
Journal of

Low Power Electronics
and Applications

Article

Reliability-Aware Resource Management in Multi-/Many-Core
Systems: A Perspective Paper

Siva Satyendra Sahoo *,† , Behnaz Ranjbar *,† and Akash Kumar *

����������
�������

Citation: Sahoo, S.S.; Ranjbar, B.;

Kumar, A. Reliability-Aware

Resource Management in

Multi-/Many-Core Systems: A

Perspective Paper. J. Low Power

Electron. Appl. 2021, 11, 7. https://

doi.org/10.3390/jlpea11010007

Academic Editor: Amit Kumar Singh

Received: 17 December 2020

Accepted: 19 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

CFAED, Technische Universität Dresden, 01062 Dresden, Germany
* Correspondence: siva_satyendra.sahoo@tu-dresden.de (S.S.S.); behnaz.ranjbar@tu-dresden.de (B.R.);

akash.kumar@tu-dresden.de (A.K.)
† These authors contributed equally to this work.

Abstract: With the advancement of technology scaling, multi/many-core platforms are getting
more attention in embedded systems due to the ever-increasing performance requirements and
power efficiency. This feature size scaling, along with architectural innovations, has dramatically
exacerbated the rate of manufacturing defects and physical fault-rates. As a result, in addition
to providing high parallelism, such hardware platforms have introduced increasing unreliability
into the system. Such systems need to be well designed to ensure long-term and application-
specific reliability, especially in mixed-criticality systems, where incorrect execution of applications
may cause catastrophic consequences. However, the optimal allocation of applications/tasks on
multi/many-core platforms is an increasingly complex problem. Therefore, reliability-aware resource
management is crucial while ensuring the application-specific Quality-of-Service (QoS) requirements
and optimizing other system-level performance goals. This article presents a survey of recent works
that focus on reliability-aware resource management in multi-/many-core systems. We first present
an overview of reliability in electronic systems, associated fault models and the various system
models used in related research. Then, we present recent published articles primarily focusing
on aspects such as application-specific reliability optimization, mixed-criticality awareness, and
hardware resource heterogeneity. To underscore the techniques’ differences, we classify them based
on the design space exploration. In the end, we briefly discuss the upcoming trends and open
challenges within the domain of reliability-aware resource management for future research.

Keywords: multi/many-core platforms; reliability; resource management; mixed-criticality

1. Introduction

From the colossus machines of 1943 [1], to the modern Internet of Thing (IoT) devices,
there has been a massive growth in the variety of applications that use electronic computing
systems. Every sector of our day-to-day lives—Consumer products, Telecommunication,
Education, Agriculture, Healthcare, Automobiles, Military defence etc.—usually involves
some form of information processing on electronic systems. While the scale of such infor-
mation processing platforms can vary from small energy-harvesting IoT nodes to large
data centres, the overall computing performance requirements for each of the application
areas has undoubtedly increased in the last two decades. Prior to the 2000s, the major
semiconductor manufacturers would answer the need for increasing performance require-
ments by technology scaling and micro-architectural enhancements only. Methods such as
deep pipelining, increased cache sizes and complex dynamic Instruction Level Parallelism
(ILP) were the primary tools as long as Dennard scaling could be achieved [2]. However,
as shown in Figure 1a, the quest for higher clock frequency at lower technology nodes
resulted in high power density and heat dissipation beyond the capacity of inexpensive
cooling methods. This phenomenon, is often referred to as the power-wall [3]. Further,
the continued technology scaling and micro-architectural innovations did not necessar-
ily translate to faster memory technologies. As a result, the increasing gap between the

J. Low Power Electron. Appl. 2021, 11, 7. https://doi.org/10.3390/jlpea11010007 https://www.mdpi.com/journal/jlpea

https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-2243-5350
https://orcid.org/0000-0001-7944-7101
https://orcid.org/0000-0001-7125-1737
https://doi.org/10.3390/jlpea11010007
https://doi.org/10.3390/jlpea11010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jlpea11010007
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/2079-9268/11/1/7?type=check_update&version=2

J. Low Power Electron. Appl. 2021, 11, 7 2 of 37

compute clock frequency and the memory access frequency, referred to as the memory-
wall, did not provide much benefits even at very high computation speeds. As a result,
as shown in Figure 1b, the rate of improvement in single thread performance reduced
considerably [4]. Further, the data dependencies of each application imposes implicit limits
to the extent to which the application can exploit ILP. Traditional approaches to exploiting
ILP such as deeper pipelines and branch prediction can exacerbate the power density
problem while increasing the time and energy wastage due to branch mispredictions.

The cumulative effect of the three walls—memory, power and ILP—has led to dimin-
ishing returns from the efforts to provide performance scaling by increasing clock frequency
of single core systems. As shown in Figure 1b, since 2005, the semiconductor industry has
adopted the on-chip integration of multiple cores and processors as the weapon-of-choice
for satisfying increasing computation complexity. In addition to using the ILP for each core,
the multi-/many-core systems allow the software developer to exploit any form of thread-,
task- and data-level parallelism in the application. Further, the technology scaling allows
for additional application-specific cores to be integrated on the chip. The heterogeneity of
the cores could be targeted for generic objectives such as power-performance trade-offs
(e.g., big.LITTLE from ARM [5]) or for some specific computations (e.g., the CELL Broad-
band Engine [6]). However, the quest for increasing the number of on-chip transistors
through technology scaling and improving performance of each core through architectural
innovations have also increased the reliability issues across all electronic systems. Increased
unreliability—either in terms of computation errors or the reduced lifetime of systems—has
led to the increasingly complex problem of ensuring the reliable execution of applications
on increasingly unreliable hardware [7].

Technology node (in nm)

R
el

at
iv

e
P

o
w

er
 D

en
si

ty

DennardianConservativeITRS

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

(b)

Figure 1. Technology scaling and its impact. (a) Power density trends. (b) Impact of cheaper transistors [4].

1.1. Need of Reliability in Multi/Many-Core Systems

The increasing unreliability of electronic systems can be explained using the bath-tub
curves shown in Figure 2. The reliability-specific life-cycle of typical electronic systems is
characterized by three types of failures. The infant mortality, caused by premature failure
of weak components as a result of manufacturing defects and burn-in testing, the constant
failures due to random faults and the wearout-based faults due to aging. The solid curve
in the figure shows the net effect of all three factors. With aggressive technology scaling,
the rate of manufacturing defects has increased, resulting in higher infant mortality and
higher susceptibility to aging-related faults. Similarly, the architectural innovations such as
deeper pipelines and supply voltage scaling have reduced the clocking-window masking
and electrical masking, respectively [8], thus increasing the constant failure rate due to
random faults. Further, the parallel processing of multiple cores can increase the power

J. Low Power Electron. Appl. 2021, 11, 7 3 of 37

dissipation resulting in accelerated aging. The net result of all these factors is the increased
failure rate as shown by the dashed bath-tub curve in Figure 2. However, each of the these
factors can manifest as degradation of different system-level performance metrics and the
priority of each such metric may vary with each application.

For instance, in real-time systems the timeliness of execution has the highest priority.
Similarly, in financial and scientific computations, the accuracy of calculations would
be more important than the execution time. Additionally, in systems such as consumer
products and space missions, extended lifetime of the system may have higher priority.
Further, in a system executing multiple applications, each of the application may have
varying criticality w.r.t. each reliability-related performance metric. In this scenario,
the ideal solution would be to design a custom hardware platform for each application.
However, from a market perspective, every application may not warrant the development
of a custom hardware platform. Hence, standard multi-/many-core systems should be used
for ensuring application-specific Quality of Service (QoS) requirements—both reliability-
related and otherwise.

Time

Normal Lifetime~ 3 – 10 yrs

WearoutInfant
Mortality

F
ai

lu
re

 R
at

e

Reduced
burn-in

effectiveness
Increased
soft-errors

Increased
rate of aging

Constant (Random)
Failures

Observed
Failure Rate

Past

Present/
Projected

Figure 2. Increasing unreliability in electronic systems.

1.2. Reliability-Aware Resource Management in Multi-/Many-Core Systems

Given the variety of applications executed on multi-/many-core systems, optimal al-
location of on-chip resources is an increasingly complex problem. We define this reliability-
aware resource management problem as below:

Definition 1. Reliability-aware resource management refers to the appropriate allocation of on-
chip resources—computation, communication and memory—to applications/tasks executing on a
multi-/many-core system while ensuring application-specific QoS and optimizing other system-level
performance goals.

The increasing unreliability in electronic systems has also resulted in a large body of
research being devoted to ensuring reliable execution of applications. The research works
related to solving the problem stated in Def. Figure 1 usually focus on one or more of
following aspects:

1. Application Specificity: The varying priority among QoS metrics across different
applications presents both a scope for application-specific optimization as well as
challenges for ensuring application specific constraints.

2. Mixed criticality: Scheduling tasks with different criticality levels on a common plat-
form is challenging, in which executing the tasks must be guaranteed in terms of both
safety and real-time aspects to prevent the probability of failure and, consequently,
catastrophic consequences.

J. Low Power Electron. Appl. 2021, 11, 7 4 of 37

3. Resource Heterogeneity: The heterogeneity of cores provides a scope for leverag-
ing the availability of custom hardware implementations. Similarly, the availability
of reconfigurable logic provides the scope for implementing accelerators on stan-
dard hardware platforms. However, such heterogeneity also introduces additional
complexity for ensuring optimal resource sharing.

4. Design Space Exploration: All the above aspects introduce additional degrees of
freedom in the design space. Consequently, the Design Space Exploration (DSE) for
the joint optimization across all these aspects can result in an exponential increase
in complexity.

In this article, we provide a survey of some of the more recent research works that
explore these aspects. The rest of the article is organised as follows. We provide a brief
overview of the relevant background and the taxonomy that is used through the rest of
the article in Section 2. A generic system model and the generic problem statement along
with the classification of the approaches is presented in Sections 3 and 4, respectively.
We provide a detailed survey of related works across Sections 5–7. We present a brief
discussion of emerging approaches to reliability management in Section 8. Finally, we
conclude the article with a summary in Section 9.

2. Background and Taxonomy for Reliability Management Methodologies

The research works surveyed in this article aim to improve one or more aspects of
reliability using different techniques of resource management under varying scenarios.
The scenario can vary depending upon the executing application(s) and the resources
available on the hardware platform. Similarly, the resource management could be aimed at
maximizing different types of reliability and may be achieved by implementing various
DSE methods. Figure 3 shows the taxonomy for the various terms that will be used
frequently in the rest of the article for reviewing the related works. The tree-like structure
in Figure 3 is used to categorize and show the relationships among these different aspects
addressed by the related works discussed in this article. The figure also serves as a checklist
for determining the scope and the assumptions used in each reviewed article. The colour
coding of the rectangular boxes relates to the major aspects of reliability management as
discussed in Section 1.2. The orange boxes show the terms related to reliability-types and
causes. The gray and green boxes correspond to application and architecture scenarios,
respectively. The blue boxes show the terms related to DSE. The current and the next
section provide the background of and relationship (shown as arrows) among the terms
shown in Figure 3.

Transient Intermittent

Timing Functional Lifetime

Single App Multiple App

Periodic Aperiodic Sporadic

Independent Precedence

CommunicationMemory Computation

HomogeneousHeterogeneous

Uniformly
critical

Mixed
critical

Design-time Run-time Hybrid

Design Space
Exploration

Resource
Management

Reconfigurable Processor

Permanent

ArchitectureApplication

Reliability

Soft-errors Aging

Figure 3. Taxonomy: The terms used in the article are categorized under four aspects of reliability-aware resource
management—Application, Architecture, Reliability and Design Space Exploration.

J. Low Power Electron. Appl. 2021, 11, 7 5 of 37

2.1. Reliability in Electronic Systems

The rise in fault-rates in electronic systems has led to adverse effects on system
performance in more than one way. Direct effects include application failures in terms
of incorrect functionality and inability of the system to complete execution within the
specified timing constraints. Similarly, indirect effects include over-designing for fault-
mitigation—e.g., the high power dissipation of Triple Modular Redundancy (TMR)—
leading to accelerated aging in the system and multiple re-executions of some critical
tasks—for reducing chances of error—resulting in deadline violations. Given the variations
in application-specific requirements across different application domains, the reliability-
related QoS can be categorized as discussed next.

2.1.1. Lifetime Reliability

The expected operational life of the system can be characterized by its lifetime reliabil-
ity. Depending upon whether the system is repairable, and the cost of such repairs, metrics
such as Mean Time To Failure (MTTF), Mean Time To Crash (MTTC) and Availability can
be used to characterize the system’s lifetime reliability. MTTF refers to the expected time to
the first observed failure in the system. In healthcare applications and consumer electronics,
the need for predictable and extended MTTF can be the primary objective. Similarly, MTTC
refers to the expected operational time for the point at which the system does not have suf-
ficient resources for ensuring the expected behavior and is usually applicable for repairable
systems. In applications with long mission times such as space exploration, repairing the
failure mechanism is used to extend the MTTC. However, repair-time plays a critical role
in high-availability applications such as automated control of power generation.

The reduced lifetime in electronic systems usually occurs due to the aging caused
by electrical stress [9]. Most research works focus on improving the lifetime reliability by
one/more of the following methods—reducing continuous computation on the processing
elements, reducing the power dissipation, improving heat dissipation, reducing compu-
tations involved in executing the application etc. The availability of multiple processing
elements enables improving the lifetime reliability by utilizing such techniques more ef-
fectively. For instance, the electrical stress on a single processing element can be reduced
by using different resources for different execution instances. However, selecting the ap-
propriate optimization technique along with the optimal configuration poses a significant
research problem.

