4. Assembly of Printed Circuit Board

Upon validation of the remote sensing system design, including a first data acquisition
and laboratory test with a prototype, we proceeded with the manufacture of the PCBs.
Figure 7 shows from left to right the design of the PCB on two layers differentiated with
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blue and red colors. Then, it is followed by a photo of each of the face of the actual printed
board.
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Figure 7. Printed Circuit Board (PCB). Designed PCB, face 1 and 2 of built PCB. Dimensions 70 mm × 70 mm . Source:
Authors.

3.5. Mechanical Design

The mechanical design was carried out considering the size of the bearings and the
way in which they must be placed in order to prevent affecting the operation of the system.
The size of electronic components also affects the mechanical design of measurement
devices. The measurements of the box that protects the electronic devices must be kept
in proportion to properly fit the bearings. It is also important to maintain protection
against the ingress of water and dust, as these can affect both the measurements and data
transmission. The mechanical design includes IP protection, which guarantees that the
system is not affected by external particles that could damage the device. Section 4.2
provides a more detailed way to design IP protection.

Figure 8 shows the mechanical design of the compartment that protects the sensor
module MPU9250 located over the bearing housing. The wired connection of the sensor to
the data collection module shown in Figure 9 is protected by a cable gland.

Figure 8. Computer-Aided Design (CAD) model for electronic and case of the measurement modules.
Source: Authors.

Every measurement node located in the conveyor must have at least an IP66 protection.
This means that dust particles under 50 µm (reference [31] defines the particle dimensions
for the corresponding protection factors) and any directional thrown water should not
ingress the devices [32].
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The transmission modules must take into account the same IP characteristics as the
data collection modules. The assembly of the communication modules must not affect the
conveyor operation. Furthermore, the internal electronic components must be protected
from the entry of foreign elements in the form of particles or the entry of water, which would
be the worst case scenario. An IP66 protection level was also selected for the transmission
modules. Figure 9 shows the CAD appearance of the communication modules.

Figure 9. CAD model for electronic plate and case of the transmission modules. Source: Authors.

4. Experiments and Results

In order to guarantee the reliability of the designing process described, and make an as-
sessment of the devices, we executed several different laboratory experiments, simulations,
and field tests.

This section describes the experiments performed to aid the reliability of the manufac-
turing process of the remote sensing system. Some of these experiments are thermographic
analysis, IP simulation, and vibration test. Furthermore, some operational test were per-
formed in order to make an assessment of the operation and reliability of the sensing and
communication devices.

4.1. Thermographic Analysis

For preventive and predictive maintenance, temperature supervision is critical for
fault detection in machines. On belt conveyors, the temperature monitoring focuses on
the bearing and gearmotor housings because they contain most rotating parts such as
rings, rollers, bushings, and shafts. The heat on bearing housings is generated from the
friction between its moving parts. Most of these parts are not reachable from the outside
of the housing, although heat flows towards the housing surface. However, we cannot
assume a uniform heat distribution. Then, a thermographic analysis with a Fluke camera
Ti200-16110220 was carried out.

Figure 10 shows an example of the thermographic analysis. It revealed that the highest
temperatures are concentrated around the shaft, where the average temperature on most
bearings is 37 ◦C ± 2 ◦C, while the housing average temperature on all bearings is 29 ◦C
(s = 1.9 ◦C). On the other hand, the greatest gap in temperature was found on the bearing
close to the engine transmission, where the measurement was 56 ◦C around the shaft. Over
the thermal image of each bearing, an area was selected for a deeper analysis. Those areas
did not exhibit significant temperature drifts. Furthermore, the zone with the greatest
variations has a standard deviation of 0.52 ◦C.
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Figure 10. Thermographic image of the bearing housing. Source: Authors.

4.2. IP Simulation

One of the main attributes that our devices must have is ingress protection. From the
conveyor characterization, we decided that the system must have at least an IP66 protection
level (see [23] for details on IP concepts). We performed a Computational Fluid Dynamics
(CFD) simulation to reproduce an assessment of the IP level required. We use the Ansys
Fluent software, where we imported a simplified 3D model from a Computer Aided Design
(CAD) software.

The CFD simulated a high-pressure jet according to water protection level 6. During
the evaluation, the water jet was launched vertically as well as horizontally, as shown in
Figure 11. The test allowed us to validate the ingress protection for the devices to operate
on the conveyor at the sugar cane mill.