2.1.2. Timing Reliability

The performance of the system in terms of the expected behavior concerning the
timeliness of execution completion can be expressed as its timing reliability. It is used only
in terms of real-time systems and depending upon the criticality of the application, can be
expressed in terms of Worst-case Execution Time (WCET), Mean Time between Failures
(MTBF), Probability of Completion and Average Makespan [10–12]. WCET is usually used
in hard real-time systems such as pacemakers and automobile safety features where any
instance of missing a deadline can have fatal consequences. MTBF, frequently used in the
context of repairable systems, can also be used for expressing the timing reliability in firm
real-time systems such as manufacturing assembly lines, where infrequent failures can be
tolerated, provided sufficient availability is ensured. Average makespan and probability
of completion are usually used in soft real-time systems such as streaming devices and
gaming consoles where frequent deadline misses can be tolerated as long as they do not
affect user experience.

As more and more applications that require fast reaction times implement some level of
automaton, for example autonomous driving, timing reliability can be a prime QoS metric
for a large number of systems. Usual methods for improving timing reliability include
faster execution, isolation of critical computation and communication etc. The spatial
parallelism in many/multi-core systems can be used to exploit the inherent parallelism in
an application and reduce the execution latency. However, distributing the computation

J. Low Power Electron. Appl. 2021, 11, 7 6 of 37

across multiple processing elements introduces design complexities in terms of isolation
and communication latency.

2.1.3. Functional Reliability

With the rising constant failure rates during the normal life of the system, the chances
of such failures manifesting as incorrect computations has also increased. Hence, in appli-
cations that require high levels of computational accuracy such as financial transactions
in point-of-sales systems or ATMs, scientific applications, the corresponding QoS can
be expressed in terms of functional reliability. It concerns the correctness of the results
computed by a system operating in a fault-inducing environment. The functional relia-
bility can be quantified by the probability of no physical fault-induced errors occurring
during application execution or the MTBF. Improving the functional reliability usually
involves implementing one/more among–Spatial, Temporal and Informational redundancy.
In many/muti-core systems, additional processing elements can be used to implement
spatial redundancy effectively without considerable overheads on the execution latency.
However, the increased power dissipation overheads and reduced spatial parallelism for
computation resulting from this approach can adversely affect the other reliability metrics.

2.2. Fault Model

The reliability-specific events in a system can be classified as one of–failure, error
and fault [13]. An application failure refers to an event where the service delivered by
the system deviates from the expected service defined by the application requirements.
An error refers to the deviation of the system from a correct service state to an erroneous
one. Faults refer to the adjudged or hypothesized cause of the error. The physical faults in
a system can be further classified into the following types, based on their frequency and
persistence of occurrence.

1. Transient faults occur at a particular time, remain in the system for some period
and then disappear. Such faults are initially dormant but can become active at any
time. Examples of such faults occur in hardware components which have an adverse
reaction to some external interference, such as electrical fields or radioactivity.

2. Intermittent faults show up in systems from time to time due to some inherent design
issue or aging. An example is a hardware component that is heat sensitive—it works
for some time, stops working, cools down and then starts to work again.

3. Permanent faults such as a broken wire or a software design error show a more
persistent behavior than intermittent faults—start at a particular time and remain in
the system until they are repaired.

The reliability-aware resource management presented in this article concerns the
mitigation of physical faults only. Such physical faults, if unmasked, lead to errors which
in turn may lead to application failures. The manifestation of all types of physical faults
can be studied under two broad categories—Soft-errors and Aging. The effects of soft-
errors caused by transient faults are considered for functional reliability analysis. Similarly,
the aging-related intermittent and permanent faults are used in the analysis for lifetime
reliability. Timing reliability issues occur usually due to aging-induced slower execution
and additional computations that are employed to mitigate soft-errors.

2.2.1. Soft-Errors

Soft-error refer to non-reproducible hardware malfunctions caused by transient faults.
The additional charge induced by external interference (such as alpha particles from
radioactive impurities in chip packaging materials [14], and neutrons generated by cosmic
radiation’s interaction with the earth’s atmosphere [15]) can sometimes (when > Qcrit)
lead to changing the logic value of the affected nodes in the system. While in memory
elements the changed value is retained until the next refresh, in combinational circuits
the computations are affected only if the wrong value is latched by a memory element.
The probability of such computational errors is reduced by either of the three masking

J. Low Power Electron. Appl. 2021, 11, 7 7 of 37

effects—Logical masking, Electrical masking and Latching-window masking. In the quest
for faster faster systems, although logical masking has remained unchanged, the deeper
pipelines and aggressive voltage scaling have reduced latching-window masking and
electrical masking, respectively, leading to increased Soft Error Rate (SER).

2.2.2. Aging

The term aging broadly refers to the degradation of semiconductor devices due to
continued electrical stress that may lead to timing failures and reduced operational life of
the integrated circuits (ICs). The primary physical phenomena causing aging are listed
next [16].

1. Bias Temperature Instability (BTI) results in an increase in the threshold voltage, Vth
due to the accumulation of charge in the dielectric material of the transistors [17].
The use of high-k dielectrics in lower technology nodes has resulted in an increased
contribution of BTI to aging.

2. Hot Carrier Injection (HCI) occurs when charge carriers with higher energy than the
average stray out of the conductive channel between the source and drain and get
trapped in the insulating dielectric [18]. Eventually it leads to building up electric
charge within the dielectric layer, increasing the voltage needed to turn the transis-
tor on.

3. Time Dependent Dielectric Breakdown (TDDB) comes into play when a voltage
applied to the gate creates electrically active defects within the dielectric, known
as traps, that can join and form an outright short circuit between the gate and the
current channel. Unlike the other aging mechanisms, which cause a gradual decline
in performance, the breakdown of the dielectric can lead to the catastrophic failure of
the transistor, causing a malfunction in the circuit.

4. Electromigration (EM) [19] occurs when a surge of current knocks metal atoms loose
and causes them to drift along with the flow of electrons. The thinning of the metal
increases the resistance of the connection, sometimes to the point that it can be-
come an open circuit. Similarly, the accumulation of the drifted material can lead to
electrical shorts.

3. System Model

The research works reviewed in this article, in general, aim at improving the reliability
of the system. These improvements could be aimed at mitigating one or more types of
faults across a subset of all the components of the system. In order to evaluate the impact
of the proposed improvements, each of the works makes certain assumptions regarding
the system components. We provide an overview of the system components under two
models—Architecture and Application.

3.1. Architecture Model

The architecture model encapsulates all the features and the assumptions regarding
the hardware platform. Figure 4 shows the components of a typical architecture model.
The fault mechanisms discussed in Section 2.2 can affect different aspects of processing-
computation, memory and communication.

J. Low Power Electron. Appl. 2021, 11, 7 8 of 37

L
o
cal

M
em

o
ry

Heterogeneous MPSoC

On-chip Interconnect

..PE0 PE1 PEp

DMA

Control Unit

Reconfigurable Logic

NI

Processor

ICAPDDR

NI

GP-CPUs

GP-GPUs

ASIPs

Accelerators

(Reconfigurable,

ASICs)

PE Type

𝑃𝐸𝑝

Partial TMR

Full TMR

Circuit Hardening

Gate Re-sizing

Reliability (𝑀𝐹𝑝, 𝛽𝑝)

Diversity of Processing Elements

Figure 4. Architecture model.

3.1.1. Computation

As shown in Figure 4 we will use the term Processing Element (PE) to refer to each
core/processor/accelerator implemented on the reconfigurable logic of the architecture.
Soft-errors and the stuck-at faults due to aging directly affect the factional reliability. Simi-
larly aging-related delays can result in timing violations. A more indirect impact of the
timing and lifetime reliability can be observed as a result of fault-mitigation measures
implemented for reducing errors in computation. Spatial redundancy measures such as
TMR and Dual Modular Redundancy (DMR) result in higher power dissipation, thereby
accelerating aging. Similarly, temporal and information-redundancy based methods intro-
duce additional computations for processing the same workload and can led to degradation
of both timing and lifetime reliability. The architecture may be homogeneous or heteroge-
neous w.r.t. the extent of spatial redundancy and other hardening techniques implemented
in each of the PEs. Other types of heterogeneity may be due to the result of varying
implementations for low-power design (ex. Big-Little from ARM), ISAs, ASIPs, etc.

3.1.2. Communication

As shown in Figure 4, we use the term on-chip interconnect to denote the set of
communication-related components on the hardware architecture. Although the imple-
mentation of the on-chip interconnect may vary among bus-based, etc., with the rising
number of PEs, Network-on-Chip (NoC)-based communication is being increasingly used
in multi-/many-core systems [20]. Reliability of the on-chip interconnects involves en-
suring error-free inter PE communication by using a combination of different types of
redundancy methods across multiple layers of the Open Systems Interconnect (OSI) model.
A detailed account of various reliability issues in on-chip interconnects and their mitigation
can be found in [21,22]. Resource management of communication elements usually in-
volves allocating links and routers to communicating tasks. Depending upon the reliability
requirements and the criticality, the allocation algorithm may choose to provide different
types of redundancy methods.

3.1.3. Memory

Similar to computation, soft-errors and stuck-at faults may result in incorrect values
being read from the memory elements on the hardware platform, leading to reduced
functional reliability. Information redundancy in the form of additional bits for Error
Checking and Correcting (ECC) is commonly used for both Static Random Access Memory
(SRAM)-based caches and Dynamic Random Access Memory (DRAM)-based main memory.
Hamming [23] or Hsiao [24] code based Single-bit-Error-Correcting (SEC) and Double-bit-
Error-Detecting (DED) codes are usually sufficient for most systems. More robust methods
like Double-bit-Error-Correcting (DEC) and Triple-bit-Error-Detecting (TED) codes can be
used for higher resilience against random bit errors. Storage overhead and power are the
cost factors associated with design of a resilient memory system. Flexible error protection
methods can enable adaptation to system-level requirements, both at design-time as well

J. Low Power Electron. Appl. 2021, 11, 7 9 of 37

as run-time. ECC granularity and fault-coverage provide tunable parameters, while the
memory controller acts as the tuning knob for varying error protection levels based on
system requirements.

3.2. Application Model

In general, one application or multiple applications within a system can be executed
on a platform according to its mission. These applications consist of different tasks whose
properties are dependency, periodicity, execution time, and criticality. We introduce each
property of these tasks briefly.

3.2.1. Task Dependencies

Tasks within an application can be dependent or independent to each other. Inde-
pendent tasks mean that there is no precedence or communication among them, while
the dependency represents the flow of data between tasks and induces a partial order on
the task set. Such precedence relations are usually described through a Directed Acyclic
Graph (DAG), where tasks are represented by nodes, and precedence relations by ar-
rows. Figure 5a represents a combination of dependent (as DAG) and independent tasks.
Synchronous Data Flow Graph (SDFG) is another common application representation that
models cyclic dependency. This task model is used in streaming multimedia applications,
in which support for pipe-lined execution are needed [12,25,26]. Figure 5b shows an ex-
ample of SDFG for the H.263 encoder application [25,26], in which nodes are called actors.
Each actor is executed by reading data from its inputs and writing the results as a token on
the output port.

!!"# !!$% "!
T1 30 30 HC
T2 60 80 HC
T3 20 50 HC
T4 20 20 LC
T5 30 30 LC
T6 60 60 LC
T7 20 20 LC
T8 20 20 LC

T2 T3

T5T4T1

T6

T8T7

(a)

1. Tasks mapped to this processor have associated area cost.
This is because a task mapped on the virtual processor
implies dedicated hardware for the task (in reality) which
consumes few columns of the reconfigurable area.

2. Multiple tasks can be executed at the same time on the
virtual processor. This is because, one or more hardware
tasks implemented on the different regions of the recon-
figurable area can run independently.

3. Execution time of a task on the virtual processor is
usually less than the execution time of the task on a GPP

4. A task mapped on the virtual processor does not need
software-based protection technique such as check point-
ing/rollback and replication. Instead, the protection is
provided by replicating the hardware implementation.

B. Application model
Figure 2 (b) plots the application model represented as

directed acyclic graphs (DAGs). Later in Section V, model
for cyclic graphs is presented. Mathematically, an application
DAG is represented as Gapp = (Vapp, Eapp), where Vapp is the
set of nodes representing tasks of the application and Eapp is
the set of directed edges representing data dependency among
various tasks. Let Na (= |Vapp|) denote the number of tasks
and L the set of leaf nodes for the application.

Every task vi 2 Vapp is a tuple hai, ni, Tii, where ai is
the area required to implement vi on the reconfigurable area
and ni is the time taken by vi to execute on the dedicated
hardware. If a task does not support hardware implementation,
the value of these parameters are set to infinite. The overhead
for hardware-based transient fault-tolerance for the task is
incorporated into ai. For tasks requiring fault-detection only,
ai is the area of duplicating the logic in hardware and the area
of a checker circuit. For those tasks requiring fault-mitigation,
ai includes the area for triple-modulo redundancy (TMR) and
the voter circuit. Ti is the set of execution time of vi with
different number of checkpoints. Specifically, ti,f 2 Ti is the
expected execution time with f checkpoints.

C. Mapping representation
The mapping of Gapp on Garc is an Na ⇥ (Np + 1) matrix

given by

M = hmi =

0
BB@

m1,1 m1,2 · · · m1,(Np+1)

m2,1 m2,2 · · · m2,(Np+1)

...
...

. . .
...

mNa,1 mNa,2 · · · mNa,(Np+1)

1
CCA

where the binary variable mi,j is given by

mi,k =

⇢
1 if task vi is mapped on processor pk
0 otherwise (12)

A task is mapped to a single processor only. Therefore

8i 2 [1, 2, · · · Na],

Np+1X

k=1

mi,k = 1 (13)

D. Variables for problem formulation
Following variables are defined for ease of problem formu-

lation.

xi,k,f =

⇢
1 if task vi is mapped on processor pk with f checkpoints
0 otherwise

di,j,k =

(
1 task vi and vj are mapped on processor pk

and vi starts execution before vj
0 otherwise

si = start time of task vi

Motion
EstimationInput Distributor

Macro
block

Encoding

vlc Output99 1 11

Macro
block

Decoding

Motion
Compensation

1 1

1

199 1

1

1

1 1
1 1

1 1

1 1

1

1

1H.263
Encoder

Fig. 4. SDFG of H.263 Encoder

A task can have only a fixed number of checkpoints i.e.

8i, k
X

f

xi,k,f = 1 (14)

The variable x is related to m according to

mi,k =
X

f

xi,k,f (15)

E. Constraints of the problem formulation
1. Every task must be assigned to a single processor with a

single fault-tolerant technique. Combining Equations 13,
14 and 15,

8i 2 [1, 2, · · · Na],

Np+1X

k=1

X

f

xi,k,f = 1 (16)

2. Finish time of the leaf tasks is less than the application
deadline (D).
8vi 2 L, pk 2 Varc, si + et(i, k, f)  D + (1 � xi,k,f)W (17)
where W is a very large number and et(i, k, f) is given

by

et(i, k, f) =

⇢
ti,f for 1  k  Np
ni for k = Np + 1 (18)

3. All tasks must satisfy the dependency constraints.
8(i, j) 2 Eapp, 8k, si + et(i, k, f)  sj + (1 � xi,k,f)W (19)

4. Independent tasks mapped on the same processor (exclud-
ing the virtual one) must not be executed simultaneously.

8(i, j) /2 Eapp, 8k 2 [1, 2, · · · , Np], 8f, f 0

si + et(i, k, f)  sj + (3 � xi,k,f � xj,k,f 0 � di,j,k)W (20)

sj + et(j, k, f 0)  si + (2 � xi,k,f � xj,k,f 0 + di,j,k)W

where the first equation constraint the starting time of vi

before vj and the second one with vj before vi.
5. Area consumed by tasks mapped to virtual processor

should satisfy the reconfigurable area constraint.
X

i

ai ⇥ xi,Np+1,f  RA (21)

where RA is the total columns of the reconfigurable area.

F. Objective function
The objective of the optimization problem is to determine

the number of checkpoints for each task which is balanced
in terms of transient and permanent fault-tolerance. A cost
function is defined

MTTFJ = a ⇥ MTTFP + b ⇥ MTBFT (22)

where MTTFP and MTTFT are the MTTF due to perma-
nent and transient fault-tolerance respectively, a and b are two
user-defined weights assigned to these metrics respectively.
Clearly, setting a = 0, optimizes for transient fault-tolerance
only, setting b = 0 optimizes for permanent fault-tolerance.

(b)

Figure 5. Examples of task dependency. (a) DAG of UAV application [27]. (b) SDFG of H.263 encoder application [26].

3.2.2. Application/Tasks’ Periodicity

Another property of tasks is their execution periodicity (i.e., the time of activation
to be executed) that can be periodic, aperiodic, or sporadic. A periodic task consists of
an infinite sequence of jobs, that are regularly activated at each period (i.e., the time to
complete one iteration). An aperiodic task also consists of an infinite sequence of jobs,
but their activations are not regularly interleaved. Sporadic tasks are aperiodic tasks where
consecutive jobs are separated by minimum initiation time interval.

3.2.3. Application/Tasks’ Criticality

In general, all tasks running on a common platform, may not be equally critical (i.e.,
not uniform criticality) for doing a correct service. Avionics, automotive and medical
devices are examples of these systems. Indeed, due to the various safety demand for
tasks, within an application, tasks can have different reliability requirements and criticality
levels [28]. The systems with different criticality tasks are called mixed-criticality. In this
regard, a set of industrial standards, e.g., DO-178B [29], has been introduced with five
levels of safety, i.e., A, B, C, D, and E, (A and E provide the highest and the lowest levels
of safety, respectively). A failure occurring in tasks with different criticality levels has a

J. Low Power Electron. Appl. 2021, 11, 7 10 of 37

different impact on the system, which are shown in Table 1. The Probability-of-Failure-per-
Hour (PFH) values (adopted by safety standards for tasks’ safety measurement) have been
determined for all the criticality levels to guarantee system safety.

In these mixed-criticality systems, the correct execution of tasks with higher criti-
cality levels and QoS of tasks with lower criticality levels are considered, especially for
service-oriented systems. Furthermore, mixed-criticality tasks may be real-time, i.e., the
high-criticality tasks must be executed correctly before their deadlines to not cause catas-
trophic consequences. For tasks with lower-criticality levels, guaranteeing the deadlines is
commonly regarded as a QoS parameter. Therefore, to ensure the correct execution of high-
criticality tasks in any situation and the minimum QoS of low-criticality tasks while the
system computation time is beneficially utilized, different WCET estimations, pessimistic
(CHI

i) and optimistic (CLO
i), are used. As a result, different operational modes, according

to the number of WCET estimations are considered for these systems. Figure 5a shows
an example of mixed-criticality applications, Unmanned Air Vehicle (UAV), where some
tasks are dependent on other tasks. In this application, T1, T2 and T3 are the high-criticality
(HC) tasks which are responsible for the collision avoidance, navigation, and stability of
the system. Failure in the execution of these tasks may lead to system failure and cause
irreparable damage to the system. Besides, low-criticality (LC) tasks ({T4, . . . , T8} in the
figure) are responsible for recording sensors data, GPS coordination, and video transmis-
sions, to help the system carry out its mission successfully. Furthermore, as shown in this
figure, since the correct execution of high-criticality tasks is crucial, two different WCETs
are computed for them.

Table 1. DO-178B safety requirement [29].

x A B C D E

PFHx <10−9 <10−7 <10−5 ≥10−5 -
Failure Condition Catastrophic Hazardous Major Minor No Effect

From the mixed-criticality system operation perspective, the system starts execution in
the low-criticality mode in which all tasks are expected to finish their execution before their
optimistic WCET (CLO

i). If the execution of at least one high-criticality task exceeds its CLO
i ,

while the correct output of the task is not ready, the system switches to the high-criticality
mode and all task are expected to finish their execution before their pessimistic WCET
(CHI

i). Hence, since the requested demand for the system computation time is increased in
this mode, some low-criticality tasks may be dropped to guarantee the correct execution of
high-criticality tasks.

4. Reliability Management in Multi/Many-Core Systems
4.1. Problem Statement

The related research problem involves the optimization of the allocation of the avail-
able hardware resources to the computation, communication and storage requirements
of an application(s) while satisfying the reliability and criticality constraints. We formu-
late an optimisation problem that serves as a generic framework, and the research works
mentioned in this article are discussed with reference to it.

Application: Each application is represented as a tuple Gg(Tg,Eg) containing the
set of nodes Tg representing tasks/actors, and a set of directed edges Eg, representing
the precedence and the communication between the tasks. Similarly, a scenario denoting
the applications executing in parallel can be represented by a set of applications Ss =
{G1, G2, . . . }.

Architecture: Similar to an application, a mesh NoC-based hardware platform can
be represented by a tuple H(SW,C). SW is the set of switches and C represents the
connections among the switches. Each switch Sws ∈ SW can be attached to one or more

J. Low Power Electron. Appl. 2021, 11, 7 11 of 37

cores. Assuming Ps cores are connected to Sws, the total number of cores in H(SW,C) is
|P| = ∑ |Ps|Sws∈SW, where the set P denotes the collection of cores.

Allocation: Resource management involves timely allocation of appropriate hardware
resources for all the tasks and communication in the scenario. We represent the resource
allocation by two sets—(1) Task allocation: Talloc = {(Tt, Pt, Stt), ∀Tt ∈ T}, where T is the
set of all tasks in the scenario, and (2) Edge allocation: Ealloc = {(Ee, Ce, Ste), ∀Et ∈ E},
where E is the set of all edges in the scenario. For a feasible solution, the sets Talloc and
Ealloc must satisfy certain constraints. The constraints may be of the following types:

• Precedence constraints: Any task must start execution only after all its preceding tasks
and incoming communication is complete.

• Scheduling constraints: Properties such as each task/actor assigned to a single core,
not more than a single task executing on a single core at a time etc. must be satisfied.

• Criticality constraints: PFH and reliability requirements should be corresponded with
the criticality levels.

Performance Estimation: Varying the resource allocation results in varying system-
level performance. Different methods of estimating these performance metrics—both
analytical and empirical—as a function of Talloc and Ealloc have been used across the works
discussed in this article. We use the notation shown in Equation (1) to denote these methods.
The estimated performance is used during the decision-making for reliability resource
management. While the priority of each metric varies with application, Equation (2) shows
the generic optimization problem. The terms w〈m〉 determine the application-specific
priority of the system-level metrics (〈m〉). Similarly, the terms c〈m〉 are used to denote the
existence of constraints due to application-specific QoS requirements. The terms Talloc and
Ealloc represent the set of all possible task and edge allocations, respectively.

System-level Performance Estimation: Timing Reliability: Tsys = f uncRT(Talloc, Ealloc)

Functional Reliability: Fsys = f uncRF(Talloc, Ealloc); Lifetime Reliability: Lsys = f uncRL(Talloc, Ealloc)

Power Dissipation:Wsys = f uncP(Talloc, Ealloc); Energy Consumption: Jsys = f uncE(Talloc, Ealloc)

(1)

minimize
∀Talloc∈Talloc ,∀Ealloc∈Ealloc

{
wT Tsys, wFFsys, wLLsys, wWWsys, wJ Jsys

}

s.t., Tsys ≥ cT TSPEC;

Fsys ≥ cF FSPEC; Lsys ≥ cL LSPEC;

Jsys ≤ cJ JSPEC; Wsys ≤ cW WSPEC;

(2)

4.2. Classification of Solution Approaches

The research articles discussed in this survey employ various methods for finding
the optimal resource allocation. Further, each article focuses on optimizing a subset of
the system-level performance metrics shown in Equation (2). In addition to providing an
overview of the various approaches and prioritization (among different metrics) presented
in each of the articles, we also classify them based on the criterion shown in Figure 6. Some
of the criteria, such as fault-types, application model, architecture model, and criticality
have been covered in the earlier sections. Additionally the articles can be classified on
the experimental evaluation methodology. While some works use analytical methods
to estimate the effectiveness of their proposed methods, others use simulation based
approaches. In most of the cases real-world applications, in terms of standard benchmark
suites have been used for the experiments. Along with reliability, other system level metrics
such as power dissipation, energy consumption, throughput and thermal limits have been
reported from the experiments as well. Further, some works—especially for reconfigurable
systems—use resource utilization as an optimization objective.

J. Low Power Electron. Appl. 2021, 11, 7 12 of 37

Heterogeneous

Homogeneous

Memory

Communication

Computation Sporadic

Aperiodic

Periodic

Dependent Tasks

Independent

Multiple applications

Single application

Ex Resource utilization

Temperature

Throughput

Energy

Power Real-world experiments

Simulation

AnalyticalHybrid

Run-time

Design/Compile time

Heterogeneity

Components

Application/Tasks' periodicity

Task dependencies

Number of Applications

Mixed-Criticality

Uniform Criticality

Lifetime

Functional

Timing

Permanent

Intermittent

Transient

Special feature

Other Metrics

Scope of experiments:

DSE Type:

Architecture model:

Application model:

Tasks' Criticality

Reliability type

Fault types

Criteria

Markmap file:///tmp/mozilla_ssatyendras0/markmap.html

1 of 1 4/14/20, 4:49 AM

Figure 6. Classification criterion.

The DSE approach used in the research works can be categorized under (1) Design-
/compile-time, (2) Run-time, and (3) Hybrid. While in most cases the methods used in each
article can be classified under one of the three types, in some cases more than one of the
approaches have also been used—typically for different objectives.

• Design-/compile-time: In this approach all the design decisions and the related
optimizations are performed before the system is deployed. As shown in Figure 7,
the related analysis is made under the design-time assumptions regarding both the
application workload and the system’s hardware resource availability. This approach
allows the designers to generate highly optimized solutions. However, it also limits
the adaptability of the system to dynamic operating conditions.

• Run-time: This approach involves implementing all resource allocation decisions
only after the deployment of the system. This allows the system to adapt to varying
operating conditions—both external and internal. External variations might include
changing external radiation, changing workload resulting in varying QoS require-
ments etc. Internal variations include the changing performance/availability of the
cores due to aging, as shown in Figure 7, low energy availability in mobile systems
etc. In the run-time DSE approach the dynamic adaptability comes at the cost of result
quality. Since all the resource management decisions are determined at run-time, it
may result in sub-optimal solutions due to computation and availability constraints.