Figure 11. Computational fluid dynamics simulation of the sensor on Ansys Fluent software, the
CAD model of the sensor is shown in Figure 8. Source: Authors.



J. Low Power Electron. Appl. 2021, 11, 44 14 of 19

4.3. Mechanical Stability Assessment through Vibration Test

The purpose of any vibration test is to establish material qualities and uncover design
and manufacturing faults. This evaluation intends to guarantee the compatibility of a
developed device with its future usage environment.

For this experiment, we completed two individual procedures for each of the three
axes (vertical, horizontal, and axial) of the manufactured monitoring module. In the first
place, we carried out an operational test to verify the worst case scenario. The hypothetical
situation simulated the roughest environmental vibrations the devices can undergo amid
operation. Secondly, a resistance test reveals failures related to the long-time usage.

Before, during, and after the vibration test, the mechanical and electrical integrity
of the device was evaluated. Throughout the experiment, we also monitored the tem-
perature with a Fluke thermography camera Ti200, of which Figure 12 shows a photo.
As the experimentation progressed and the vibration generated from the shaker were
augmented, the device temperature increased accordingly. This behavior was expected,
and the recorded values never endangered the equipment. The most important conclusion
of the vibration test is that the electronic elements did not suffer any damage, and the PCB
kept its electrical properties. Therefore, the monitoring module is adequate for operating
on the belt conveyor of the sugar cane mill.

Figure 12. Mechanical and stability test on vibration test rig. Source: Authors.

4.4. Operation Tests

Operational tests are intended to determine if the measurements are taken correctly
and if the information is sent correctly. It is essential to estimate the expected error
in the measures to define the reliability of the devices in terms of accuracy. Similarly,
it is important to determine the reliability of the transmission devices in terms of the
completeness and correctness of the sent information. Section 2 brings to relation several
works where data-driven approaches for machinery prognostics have been used in similar
applications.

Some fundamental studies in data analytics, specifically in deep learning models
and algorithms, show the relevance of uncertainty awareness in supervised learning
frameworks. For example, Kendall et al. in [33] offer an extensive review of the required
uncertainty considerations for data-driven estimators. Although the review is focused on
computer vision applications, relevance and basic concepts about required uncertainties
hold. More recently, uncertainty-aware methodologies for prognostics have been presented,
for example, in [34–36]. They show that uncertainties put conditions over the behavior of
the estimators. Furthermore, they show that the uncertainty level of the input information
puts a boundary on the final expected performance of the prediction models. This makes
it important to estimate our devices’ errors and uncertainty levels to define the expected
reliability in our future applications.

We have carried out a statistical experiment to assess the operational reliability of the
entire sensing network and communications devices. This experiment allows us to specify
the reliability of the devices in terms of two aspects: (i) the deviations from the actual
values of the measured variables and (ii) the robustness of the communication devices. To
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determine the size of the experiment, we took into account the operational conditions of
the devices. We estimate the number of independent runs in our study for each test using
the central limit theorem from the approach described in [37] and more recently in [38].
Specifically, we need to highlight some specific definitions:

• Population Size N: It refers to the number of single subjects in the study. In the case
of communications, it is the number of data packets sent to the gateway. In the case of
measurements, it is the number of temperature and vibration time windows recorded.

• Confidence Interval c: This is the desired level of confidence in the obtained results
from the statistical experiment. In other words, this is the probability of the conclusion
being correct. Using this confidence interval, the statistic Zc is obtained from an
inverse Gaussian Cumulate Density Function (CDF).

• Sample Proportion p: This is the estimated ratio between correct cases and the total
number of cases.

• Estimation Error e: This is the confidence interval around the sample proportion. In
other words, the resulting sample size will guarantee results with sample proportion
errors less than e.

Table 2 shows the chosen parameters for the test. The infinite population size N means
that we do not place bounds on the lifecycle of our device. The desired confidence interval
is 99% (c = 0.99), with an estimation error less than 5% (e = 0.05); we choose the ratio of
wrong cases to be, in terms of sample size, the worst case (p = 0.5). The sample size can be
computed as shown in Equation (3) [37].

M =
Zc · p(1 − p)

e2 (3)

From Equation (3), we can see that the communication and data acquisition tests need
at least 664 (M = 663.489) samples.

Table 2. Parameter set for operational testing.