• Hybrid: The hybrid approach attempts to combine the best of both design-/compile-
time and run-time approaches. It usually involves analysing most of the possible run-
time operating conditions, finding the optimal solution for each condition of design
time and storing the optimal solution to be used for run-time adaptation. As shown
in Figure 7, the design-time analysis could involve determining the possible scenarios
and determining the optimal solution for each scenario for varying core availability
that might change during run-time due to aging and the resulting physical faults.

J. Low Power Electron. Appl. 2021, 11, 7 13 of 37

Hybrid DSE

𝐺𝐴(𝑻𝑨, 𝑬𝑨)

𝐺2(𝑻𝟐, 𝑬𝟐)

𝐺1(𝑻𝟏, 𝑬𝟏)𝐺𝑎𝑝𝑝(𝑻, 𝑬)

Scenarios

𝑆1 𝑆𝑆

Application Model

Architecture Model Operating Conditions

Design-time/
Compile-time

DSE
Run-time DSE

Aging

QoS: Throughput, Power
Reliability, Energy,
Ambient SEU Rate

Single Application Multiple Applications Multiple Scenarios

Scenario
Analysis

Figure 7. DSE approaches: Design-time/Compile-time, Run-time and Hybrid.

5. Lifetime Reliability Management in Multi/Many-Core Processors

Resource management for improving lifetime reliability may involve direct approaches
such as allocating spare cores in case of faults or indirect approaches such as wear-leveling
and thermal management to delay the onset of faults. We summarize the related works
under three categories; design-time approaches (D.T), run-time approaches (R.T), and hy-
brid (H), which we discuss in detail as follows. Table 2 lists the works in lifetime reliability
management of these three categories for both uniform and mixed-criticality task mod-
els in detail. In this table, we also present the considered criteria in the state-of-the-arts,
such as fault model (Transient, Intermittent, permanent), system model (Components
and Heterogeneity), and application model (Dependency-Independent (I), Dependent (D),
Periodicity-Periodic (P), Sporadic (S), Aperiodic (A)), that have been explained in detail,
in Section 2.2, Section 3.1, and Section 3.2, respectively.

5.1. Design-Time Strategies

A purely design-time DSE approach to improving the system’s lifetime reliability usu-
ally involves significant analytical estimation of workload stress. Furthermore, the scope
of design-time analysis is limited by the assumptions of complete knowledge of the appli-
cations that will be executed on the hardware platform. Similarly, the estimation usually
employs assumptions about the variability of the execution time of the various tasks in the
application. The case for resource allocation explicitly targeting lifetime improvements
is presented by [30]. Hartman er al. showed the improvement in system lifetime when
task-mapping was optimized directly for reducing aging rather than trying to reduce
the thermal stress in the system. The authors used an Ant Colony Optimization (ACO)-
based design-time optimization of lifetime and compared the results with randomized
task-mapping and task-mapping optimized for reducing the temperature using Simulated
Annealing (SA). The authors attribute the improvements in the ACO-based approach to
the negligence of the temperature optimization approach to factors such as supply voltage,
current density and the aging-related interaction between the application and the archi-
tecture. Ref. [31] improved upon the lifetime optimization approach with task-mapping
by determining the appropriate allocation of computation, communication and memory
resources during the design of an NoC-based system for an application. Specifically, the au-

J. Low Power Electron. Appl. 2021, 11, 7 14 of 37

thors have proposed the search for the optimal allocation of execution slack, storage slack
and communication architecture during the hardware platform design. The authors ex-
tended this approach in [32] to perform joint optimization of system lifetime and the yield.
While the optimization for lifetime involves slack distribution such that the system can
survive most wear-out induced failures, the yield optimization involves surviving the most
defect-induced failures in the system. The optimization methodologies presented in [30–32]
use system-level simulation for estimating the lifetime as a result of the design decisions.
In [33], Ma et al. presented a Multi-Armed Bandit (MAB)-based exploration for allocating
less simulations for sampling of weaker solutions. The authors compared their approach
against regular Monte-Carlo Simulations (MCS) in the optimization of lifetime-aware
Multi-Processor System-on-Chip (MPSoC) design and report similar quality of results as
MCS with up to 5.26× fewer samples. A more analytical approach, proposed in [34], for the
estimation of system-level lifetime reliability in multi-core systems have found use in
multiple research works that rely on design-time optimization for the DSE problem. In [35],
Das et al., used the average execution time of each task, and the corresponding wear-out
due to EM, to estimate the systems MTTF for varying task-mapping configurations and
different Dynamic Voltage and Frequncy Scaling (DVFS) modes. The net aging effect on
each core has been modelled as the average across all the tasks mapped to the core in every
period (of periodic applications). The aging estimation methodology used in [35] is based
on the techniques presented by [34]. Further, [26] use similar lifetime estimation approach
to present a DSE methodology for showing the trade-off between permanent and transient
fault-tolerance. Specifically, the authors explore the effect of temporal redundancy on the
EM-related wear-out failures. Figure 8a shows the results from [26], depicting the effect of
increasing number of checkpoints in the tasks of an application, on the average (expected)
execution time and transient- and permanent-fault reliability. A more indirect approach of
improving system lifetime by reducing the core temperatures is presented in [36], where
the authors explore both the temporal and spatial effects of task-mapping on the peak
temperature of a core. Recently, [37] have proposed a more generic DSE framework for
joint optimization across varying types of redundancy methods and multiple design ob-
jectives. The authors presented the benefits of using a cross-layer optimization approach
and proposed improved Multi-Objective Evolutionary Algorithms (MOEA)-based search
methods for the large design space. Most design-time DSE works for lifetime reliability
use the wear-out estimation for electromigration. Such EM-related wear-out effects are
particularly disruptive for on-chip communication components. To this end, [38] proposed
a dual physical channel switch architecture that was designed to improve the system’s
lifetime in the presence of permanent faults. The design-time analysis and optimization
for mixed-criticality systems introduces the additional complexity of considering multi-
ple criticality levels across the tasks. Related research for mixed criticality systems are
discussed next.

J. Low Power Electron. Appl. 2021, 11, 7 15 of 37

(a)

Arrival times

(b)

(c)

Figure 8. Design space exploration for lifetime reliability. (a) Design-time DSE results in [26]. (b)
Aging estimation for run-time DSE [39]. (c) Hybrid DSE [40].

J. Low Power Electron. Appl. 2021, 11, 7 16 of 37

Table 2. Summary of state-of-the-art approaches in lifetime reliability aware resource management.

Fault Model App. Model System Model Imp. DSE Technique

Tr
an

si
en

t

In
te

rm
it

te
nt

Pe
rm

an
en

t

C
ri

ti
ca

li
ty

D
ep

en
de

nc
y

Pe
ri

od
ic

it
y

C
om

m
un

ic
at

io
n

C
om

pu
ta

ti
on

M
em

or
y

H
et

er
og

en
ei

ty

R
ea

lB
oa

rd

R
ea

lA
pp

.

Hartman’10 [30] × × X × D P × X × Het. × X D.T Task Mapping
Meyer’10 [31] × × X × D P X X X Het. × X D.T Slack Allocation
Meyer’14 [32] × × X × D P X X X Het. × X D.T Slack Allocation, Yield

Ma’17 [33] × × X × D P X X × Het. × X D.T MAB Simulation
Das’14 [35] X × X × D P × X × Hom. × X D.T Task Mapping
Das’13 [26] X × X × D P × X × Het. × X D.T Task Mapping
Das’14 [36] × × X × D P × X × Hom. × X D.T Task Mapping

Sahoo’20 [37] X × X × D P × X × Het. × × D.T Task Mapping
Kakoee’11 [38] X × X × × × X × × × × X D(R).T Hardware Redundancy

Hartman’12 [41] × × X × D P X X × Het. × X R.T Task (Re)-Mapping
Duque’15 [42] × X X × D P × X × Hom. × X R.T Task (Re)-Mapping
Sahoo’16 [39] × X X × D P × X × Hom. × X R.T Task (Re)-Mapping

Rathore’19 [43] × × X × D P × X × Hom. × X R.T Task (Re)-Mapping
Venkataraman’15 [44] × × X × D P × X × Hom. × × R.T Hardware Migration

Wang’19 [45] × × X × D P × X × Hom. × X R.T Task (Re)-Mapping
Haghbayan’16 [46] × × X × D P × X × Hom. × X R.T Task (Re)-Mapping
Haghbayan’17 [47] × × X × D P × X × Hom. × X R.T Task (Re)-Mapping

Rathore’18 [48] × × X × D P × X × Hom. × X R.T Task (Re)-Mapping
Raparti’17 [49] × × X × D P X X × Hom. × X R.T (3D) Task Mapping
Bauer’15 [50] X X X × D P X X × Het. × X R.T Multi-layer
Das’13 [51] × × X × D P X X × Hom. × X H Task (Re)-Mapping
Das’16 [52] × × X × D P X X × Hom. × X H Task (Re)-Mapping
Das’13 [53] × X X × D P × X × Hom. × X H Task (Re)-Mapping

Bolchini’13 [54] × × X × D P X X × Hom. × X H Task (Re)-Mapping
Namazi’19 [55] X × X × D P X X × Hom. × X H Task (Re)-Mapping
Kriebel’16 [56] X × X × D P X X × Hom. × X H Task (Re)-Mapping
Nahar’15 [57] X × X × D P X X × Hom. × X H Redundancy
Sahoo’19 [40] X × X × D P × X × Het. × × H Task (Re)-Mapping
Axer’11 [58] X × X X I P × X × Hom. × × D.T Redundancy

Pathan’17 [59] X × X X I S × X × Hom. × × D.T Redundancy
Safari’20 [60] X × X X D P × X × Hom. × × D.T Redundancy

Saraswat’09 [61] X × X X I P X X X Het. × X R.T Task Re-Mapping
Liu’13 [62] × × X X I P × X × Hom. × × R.T Task Re-Mapping

Ranjbar’19 [63] × × × X D P × X × Hom. × X R.T Thermal Management
Iacovelli’18 [64] × × X X I P × X × Hom. × × H Task (Re)-Mapping
Bayati’16 [65] × × X X I S × X × Hom. × × H Task (Re)-Mapping

Using redundancy in multi-core systems is one of the most useful techniques to man-
age permanent faults and consequently, lifetime reliability at design-time, used in [58–60].
Ref. [58] have presented a reliability analysis to tolerate soft errors by using checkpointing
and redundancy techniques. The application is modeled as a set of independent tasks
that consist of fault-tolerant tasks, which are more critical, and non-fault-tolerant tasks.
In this paper, the lifetime reliability is represented by MTTF, and to improve the reliability,
in addition to checkpointing, redundancy is used that each task is mapped two times
perhaps on the same core (time redundancy) or different cores (hardware redundancy).
To evaluate their method and show the improvement of lifetime reliability, the results
are compared to a reference Monte-Carlo simulation. The work in [59] has presented a
resource-efficient scheduling algorithm for independent safety-critical sporadic tasks. In
this algorithm, first, the number of sufficient backups (multiple instances) for each task
is determined to guarantee timing and lifetime reliability. Then, to reduce the processing

J. Low Power Electron. Appl. 2021, 11, 7 17 of 37

resources consumption, the number of active backups for tasks are determined and the
other backups are counted as passive. Hence, active backups can execute in parallel with
primary tasks, while the passive backups would be executed in the case of occurring faults
in active backups. In the end, the effectiveness of their proposed method is shown by using
an example application.

In [60], researchers have presented an approach for dependent mixed-criticality tasks
running on homogeneous multi-core processors, in which parallelism and redundancy
policy have been applied for fault-tolerance. They enhance the reliability at design-time
by using spare cores and tolerate both transient and permanent faults. Hence, they just
improve the reliability of tasks with higher criticality by running task replica on the spare
core. To allocate tasks on cores, first, all tasks are mapped to primary cores, and if the
deadline of at least one high-criticality task is missed, the parallelism policy is used. It
means the low-criticality tasks that can be scheduled concurrently are re-mapped one by
one to spare cores until high-criticality tasks’ deadlines are met. If there is still a high-
criticality task whose deadline is missed, the reduction policy is used in which the QoS
of low-criticality tasks is aggravated by reducing the worst-case execution time of low-
criticality tasks on primary cores. To enhance reliability, they schedule the replicas of
high-criticality tasks in the spare core by postponing the execution of replicas as much
as possible. After allocating tasks on primary and spare cores, the free slack in each core
is used to minimize the energy consumption by changing the V-f levels, such that the
reliability constraints of criticality tasks would not be violated. Eventually, the presented
method has been evaluated in simulation by using some random task graphs.

5.2. Run-Time Strategies

Run-time optimization of system lifetime usually involves periodically assessing the
aging-level of each core and other components in the hardware platform and modifying
the workload distribution in order to achieve wear-leveling. Wear-out estimation using
special hardware structures and corresponding task-remapping to improve the system
lifetime was proposed by [41]. The authors in [41] assumed the presence of wear sensors
in every PE in the architecture and showed that the usage of such sensors instead of
temperature sensors can improve the lifetime of a system by up to 14.6% compared to a
thermal optimization approach. A heuristic scoring system, based on the weighted score
from the wear sensors of the various architecture elements, is used for evaluating the
candidate mapping solutions at run-time and perform the task-remapping accordingly.
There have been more recent works that leverage the frequency of the occurrence of
intermittent faults for wear-out estimation instead of using special hardware structures
such as those used by [41]. For instance, ref. [42] presented a averaging window-based
approach, that computes the average number of intermittent faults observed in each core
over a fixed number of past execution cycles (moving window), to determine the wear-out
level in each core. They ranked the cores in terms of their wear-out level to remap the tasks
of an application accordingly. However, the evaluation in [42] involved experiments with
the Infant Mortality stage of the system lifecycle (Figure 2), which primarily represents the
initial failures due to manufacturing defects and burn-in tests, and not the wear-out region
that represents the aging of electronic components. Ref. [39] improved upon this approach
by using the Centroid test [66] over the arrival times of the intermittent faults in each core,
as shown in Figure 8b. The centroid test presents a better statistical estimate of the wear-out
of each core compared to a moving window approach. While the moving window approach
suffers from a form of short-term memory, the centroid test is more reflective of the trends
of aging seen by any arbitrary PE. Using this approach, considerable improvements
over [42] were reported in [39]. Both [39,42] used the partial repairable nature of aging
mechanism such as Negative Bias Temperature Instability (NBTI) to improve the lifetime
both in terms of MTTF and MTTC. However, both [39,42] present the results with known
workloads and do not consider the optimization for new application execution requests.
Ref. [43] presented an aging-aware run-time task-remapping methodology that can cater to

J. Low Power Electron. Appl. 2021, 11, 7 18 of 37

new application requests in addition to using a Reinforcement Learning (RL)-based online
adaptation method for ensuring performance and improving lifetime. The authors present
a learning based approach to keep track of the interactions between the tasks and cores
to learn the process variations and the aging effects in the many-/multi-core system in
order to determine the optimal operating frequency for each core. The authors show their
approach to be scalable with the number of cores in the architecture. A novel approach to
reducing the overheads during task-remapping due to permanent or intermittent faults
was presented by [44]. The authors proposed a hardware-based task-migration technique
that could reduce the re-mapping latency by up to 6.5×. A host of such run-time estimation
and wear-leveling across multiple layers and different architectures are presented in [50].
Most works focused towards improving system lifetime treat the performance metrics such
as throughput and latency as constraints and the lifetime as the optimization objective.
However, ref. [45] presented a resource management approach that aims at optimizing
the throughput under user-specified system lifetime constraints. The authors presented
a run-time DSE methodology that implements a borrowing strategy to differentiate the
resource allocation for compute- and communication-intensive applications. Specifically,
the proposed method relaxes the short-term lifetime reliability constraints to improve
throughput for communication-intensive applications while ensuring long-term lifetime of
the system.

Most of the articles discussed in this section do not show the scalability of their
proposed methods for many number of cores in the architecture. The scaling performance
of these methods is especially important in the dark silicon era [67]. Dark Silicon refers to
the phenomenon where, with each technology generation, the thermal and power limits
of the system reduces the fraction of transistors that can operate at maximum frequency.
Therefore, appropriate run-time resource management becomes crucial for enabling the
useful integration of a large number of cores in the architecture. In [46], Haghbayan et al.
present a methodology for lifetime-aware run-time task-mapping in many-core systems
for the dark silicon era. The proposed technique involved running a long-term reliability
analysis unit to track the aging of the cores along with a short-term re-mapping unit. The re-
mapping unit utilizes the information from the analysis unit to provide longer recovery
times to highly aging cores in the system. In [47], Haghbayan et al. extended this approach
for the joint optimization of performance and lifetime reliability. Additionally, they adopted
a hierarchical approach to task re-mapping where the first stage determined the appropriate
region in the hardware and the second stage determined the appropriate PEs in the selected
region to be used for mapping the application. A similar hierarchical approach to lifetime-
aware run-time mapping of applications to many-core systems is presented by [48], where
the authors intersperse the selected region with dark cores to maintain the thermal limits
and reduce accelerated aging. An aging-aware run-time task-mapping for 3D NoC-based
systems is presented in [49]. In this work, Raparti et al. consider the additional aging
effects faced due to the 3D nature of the hardware platform. The higher current densities
and limited number of power pins in such structures warrant special considerations for
the EM-related aging of the power delivery network along with the aging of the PEs in
the system.

Next, we discuss some related research in the context of mixed criticality systems.
As we mentioned, one of the techniques to guarantee lifetime reliability is using task
re-mapping at run-time. As shown in Table 2, Refs. [61,62] have used this technique that
we explain each work in detail. Ref. [61] proposed a heuristic to manage the transient and
permanent faults for mixed-criticality systems that tasks can be hard or soft (a task is said
to be hard if missing its deadline may cause catastrophic consequences and, also a task
is said to be soft if missing the deadline cause a performance degradation [68]). In this
heuristic, checkpointing and roll-back recovery is used to tolerate transient faults and also
task re-mapping to tolerate permanent faults. Meeting the deadlines of hard tasks and
maximizing the QoS of soft tasks through task re-mapping are the targets of the heuristic.
In the case of a permanent failure for a core, first the hard tasks and then soft tasks re-

J. Low Power Electron. Appl. 2021, 11, 7 19 of 37

mapped to other healthy cores. Besides, researchers in [62] have proposed an algorithm for
independent periodic mixed-criticality tasks to minimize the number of task re-mapping,
while the most critical applications continue to meet their deadlines in homogeneous multi-
core systems. When a core fails due to the permanent faults, first high-criticality tasks
are re-mapped to other healthy cores, then, low-criticality tasks running on the processor
may be re-mapped to other processors or even dropped to increase performance. Indeed,
the algorithm makes a trade-off between the number of task re-allocations and the system’s
performance. The efficiency of the algorithm has been evaluated through simulation with
a random task generation.

On the other hand, in [63,69], online peak power, and thermal management heuristic
has been proposed, in which the re-mapping technique is used in the case of available
dynamic slack to re-map a ready task from the hot core to a core with a lower temperature
to manage the system’s maximum temperature which improves the lifetime reliability.
In addition, researchers have also proposed an approach to assign available dynamic slack
to an appropriate task among k look-ahead tasks, which has more impact on system power
and maximum temperature and reduce the V-f levels. The proposed method has been
evaluated for dependent periodic mixed-criticality tasks (both real-life and random task set
generation) in simulation. Figure 9 depicts an example of the thermal hotspot mitigation
result of the system based on the proposed method in [63] and a state-of-the-art [27]).
As shown, the proposed method can help in balancing the difference in temperature
between the cores, which results in lifetime reliability improvement in the long-term.

331.37
329.67
327.98
326.29
324.60
322.91
321.21
320.09

331.37 (K)

329.67

327.98

326.29

324.60

322.91

321.21

320.09

(a) (b) (c)

Figure 9. Temperature profiles of different approaches. (a) [27]. (b) [63], k = 1. (c) [63], k = 4.

5.3. Hybrid Strategies

The hybrid DSE approach to improving lifetime reliability usually involves searching
and storing multiple system configurations for various fault/aging-scenarios at design-
/compile-time that the system can be reconfigured to during run-time. Correspondingly,
ref. [51] presented a methodology for reliability-driven task-mapping for MPSoCs that
could be used for multiple applications as well. Their compile-time analysis used con-
vex optimization to find the optimal task-mapping for different system states resulting
from permanent faults to one or more cores. The run-time optimization in [51] involved
considering the aging of the NoC for determining the appropriate task-mapping to be
selected dynamically. The experimental evaluation in [51], involved testing the proposed
methods for both DAG and SDFG representation of synthetic and real-world applications.
Ref. [52] used a similar approach with the added design objective of energy consumption
and the consideration of the thermal effect of adjoining cores on the reliability of any
arbitrary core. In another similar work, ref. [53] presented hybrid DSE approaches that
considered the occurrence of both permanent and intermittent faults during design-time
analysis. The run-time optimization in [53] takes into account the energy consumption
of task-remapping during the selection of the appropriate dynamic system configuration.

J. Low Power Electron. Appl. 2021, 11, 7 20 of 37

Similarly, Ref. [54] presented a task-remapping methodology for mitigation of core aging
and reduction of communication energy. In addition to selecting and storing a set of
Pareto-front points obtained from design-time optimization for performance and reliabil-
ity, they proposed a fast heuristics-based run-time task-remapping for reducing energy
consumption. A similar two-pronged approach to improve system lifetime is proposed
in [55]. Here, the authors use the offline optimization to counter the effect of transient
faults and the online re-mapping is aimed at migration-reduced adaptation to permanent
faults. Similarly, in [56], Kriebel et al. propose an aging-aware resource management in the
context of Redundant Multi-Threading (RMT). RMT allows the mitigation of soft-errors by
executing copies of a task as two parallel threads. However, RMT can also lead to more
aging of the core due to higher utilization. Kriebel et al. store multiple compiled versions
of the application exhibiting varying vulnerability to soft-errors, aging and execution time.
At run-time, the appropriate version is selected to be executed on an appropriate PE, along
with the decision to enable/disable RMT, depending upon the vulnerability and aging-
impact of the application. All of the works implementing run-time adaptation to failing PEs
implement some form of task-migration. However, ref. [57] proposed a spatial redundancy
based task-mapping approach that aims to remove the task-migration overhead completely
by replicating the execution of tasks. In Nahar and Meyer [57], provide tolerance to both
transient and permanent faults by ensuring that no single failure affects more than one copy
of the redundant task. The authors report considerable improvements in the fault-tolerant
lifetime of the system compared to traditional spatial redundancy-based methods such as
TMR and DMR.

Most of the works in hybrid DSE store either the complete set or a subset of the Pareto-
front points that are used during run-time. Recently [40] proposed a methodology where
additional non-Pareto points are also stored by the system. These additional points were
useful in providing configurations that resulted in lower reconfiguration time at the cost
of slightly sub-optimal performance. Figure 8c shows the rationale behind this approach.
In the figure, the system has to reconfigure due to changing requirements (S → S′) at
run-time. If only Pareto-front points were stored, it would result in the system switching
from FOp to F′Op However there might be non-dominating points (such as F′′Op) that satisfy
the new requirements while costing lower reconfiguration than F′Op. Thereby, storing
additional points within ∆ErrRate and ∆AvgMS around the Pareto-front points may result
in better dynamic adaptation.

There are a few works [64,65], in which the researchers have taken advantage of both
run-time and design-time phases to improve the lifetime reliability in mixed-criticality
systems. In [64], researchers have considered an independent periodic task model that tasks
with different criticality levels run on a homogeneous multi-core processor. The algorithm
has two steps, task partitioning between cores and core utilization optimization. So, tasks
are sorted in decreasing order of criticality and then assigned to the cores with the least load
allocated. Indeed, the design-time algorithm adapts the resource shortage at run-time. Now,
in run-time phase, if a permanent failure happens in a core, the algorithm must re-map tasks
to other cores. In the case of not having enough space on the remaining cores, the heuristic
drops first tasks with the least criticality and utility. In addition, the work in [65] proposed
a Mixed Integer Linear Programming (MILP) based design space exploration process to
design a reliable mixed-criticality system. At design-time, tasks are mapped, and the task
schedulability in each core is tested by MILP. At run-time, to support the tasks running
on cores from permanent faults, the re-mapping technique is used in run-time phase.
Therefore, each high-criticality task would be run in two processors, primary and backup.
When the primary processor fails, the high-criticality tasks on the failed processor are
re-mapped to the predefined backup processor, and all low-criticality tasks assigned in
the primary failed processor are dropped. Hence, this algorithm just supports a single
processor failure.

J. Low Power Electron. Appl. 2021, 11, 7 21 of 37

5.4. Critique and Perspectives

Almost all the works discussed for improving lifetime reliability use one or more from
a very limited set of techniques. These techniques involve either a reactive re-mapping of
tasks in the event of a fault, or, pro-active distribution of workload for reducing the electri-
cal stress on the individual cores to achieve wear-leveling. Most articles typically use an
additional design objective along with system lifetime to present their novel methodology.
While this does result in solving a problem of higher complexity, it does not necessarily
contribute to improving system lifetime. Similarly most works listed in Table 2 ignore the
reliability of communication and memory structures of the hardware platform. With in-
creasing usage of NoCs for many-/multi-core systems, the reliability of communication
elements should find more focus in research. Further, with emerging technologies shifting
the focus to memory systems—for both storage and computation—reliability of memory
elements needs more research. Finally, the evaluation methodology for lifetime reliability
optimizations should include real world benchmarks that include more relevant applica-
tions from the domain of machine learning, computer vision etc. Further, lifetime reliability
optimization for mixed criticality applications needs more direct approaches to improve
system lifetime compared to the more prevalent indirect approach of thermal management.

6. Timing and Functional Reliability Management in Multi/Many-Core Processors

In this section, we aim to study the state-of-the-art works, which manage the timing
or functional reliability in multi/many-core processors. In general, most papers have
employed redundancy techniques, such as timing, hardware and information to guarantee
the reliability in the systems. In the following, we present the existing criticality-aware and
non-criticality-aware approaches in three categories of design-time, run-time, and hybrid
strategies. Table 3 lists the works based on the criteria in detail. In the end of this section,
we discuss about the critique and perspectives on the presented research works.