Parameter Value Description

N ∞ Population size

p 0.5 Worst case of right-wrong cases rate

c 0.99 Level of confidence

e 0.05 Maximum estimation error

Zc 2.58 Statistic for confidence interval from a normal Gaussian distribution

The operation tests were executed in the real environment, where the modules were
arranged as described in Figure 1. The climatic conditions were considered normal, with a
temperature of 24◦ ± 6◦, and minimal to no rainfall.

4.4.1. Communication Test

In the communication test, each device needs to perform the correct pairing (transmission-
receiving) of at least 664 messages in a row. If the gateway correctly receives the whole
amount of messages, we can conclude with 99% confidence that the communication
device will operate properly during its life cycle. Table 3 summarizes the results of these
experiments.
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Table 3. Data Acquisition and Communication tests.

Node
Transmission Measurements RMRSE

Sent Correct M RMS PEAK TEMP

1 670 670 670 0.00115 0.00960 0.00382

2 670 670 670 0.00113 0.00878 0.00392

3 670 670 670 0.00103 0.00715 0.00401

4 670 670 670 0.00099 0.00794 0.00426

5 670 670 670 0.00117 0.00795 0.00381

6 670 670 670 0.00094 0.00643 0.00436

7 670 670 670 0.00105 0.00867 0.00417

8 670 670 670 0.00102 0.00793 0.00397

9 670 670 670 0.00098 0.00753 0.00410

10 670 670 670 0.00076 0.00888 0.00399

11 670 670 670 0.00107 0.00838 0.00412

12 670 670 670 0.00082 0.00910 0.00435

Average 0.00101 0.00820 0.00407

4.4.2. Data Acquisition Test

The data acquisition test is an assessment of the measurement devices. We carried
out the measurement of 670 samples and evaluated the relative mean root square error
(RMRSE; see Equation (4)) for the root mean square (RMS) acceleration, peak acceleration,
and instantaneous temperature.

RMRSE =

√√√√ 1
M

M

∑
i=1

(
di − d̂i

di

)2

(4)

where M is the number of measurements (M = 670), d̂i is the data value measured by
our device, and di are reference measurement values obtained from an IR sensor and the
probe CMSS 797 for the acceleration. Both sensors are used in our company for preventive
maintenance activities. Table 3 shows a summary of results. The statistical experiment
allows us to specify the mean and deviation values with 99% probability that they are
accurate. These results are relevant to perform prognostics and predictive maintenance in
future works. The quality and uncertainty of predictions provided by state-of-the-art data
analytic methods and models are highly dependent on the quality of self-data [10,25].

5. Discussion

The thermographic analysis was a key component of the conveyor characterization.
This, together with historical temperature and vibration registers, led to decisions being
made through the design phases in regards of the operating conditions and measurement
ranges. Specifically, termographic images were useful to define the measurement points on
the bearing housing surface. From Figure 10 and other thermic images, we obtinaed an
operation range between environmental temperature and 50 ◦C in the worst fault cases.
This analysis supported the process for selecting the temperature sensor and ratify the data
provided by the factory.

Regarding the IP test simulation, it allowed us to validate the mechanical design
process. Figure 11 in Section 4.2 shows an screenshot of the CDF simulation that probed
the device protection to water and particles above 50 µm from lateral and upper sources.
This result leave us to give the IP66 feature to the designed physical device.
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Finally, the electronic devices for measurement and communications were tested
under continuous operating conditions. Table 3 shows that all the communication pairings
(transmitting–receiving) in the test were correct. That means they will have a reliability of
99% during their normal operation, as stated in the statistical experiment. Furthermore, in
the measurement test, the table shows the following mean relative errors:

• Under 0.12% for the RMS acceleration
• Under 1.00% for peak acceleration
• Under 0.50% for temperature.

Therefore, based on the statistical experiment parameters, we can say that, with a
confidence interval of above 99%, our device has the following measurement specifications:

• Acceleration measurement: a ± 0.0012a
• Temperature measurement: T ± 0.0005T

These features are adequate and relevant for condition estimation and predictive
maintenance. For future work in the short and middle term, we are willing to collect a
vibration and temperature database, which in the medium and long terms are going to be
used to train learning models intended for machinery condition estimation and subsequent
fault predictions. Alongside the local database, further operation tests must be done to
validate the reliability of the system in the long term. This work is a step toward bringing
the technology of industry 4.0 to our local companies.
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