6.1. Design-Time Strategies

Some of works discussed under the lifetime reliability optimization earlier also ana-
lyze for functional and/or timing reliability as a design objective. For instance, ref. [26]
used checkpointing with rollback recovery for mitigating the effect of transient faults on
functional reliability. The analysis in [26] is aimed at determining the appropriate number
of checkpoints in each constituent task of the application for providing sufficient functional
correctness. Similarly in [35], Das et al. included the impact of DVFS on soft-error rate
while varying the number of replications for each task. In a similar approach, ref. [37]
proposed a methodology for an early stage evaluation of the impact of using multiple types
of redundancies on the application’s timing and functional reliability. In their analysis,
ref. [37] integrated the effect of DVFS, imperfect fault-mitigation and implicit fault-masking
across multiple layers. Figure 10a,b show the effect of DVFS and varying implicit mask-
ing on the average execution time and probability of error of a single task, respectively.
Ref. [37] used a Markov Chain-based model to estimate the average execution time and
the probability of error. A similar modelling approach for estimating the probability of
task completion within a deadline was also presented recently by [70]. A task-mapping
and priority assignment for similar deadline miss ratio-constrained systems has been pro-
posed by [71]. In [71], the authors provide a design-time optimization for a heterogeneous
architecture and use the stochastic execution time of tasks to optimize the task-mapping.
A collection of methods for improving the fractional and timing reliability by using various
mitigation methods across different layers, and with varying resource requirements, can be
found in [50,72,73]. Similarly, research works targeting improved functional and timing
reliability of on-chip communication include [38,74–76].

J. Low Power Electron. Appl. 2021, 11, 7 22 of 37

Table 3. Summary of state-of-the-art approaches in timing/functional reliability aware resource management.

Fault Model App. Model System Model Imp. DSE Technique

Tr
an

si
en

t

In
te

rm
it

te
nt

Pe
rm

an
en

t

C
ri

ti
ca

li
ty

D
ep

en
de

nc
y

Pe
ri

od
ic

it
y

C
om

m
un

ic
at

io
n

C
om

pu
ta

ti
on

M
em

or
y

H
et

er
og

en
ei

ty

R
ea

lB
oa

rd

R
ea

lA
pp

.

Manolache’08 [71] × × × × D P X X × Het. × X D.T Task Mapping
Das’14 [35] X × X × D P × X × Hom. × X D.T Task-Replication

Bauer’15 [50] X X X × D P X X × Het. × X R.T Hardware blackundancy
Das’13 [26] X × X × D P × X × Het. × X D.T Checkpointing

Sahoo’20 [37] X × X × D P × X × Het. × × D.T Cross-layer Redundancy
Frantz’07 [74] X × × × × × X × × × × X D.T HW/SW Redundancy

Lehtonen’07 [75] X X X × × × X × × × × X D.T Fault-spec. Opt.
Vitkovskiy’10 [76] × × X × × × X × × × × X D(R).T Latency Reduction

Kakoee’11 [38] X × X × × × X × × × × X D(R).T Hardware Redundancy
Duque’15 [42] × X X × D P × X × Hom. × X R.T Task (Re)-Mapping
Wells’08 [77] × X × × I S × X × Hom. × X R.T Hardware Redundancy

Lehtonen’10 [78] × × X × × × X × × × × X R.T Online Testing
Yu’10 [79] X × X × × × X × × × × X R.T Hardware Redundancy

Rehman’16 [80] X × × × D A × X × Hom. × X H Cross-layer
Weichslgartner’18 [81] × × × × D A X X X Het. × X H Task Mapping

Sahoo’19 [40] X × X × D P × X × Het. × × H Cross-layer Redundancy
Pourmohseni’19 [82] × × × × D P X X × Het. × X H Task Mapping

Pathan’17 [59] X × X X I S × X × Hom. × × D.T Hardware Redundancy
Safari’20 [60] X × X X D P × X × Hom. × × D.T Hardware Redundancy
Safari’19 [83] X × × X I P × X × Hom. × × D.T Hardware Redundancy

Rambo’17 [84] X × × X I P X X × Hom. × × D.T Hardware Redundancy
Bolchini’13 [85] X × × X D P X X × Het. × × D.T Hardware Redundancy

Kang’14 [86] X × × X D P X X × Hom. × X D.T Hardware Redundancy
Kang’14a [87] X × × X D P X X × Het. × X D.T Hardware Redundancy
Choi’18 [88] X × × X D P/S × X × Hom. × X D.T Hardware Redundancy
Jiang’18 [89] X × × X D P X X × Hom. × × D.T Hardware Redundancy
Zeng’16 [90] X × × X I S × X × Hom. × X D.T Hardware Redundancy

Caplan’17 [91] X × × X I S × X × Hom. × × D.T Hardware Redundancy
Axer’11 [58] X × X X I P × X × Hom. × × D.T Timing Redundancy

Saraswat’09 [61] X × X X I P X X X Het. × X D.T Timing Redundancy
Saraswat’10 [92] X × × X I P X X X Het. × × D.T Timing Redundancy
Bagheri’14 [93] X × × X D - X X × Hom. × × D.T Timing Redundancy

Kajmakovic’19 [94] X × × X × × × × X × X × D.T Information Redundancy
Liu’19 [95] X × × X D P X X × Het. × × D.T Rel.-Aware Mapping

Thekkilakattil’14 [96] X × × X I P × X × Hom. × × H Mapping & Redundancy
Koc’19 [97] × × × X D P × X × Het. × × H Mapping & Redundancy

Next, we study the prior works that managed the timing or functional reliability
of mixed-criticality systems in the design-time phase. Most of the papers that exploited
the multi/many-core processors achieve reliability improvement by using redundancy
technique, such as hardware redundancy (using replica, which is Active, Passive, or Hy-
brid), timing redundancy using re-execution after error detecting and check-pointing with
roll-back recovery, and information redundancy by using the addition of redundant infor-
mation to data to mitigate soft error. A summary of the literature based on their exploiting
techniques are detailed as follows.

J. Low Power Electron. Appl. 2021, 11, 7 23 of 37

0

5

10

15

20

25

30

35

300 800 1300 1800 2300 2800

P
ro

b
ab

il
it

y
 o

f
er

ro
r

(i
n
 %

)

Average Execution time (in microseconds)

1.2V, 900Mhz 1.1V, 600MHz 1.06V, 300MHz

0

1

2

3

4

320 420 520

(a)

0

5

10

15

20

25

30

1000 1500 2000 2500

P
ro

b
ab

il
it

y
 o

f
er

ro
r

(i
n

 %
)

Average execution time (in microseconds)

ImpMask = 0%
ImplMask = 5%
ImplMask = 10%
ImplMask = 20%

(b)

0.4

0.5

0.6

0.7

0.8

0.9

1

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter for dynamic user-modulation (pRC)

Relative Average Energy Consumption

Relative Average Reconfiguration Cost

R
el

at
iv

e
A

ve
ra

ge
 R

ec
o

n
fi

gu
ra

ti
o

n
 c

o
st

R
el

at
iv

e
A

ve
ra

ge
 E

n
er

gy
 C

o
n

su
m

p
ti

o
n

(c)

Figure 10. DSE for timing and functional reliability. (a) Reliability and DVFS [37]. (b) Implicit
masking [37]. (c) Hybrid DSE results [40].

6.1.1. Multi-Core Platform Used for Spatial and Temporal Redundancy

Two types of redundancy, which are used in the most papers [59,60,83–91] for tolerat-
ing faults and consequently, improving reliability are timing and hardware. Some papers
have used the feature of multi-core platforms and applied just the hardware redundancy,
i.e., replication [59,60,83–85]. As we mentioned in Section 5, authors in [59,60] have used
backup redundancy to improve timing and lifetime reliabilities, while the deadline of
tasks is guaranteed. In [83], a scheme has been presented to minimize energy, guaran-
tee reliability by computing the optimum number of replication for each criticality task,
and maximize QoS when the systems switch to the high-criticality mode. To map tasks
on cores, first high-criticality tasks and their replicas and then, low-criticality tasks are
mapped on cores that are selected based on worst-fit decreasing and first-fit decreasing.
Safari et al. claimed that worst-fit decreasing is the best policy from the energy-awareness
perspective. The effect of this algorithm is validated through simulation based on random
task generation. Besides, ref. [84] have presented a replica-aware co-scheduling method
for mixed-criticality systems by exploiting cross-layer fault tolerance mechanisms. This

J. Low Power Electron. Appl. 2021, 11, 7 24 of 37

method has supported network-on-chip communication delay and replication manage-
ment overheads. In addition, ref. [85] have presented a methodology to map and schedule
tasks on heterogeneous multi-core processors and optimize overall performance. In this
methodology, different fault management techniques (Fault Detection/Tolerance) are ex-
ploited on different portions of the task graph. Indeed, for some parts of a task graph that
needed to be tolerated against faults, different reliability improvement techniques such as
replication would be exploited based on architecture features.

On the other hand, there are some works [86–91] that considered both hardware and
timing (re-execution) redundancies to tolerate faults before tasks’ deadlines and improve
timing reliability. In [86,87], an offline heuristic for mapping optimization has been pro-
posed for dependable tasks with different reliability requirements and tolerated transient
faults and, consequently, guaranteed the tasks’ reliability before their deadlines. The num-
ber of re-execution or replication for each task is defined based on its criticality. Besides,
ref. [88] have presented a framework to find an optimal mapping of dependent mixed-
criticality tasks on multi-core processors, while the QoS is increased in the faulty state and
also the power consumption in the normal and faulty states are minimized. To tolerate
the transient faults based on the probability distribution of fault occurrences, re-execution
and replication are used, and also, the algorithm is designed to endure the maximum
number of faults. Choi et al. use the genetic algorithm to find the optimum mapping while
all objectives are guaranteed. To investigate the fault tolerance techniques on message
communication between dependent tasks, ref. [89] have proposed an optimization to map
tasks, minimize the scheduling length and application security vulnerability by considering
fault-tolerant constraints. Two techniques of re-execution and active replication are used to
tolerate faults of tasks.

Besides, ref. [90] find the optimum number of replication and re-execution for each
criticality task to guarantee the reliability of tasks based on the DO-178B safety require-
ments, in which PFH is defined as their metric. In [91], the authors have used this metric to
guarantee the reliability of high-criticality tasks in the case of fault occurrence in different
situations. In that paper, an efficient mapping and scheduling algorithm based on the
genetic algorithm is proposed on heterogeneous multi-core platforms, while transient
faults are tolerated by using on-demand redundancy. In on-demand redundancy, three
types of Dual Modular Redundancy, Triple Modular Redundancy, and Passive Replication
are supported. In this algorithm, all low-criticality tasks must be executed in a normal
situation. If the system is overloaded or a fault occurs, these tasks can be dropped to
guarantee the correct execution of high-criticality tasks. Hence, the QoS of low-criticality
tasks is one of the objectives of this algorithm that would be maximized.

6.1.2. Timing Redundancy with Check-Pointing and Rollback Recovery

The authors in [58,61,92,93] have improved the reliability by using Check-pointing and
rollback recovery for mixed-criticality systems in multi-core processors. Using the Check-
pointing technique helps to tolerate transient faults and guarantee reliability. At design-
time, authors find the optimum number of check-points during the execution of tasks,
such that the deadline of tasks would be guaranteed. In the case of faults occurring
during run-time phase, the faulty task is recovered from the previous check-point and
continues its execution. In [92], a Tabu search-based approach for task mapping is presented,
in which the deadlines of the hard tasks (higher criticality tasks) are guaranteed, even in
the case of transient faults, and the QoS for the soft tasks (tasks with lower criticality) is
maximized. To improve the timing reliability of tasks with higher criticality, check-pointing
with rollback recovery is used. The optimum number of check-points is calculated by
considering the overheads of establishing the check-point, error detection, and recovery,
while the task deadlines are guaranteed. The proposed algorithm has been evaluated with
several random and real-life benchmarks. In [93], a framework of dependable NoC-based
multiprocessor is designed for mixed-criticality DAG task models, in which the inter-task
communication has been considered. Bagheri and Jervan [93] guarantee the deadline of just

J. Low Power Electron. Appl. 2021, 11, 7 25 of 37

high-criticality tasks even in the presence of transient faults. Transient faults are tolerated
by check-pointing, and also, its timing overhead is considered as part of WCET.

6.1.3. Information Redundancy, Mitigating Soft Errors by Using Parity

From the perspective of reliability improvement of memories, ref. [94] have considered
soft errors and used redundant parity bit to detect and recover the data utilizing the parity
bit. Considering mixed-criticality for memories allows us to improve the system reliability
and increase the protection of more criticality memory parts. In this work, faulty data
would be corrected in the minimum time to maximize the performance and minimize the
run-time memory overhead. Indeed, this parity approach to detect soft errors is explored to
use in the design-time phase. In the case of detecting fault at run-time, faulty data recover
by copying healthy data. Hence, the Kajmakovic et al. have not used any additional
hardware components to tolerate faults.

6.1.4. Task Reliability-Aware Mapping

Another technique to guarantee the reliability of tasks is finding an efficient mapping
of mixed-criticality tasks on heterogeneous multi-core platforms to ensure the timing
reliability and minimize the probability of fault occurrence. In [95], a heuristic has been
proposed that the reliability requirements are satisfied, and also the deadline miss ratio
of high-criticality tasks is minimized. In this heuristic, the authors find the optimum
mapping and scheduling of tasks with different criticality and reliability requirements
on multi-cores with different reliability levels to reduce the probability of transient fault
occurrence. The proposed heuristic efficiency has been validated through simulation and
shows an outstanding reduction in the deadline miss ratio.

6.2. Run-Time Strategies

Run-time adaptation for improving functional and timing reliability usually involves
varying the redundancy levels and using faster cores, respectively. While achieving better
functional reliability with a purely run-time approach may be achieved by avoiding faulty
cores and/or replicating task execution (both spatially and/or temporally), guarantee-
ing/improving timing reliability requires much more analysis and is better achieved with
a hybrid approach. For instance, multiple research works involve detection of perma-
nent faults in cores and re-mapping tasks to healthier cores [39,41,42]. Similarly, ref. [77]
proposed multiple mitigation approaches for intermittent faults including pausing ex-
ecution, using spare cores and avoiding faulty cores to allow for self-repair. Similarly,
ref. [50] proposed multiple resource management methods that include both proactive
(avoiding hot-spots) and reactive (online testing and error detection) methods. Some of the
approaches proposed in [50] also include using TMR for improving functional reliability.
Similar redundancy based improvement of on-chip communication by using information
encoding and spare wires are proposed by [75]. A novel methodology for online testing,
detection and bypassing of permanent faults in NoCs is presented in [78].

From the run-time criticality-aware reliability management perspective, ref. [98] have
recently investigated MC systems. In this paper, authors have presented the Information
Processing Factory (IPF) paradigm to achieve long-term dependability for MC systems,
where a 5-layer hierarchical organization has been introduced. IPF is introduced as a self-
aware and self-organizing system used to manage resources by decomposing approach,
planning, and confining them during run-time. The IPF can also detect and predict po-
tential hazards and handle these upcoming risks in different layers. As a result, in this
introduced framework, the requirements of safety-critical functions are always met at
run-time. In the end, the proposed method efficiency has been evaluated by showing
achieving the reliability levels (functional reliability) and MTTF as lifetime reliability.

J. Low Power Electron. Appl. 2021, 11, 7 26 of 37

6.3. Hybrid Strategies

The design-/compile-time analysis for improving functional reliability involves deter-
mining the different levels of error tolerance provided by varying levels of redundancy.
For timing reliability, the analogous stage involves finding the various resource allocation
configurations that ensure the timing requirements of the application(s). Ref. [80] proposed
a cross-layer reliability approach in single-processor systems, where multiple executables
for each task, with varying execution time and error probabilities, were generated at com-
pile time. The run-time allocation involved dynamically selecting the appropriate version
of each task, depending upon the available slack w.r.t. the deadline. Ref. [81] also tackled
the problem of achieving predictable execution time in MPSoCs with a hybrid approach.
The authors presented a compile time DSE methodology for generating clustered tasks
and constraint graphs based on the timing requirements of the application (modelled
as a DAG). The run-time management involved mapping the clustered tasks and edges
on available cores and interconnects of the hardware platform. A similar approach to
mapping of hard real-time applications on many-core system using a hybrid approach
was presented by [82]. A novel methodology for using hybrid DSE to adapt to varying
QoS requirements was proposed by [40]. In addition to ensuring timing and functional
reliability, the run-time process proposed in [40] allowed the user to dynamically select
the priority of energy consumption and reconfiguration cost during run-time adaptation.
Figure 10c shows the different trade-offs obtained for a sample application by varying the
user-controlled parameter pRC.

From the perspective of criticality-aware strategies, some papers have improved the
timing reliability for mixed-criticality tasks in both design-time and run-time phases [96,97].
For example, ref. [96] have presented an approach to map and schedule tasks with different
criticality levels on multi-core processors in which the timing constraints of high-criticality
tasks are guaranteed at design-time even in the case of fault occurrence and also, the flexi-
bility for the low-criticality tasks are ensured. To tolerate the faults and improve reliability,
the timing redundancy technique, re-execution, is used for high-criticality tasks at design-
time and low-criticality tasks at run-time. Besides, the work [97] has focused on finding
the best mapping of mixed-criticality tasks to minimize execution latency by considering
the reliability of both system and high-criticality tasks at design-time. At run-time, when
the system switches to the high-criticality mode, high-criticality tasks are re-mapped to the
highly reliable cores to be executed before their deadlines and, if possible, low-criticality
tasks are scheduled without exceeding the minimum latency.

6.4. Critique and Perspectives

Most works in this category have evaluated their proposed approaches in simulation,
which can be seen in Table 3. Although simulation can validate the proposed method
good enough, it is not sufficient due to some reasons such as overheads at run-time, like
communication, and fault detection and tolerance; then the proposed method may not be
applicable in some cases. Researchers in [69] have discussed that if the timing overheads,
such as the delay for changing the V-f levels of cores, are not considered while scheduling
the tasks, it may cause deadline violation and consequently, catastrophic consequences
may happen. Therefore, evaluating the proposed methods based on real applications on a
real platform is needed, which has not been considered in most existing works.

Besides, as mentioned in this section, most of the works have used redundancy
techniques to guarantee timing or functional reliability. Since the system may execute
safely without fault occurrence, these techniques such as hardware and timing redundancy
may waste the system’s resources.Therefore, investigating the run-time approaches is
needed to efficiently use the computational resources and optimize the other objectives.

In addition, intermittent faults are one of the common faults in embedded systems.
The reason for these faults can be inherent design issue or unstable hardware. Due to
the behavior of repeated conditions of causing faults, errors may occur. Investigating the

J. Low Power Electron. Appl. 2021, 11, 7 27 of 37

intermittent faults can help the system be optimized more efficiently at run-time, which
has not been considered in previous works.

From the criticality-aware reliability management perspective, most of the existing
works have guaranteed the timing reliability only for the tasks with higher criticality
tasks in any system operational modes. However, in some mixed-criticality embedded
systems, such as avionics, low-criticality tasks, are mission-critical, and guaranteeing the
reliability requirement of both low- and high-criticality tasks are crucial. Most of the
existing approaches cannot be applied to these systems; thus, new studies to guarantee
each criticality level’s reliability in each operational mode are required in multi-core mixed-
criticality systems.

As can be illustrated from Table 3, most of the works have not considered the commu-
nication and memory of multi/many-core processors and only focused on guaranteeing
the reliability in computational parts. However, the memories and data sharing can be the
bottleneck to guarantee the reliability of applications in multi-core platforms. Designing the
system for reliability management and analyzing it at run-time by having a comprehensive
view on the whole system resources are required in multi/many-core platforms.

7. Reliability Management in Reconfigurable Architectures

Some of the related works discussed till now assume the availability of reconfigurable
logic on the hardware platform and tackle the related problem of resource management by
allocating accelerators to a select subset of tasks of an application (hardware/software par-
titioning). Therefore the DSE methods presented in works such as [26,40,50] can be directly
used. However, in this section we survey the works that assume the complete architecture
comprising of reconfigurable hardware logic, specifically for Field Programmable Gate
Array (FPGA)s.

Improving functional reliability in FPGAs has mostly been focused on improving
the reliability of the configuration bits. Traditional methods methods such as ECC [99],
scrubbing [100] and hardware checkpointing [101] have been used to provide protection
from transient faults in the configuration memory. Additionally, circuit design methods
that involve TMR has also been employed for enabling the usage of FPGAs in high-
radiation environments [102]. However, there has been a growing trend of lifetime reli-
ability improvement in FPGA-based systems. For instance, ref. [103] proposed various
phenomenon-specific methods, tailored for each failure mechanism, to mitigate aging in
FPGAs. Similarly, ref. [104] proposed multiple generic electrical stress hot-spot reduction
techniques for FPGAs. Ref. [105] presented a stress-aware run-time wear-leveling approach
that leverages Dynamic Partial Reconfiguration (DPR) in FPGA-based systems. In [106],
Zhang et al. used module diversification, to generate multiple accelerator designs with
spatially varying aging effects. These diverse modules were used to leverage DPR by
periodically swapping accelerators that use different CLBs of the FPGA fabric. A novel
approach combining module diversification and dynamic adaptation to varying aging-
effects at run-time was proposed by [107]. Similarly, ref. [108] presented a reliability-aware
floorplanning methodology along with delay-based aging estimation and run-time re-
configuration. A joint mitigation methodology using DPR, aimed at both soft errors and
permanent faults in FPGAs was proposed by [109]. The authors presented reconfiguration
as a solution to both types of faults, which can be a costly approach. Almost all the research
works employing DPR assume using homogeneous Partially Reconfigurable Region (PRR)
(comprising of equivalent amount of FPGA resources). However, as shown in Figure 11, Sa-
hoo et al. [110,111] proposed a hardware/hardware partitioning methodology that allows
using application specific heterogeneous PRRs, that provided the scope for improving both
the latency (average makespan) and reliability (MTTF) in DPR-based systems.

J. Low Power Electron. Appl. 2021, 11, 7 28 of 37

𝑀1 Lifetime-aware
scheduling

Lifetime-aware
scheduling

Figure 11. Reliability-aware HW/HW partitioning [110].

A few papers such as [112–116], have addressed reconfigurable processors in a sys-
tem with different criticality tasks to improve timing reliability. In [112,113], Santos, et al.
have proposed a new efficient scrubbing mechanism to increase the system’s reliability by
considering the criticality and timing of the hardware task execution. Hence, scrubbing
mechanism takes advantages of FPGA reconfiguration, and verify the reconfiguration peri-
odically to tolerate faults like Single Event Upset (SEU) in the Static-RAM (SRAM) [112,117].
Researchers in [112] have proposed a static heuristic to schedule the tasks based on their
criticality level, running on reconfigurable embedded systems to maximize each task’s reli-
ability. In addition, they have presented a dynamic scrubbing mechanism in [113] to have
high reliability by using the windows and fixed priority scheduling. They also consider the
reliability as well as the criticality level for the tasks. They have claimed that they signifi-
cantly reduce the amount of memory required to store the scrubbing schedule. Ref. [114]
have presented an efficient resource management mechanism and then architecture to pro-
vide fault tolerance in the context of a time-triggered NoC-based mixed-criticality system
that invokes reconfiguration. Their method establishes the fault-recovery and efficient
resource utilization in Mixed-Criticality Networks-on-Chip (MCNoCs) by monitoring the
resource requests and reconfiguring them based on a recovery strategy. Besides, ref. [115]
have proposed a reliability driven scheduling approach for mixed-criticality tasks by han-
dling periodic, aperiodic, and sporadic tasks on FPGAs against hardware trojan horse
attacks. In this approach, redundancy is used to increase reliability on task criticality
level, offline, and then attempt to prevent faulty data propagation in the run-time phase.
Ref. [116] have detected an error by using the Secure Hash Algorithm and corrected them
by using parity based two-dimensional erasure code, while the performance is reduced,
which consists of time error detection and correction. This method has taken the execution
period and criticality into account to correct faulty data.

8. Upcoming Trends and Open Challenges

In this section, we briefly address the upcoming trends and challenges relevant to
reliability-aware resource management in multi/many-core systems.

• Cross-layer Reliability: Most of the research articles discussed in this survey em-
ploy/select different redundancy-based methods to improve the system’s reliability.
Similarly, there is an increasing trend of using multiple layers of the system stack in the
design for reliability [73,118]. This is unlike the traditional approach of mitigating each
fault-mechanism at the hardware layer and providing a fault-free abstraction to the
other layers. Although this phenomenon-based approach makes the design process
simpler for the non-hardware layers, the high cost of hardware-based fault-mitigation
can make this approach infeasible for resource-constrained systems. In contrast,
the cross-layer approach involves multiple layers sharing the fault-mitigation activ-
ities during run-time [119]. Similarly, various methods of leveraging at cross-layer
reliability at design-time have been proposed [50].
One of the major advantages of the cross-layer approach is the inherent suitability
for application-specific optimizations. Since the overheads of fault-tolerance varies
with the type of redundancy being used, application-specific tolerances to degra-
dation in some form of reliability can be used to improve other reliability metrics.

J. Low Power Electron. Appl. 2021, 11, 7 29 of 37

Further, with the cross-layer approach, the implicit masking of multiple layers can
be used to provide low-cost fault-tolerance [120]. However, the joint optimization
across multiple layers increases the design space considerably. Recently there have
been multiple works that try to provide efficient DSE for cross-layer reliability for
various system-level design tasks such as task mapping [37], hardware-hardware
partitioning [121], run-time adaptation [40], hardware design [72] etc. However,
most of the works assume rather simplistic reliability models such as the one shown
in Figure 12a where each layer is limited to a specific type of redundancy [37,40,121].
A more holistic approach to the design of cross layer reliability is necessary for
more realistic reliability models that integrate multiple reliability methods at each
layer. As shown in Figure 12b having reliability interfaces, similar to those used for
functionality and performance, can enable far better DSE than current state-of-the-
art works. An interface for functional reliability was proposed by [80] that used
Architectural Vulnerability Factor (AVF), Instruction Vulnerability Index (IVI) and
Function Vulnerability Index (FVI) for characterising different implementations of an
embedded processor, instruction set and function libraries, respectively. However,
similar interfaces for timing and lifetime reliability need to be developed for designing
efficient cross-layer reliability.

• Self-Aware System Design: In general, design-time approaches are applied to optimize
resource usage and guarantee the reliability in the worst-case scenarios. However,
due to the various run-time behaviors of applications and fault occurrence, we cannot
efficiently manage the reliability, especially lifetime reliability and system utilization.
Therefore, run-time system monitoring and optimization are essential to control
and have a reliable operation of applications, especially mixed-criticality applications,
and efficient resource management of multi/many-core platforms [122]. IPF paradigm
is recently used to manage the system dynamically, according to the changes in system
and workload [98,123]. This self-aware paradigm improves the reliability and resource
utilization by combining different techniques in different hierarchical layers. As a
result, the online optimization based on the current state and variations in applications
and system by monitoring the hardware and software components, and using the IPF
to conquer the complexity is essential, especially for safety-critical systems.

• Reliable Communication and Data Sharing: Safety and dependability are critical issues
in designing the mixed-criticality systems on multi/many-core platforms, in which
data are shared between concurrent execution of tasks with different criticality [124].
The strict control of data (critical and non-critical), communication, sharing, and stor-
age in such systems for safety assurance, e.g., in medical devices, is crucial. Most
state-of-the-art works have concentrated on the reliability management of tasks in
processors of multi/many-core systems regardless of safe data sharing among com-
munication and memories. As a result, safe mixed-criticality system design consider-
ing all system resources, like communications, and memory access, and processors
are needed.

In addition to the trends discussed above many new approaches to computing have
emerged over the past few years. These emerging technologies have brought forward
novel opportunities and challenges to reliability-aware resource management. For example,
Approximate Computing (AxC) has emerged as a new computing paradigm that offers
the promise of low-power and faster execution [125]. While AxC might hold promise for
improving timing and lifetime reliability, the deliberate introduction of computational
inaccuracies requires careful design for dependable systems. Similarly, the introduction of
post-CMOS transistors for next-generation computing requires a thorough reliability analy-
sis of emerging devices. Finally, we are already witnessing AI-based resource management
in multi-/many-core systems for both design-time optimization and run-time adaptation
to varying operating conditions [40,126,127].

J. Low Power Electron. Appl. 2021, 11, 7 30 of 37

Information redundancy

Implicit Masking

Device, Circuit Implementation

CLR-integrated HW Implementation

CLR-integrated SSW Implementation

CLR-integrated ASW Implementation

Implicit Masking

Detection, Tolerance

Implicit Masking

Spatial redundancy

Code Tripling,
Hamming

Correction,
Checksum

Retry,
Checkpointing

Partial TMR, DVFS,
Circuit Hardening

(a)

ComplexityPseudocode

LatencyFunctions

IPCInstructions

CPD
Logic

Behavior

VI char
VI char
(switch)

Application Software

Architecture

Devices

System stack

System Software

Circuits

Algorithms

Abstraction Interfaces

Functionality Performance

?? ?

Reliability

Functional Timing Lifetime

?FVI ?

?IVI ?

?AVF ?

?SER ?

(b)

Figure 12. Cross-layer design approach to reliability. (a) Redundancy methods across layers. (b)
Interfaces for cross-layer design approach.

9. Conclusions

With increasing susceptibility of modern electronic systems to physical faults, reliability-
aware resource management is a topical research problem. While technology scaling and
architectural innovations such as 3D integration allows us to integrate more and more cores
in a system, extracting reliable performance from increasingly unreliable semiconductor
heightens the need for resource management in multi-/many-core systems. To this end,
this article presents our perspective on the related research. To begin, we have provided a
detailed overview of the various phenomena that have contributed to the growing need
for reliability in modern electronic systems. Then, we provided a taxonomy along with a
detailed background of the various aspects of reliability improvements that are explored in
related research works. Specifically we looked at the different types of reliability—lifetime,
timing and functional (the different fault models and the system model) application and
architecture. We formulated a generic problem statement for reliability-aware resource
management that lets us determine the scope and classify the methods adopted in each of
the related works. A survey of the related works is then presented, categorized under the
type of DSE approach—design/compile-time, run-time and hybrid–adopted for each type
of reliability. We have also presented a brief survey related research works targeted for
FPGA-based systems. The presented survey focuses on the application-specific reliability,
mixed-criticality awareness and hardware resource heterogeneity. In the end, we have pro-
vided a brief discussion on the upcoming trends in reliability-aware resource management
and the challenges therein, to encourage further research in this topic.

Author Contributions: Conceptualization, A.K.; writing—original draft preparation, S.S.S. and
B.R.; writing—review and editing, S.S.S., B.R. and A.K.; supervision, A.K.; project administration,
A.K.; funding acquisition, A.K. All authors have read and agreed to the published version of
the manuscript.

J. Low Power Electron. Appl. 2021, 11, 7 31 of 37

Funding: This work is supported in part by the German Research Foundation (DFG) within the
Cluster of Excellence Center for Advancing Electronics Dresden (CFAED) at the Technische Univer-
sität Dresden.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACO Ant Colony Optimization
AVF Architectural Vulnerability Factor
AxC Approximate Computing
BTI Bias Temperature Instability
DAG Directed Acyclic Graph
DEC Double-bit-Error-Correcting
DED Double-bit-Error-Detecting
DMR Dual Modular Redundancy
DPR Dynamic Partial Reconfiguration
DRAM Dynamic Random Access Memory
DSE Design Space Exploration
DVFS Dynamic Voltage and Frequncy Scaling
ECC Error Checking and Correcting
EM Electromigration
FPGA Field Programmable Gate Array
FVI Function Vulnerability Index
HCI Hot Carrier Injection
ICs integrated circuits
ILP Instruction Level Parallelism
IoT Internet of Thing
IPF Information Processing Factory
IVI Instruction Vulnerability Index
MAB Multi-Armed Bandit
MCS Monte-Carlo Simulations
MILP Mixed Integer Linear Programming
MOEA Multi-Objective Evolutionary Algorithms
MPSoC Multi-Processor System-on-Chip
MTBF Mean Time between Failures
MTTC Mean Time To Crash
MTTF Mean Time To Failure
NBTI Negative Bias Temperature Instability
NoC Network-on-Chip
PE Processing Element
PFH Probability-of-Failure-per-Hour
PRR Partially Reconfigurable Region
QoS Quality of Service
RL Reinforcement Learning
RMT Redundant Multi-Threading
SA Simulated Annealing
SDFG Synchronous Data Flow Graph
SEC Single-bit-Error-Correcting
SER Soft Error Rate
SEU Single Event Upset
SRAM Static Random Access Memory
TDDB Time Dependent Dielectric Breakdown
TED Triple-bit-Error-Detecting
TMR Triple Modular Redundancy
WCET Worst-case Execution Time

J. Low Power Electron. Appl. 2021, 11, 7 32 of 37

References
1. Coombs, A.W.M. The Making of Colossus. Ann. Hist. Comput. 1983, 5, 253–259. [CrossRef]
2. Dennard, R.H.; Gaensslen, F.H.; Rideout, V.L.; Bassous, E.; LeBlanc, A.R. Design of ion-implanted MOSFET’s with very small

physical dimensions. IEEE J. Solid State Circuits 1974, 9, 256–268. [CrossRef]
3. Patterson, D.A.; Hennessy, J.L. Computer Organization and Design ARM Edition: The Hardware Software Interface; Morgan Kaufmann:

Burlington, MA, USA, 2016.
4. Rupp, K. 42 Years of Microprocessor Trend Data. Available online: https://www.karlrupp.net/2018/02/42-years-of-

microprocessor-trend-data/ (accessed on 12 December 2020).
5. ARM. big. LITTLE Technology: The Future of Mobile. Available online: https://img.hexus.net/v2/press_releases/arm/big.

LITTLE.Whitepaper.pdf (accessed on 12 December 2020).
6. Chen, T.; Raghavan, R.; Dale, J.N.; Iwata, E. Cell Broadband Engine Architecture and its first implementation–A performance

view. IBM J. Res. Dev. 2007, 51, 559–572. [CrossRef]
7. Borkar, S. Designing reliable systems from unreliable components: The challenges of transistor variability and degradation. IEEE

Micro 2005, 25, 10–16. [CrossRef]
8. Shivakumar, P.; Kistler, M.; Keckler, S.W.; Burger, D.; Alvisi, L. Modeling the effect of technology trends on the soft error rate of

combinational logic. In Proceedings of the International Conference on Dependable Systems and Networks, Washington, DC,
USA, 23–26 June 2002; pp. 389–398. [CrossRef]

9. Nightingale, E.B.; Douceur, J.R.; Orgovan, V. Cycles, Cells and Platters: An Empirical Analysisof Hardware Failures on a Million
Consumer PCs. In Proceedings of the Sixth Conference on Computer Systems, Salzburg, Austria, 10–13 April 2011; ACM:
New York, NY, USA, 2011; pp. 343–356. [CrossRef]

10. Liu, J.W.S. Real-Time Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2000.
11. Halang, W.A.; Gumzej, R.; Colnaric, M.; Druzovec, M. Measuring the performance of real-time systems. Real Time Syst. 2000,

18, 59–68. [CrossRef]
12. Das, A.K.; Kumar, A.; Veeravalli, B.; Catthoor, F. Reliable and Energy Efficient Streaming Multiprocessor Systems; Springer:

Berlin/Heidelberg, Germany, 2018.
13. Avizienis, A.; Laprie, J.; Randell, B.; Landwehr, C. Basic concepts and taxonomy of dependable and secure computing. IEEE

Trans. Dependable Secur. Comput. 2004, 1, 11–33. [CrossRef]
14. May, T.C.; Woods, M.H. Alpha-particle-induced soft errors in dynamic memories. IEEE Trans. Electron Devices 1979, 26, 2–9.

[CrossRef]
15. Ziegler, J.F.; Lanford, W.A. Effect of Cosmic Rays on Computer Memories. Science 1979, 206, 776–788. [CrossRef]
16. Keane, J.; Kim, C.H. An odomoeter for CPUs. IEEE Spectr. 2011, 48, 28–33. [CrossRef]
17. Zhang, J.F.; Eccleston, W. Positive bias temperature instability in MOSFETs. IEEE Trans. Electron Devices 1998, 45, 116–124.

[CrossRef]
18. Takeda, E.; Suzuki, N.; Hagiwara, T. Device performance degradation to hot-carrier injection at energies below the Si-SiO2energy

barrier. In Proceedings of the 1983 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 1983; pp. 396–399.
[CrossRef]

19. Black, J.R. Electromigration: A brief survey and some recent results. IEEE Trans. Electron Devices 1969, 16, 338–347. [CrossRef]
20. Benini, L.; De Micheli, G. Networks on chips: A new SoC paradigm. Computer 2002, 35, 70–78. [CrossRef]
21. Radetzki, M.; Feng, C.; Zhao, X.; Jantsch, A. Methods for Fault Tolerance in Networks-on-chip. ACM Comput. Surv. 2013,

46, 8:1–8:38. [CrossRef]
22. Postman, J.; Chiang, P. A Survey Addressing On-Chip Interconnect: Energy and Reliability Considerations. Availabe online:

https://www.hindawi.com/journals/isrn/2012/916259/ (accessed on 12 December 2020).
23. Hamming, R.W. Error detecting and error correcting codes. Bell Syst. Tech. J. 1950, 29, 147–160. [CrossRef]
24. Hsiao, M.Y. A Class of Optimal Minimum Odd-weight-column SEC-DED Codes. IBM J. Res. Dev. 1970, 14, 395–401. [CrossRef]
25. Das, A.; Kumar, A. Fault-aware task re-mapping for throughput constrained multimedia applications on NoC-based MPSoCs.

In Proceedings of the IEEE International Symposium on Rapid System Prototyping (RSP), Tampere, Finland, 11–12 October 2012.
26. Das, A.; Kumar, A.; Veeravalli, B. Aging-aware hardware-software task partitioning for reliable reconfigurable multiprocessor

systems. In Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems
(CASES), Montreal, QC, Canada, 29 September–4 October 2013; pp. 1–10. [CrossRef]

27. Medina, R.; Borde, E.; Pautet, L. Availability enhancement and analysis for mixed-criticality systems on multi-core. In Proceedings
of the Design, Automation Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018.

28. Ranjbar, B.; Safaei, B.; Ejlali, A.; Kumar, A. FANTOM: Fault Tolerant Task-Drop Aware Scheduling for Mixed-Criticality Systems.
IEEE Access 2020, 8, 187232–187248. [CrossRef]

29. Johnson, L.A. DO-178B, Software considerations in airborne systems and equipment certification. Crosstalk Oct. 1998, 199, 11–20.

http://doi.org/10.1109/MAHC.1983.10085
http://dx.doi.org/10.1109/JSSC.1974.1050511
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://img.hexus.net/v2/press_releases/arm/big.LITTLE.Whitepaper.pdf
https://img.hexus.net/v2/press_releases/arm/big.LITTLE.Whitepaper.pdf
http://dx.doi.org/10.1147/rd.515.0559
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/DSN.2002.1028924
http://dx.doi.org/10.1145/1966445.1966477
http://dx.doi.org/10.1023/A:1008102611034
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/T-ED.1979.19370
http://dx.doi.org/10.1126/science.206.4420.776
http://dx.doi.org/10.1109/MSPEC.2011.5753241
http://dx.doi.org/10.1109/16.658821
http://dx.doi.org/10.1109/IEDM.1983.190525
http://dx.doi.org/10.1109/T-ED.1969.16754
http://dx.doi.org/10.1109/2.976921
http://dx.doi.org/10.1145/2522968.2522976
https://www.hindawi.com/journals/isrn/2012/916259/
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1147/rd.144.0395
http://dx.doi.org/10.1109/CASES.2013.6662505
http://dx.doi.org/10.1109/ACCESS.2020.3031039

J. Low Power Electron. Appl. 2021, 11, 7 33 of 37

30. Hartman, A.S.; Thomas, D.E.; Meyer, B.H. A Case for Lifetime-Aware Task Mapping in Embedded Chip Multiprocessors. In
Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES),
CODES/ISSS ’10, Scottsdale, AZ, USA, 24–29 October 2010; Association for Computing Machinery: New York, NY, USA, 2010;
pp. 145–154. [CrossRef]

31. Meyer, B.H.; Hartman, A.S.; Thomas, D.E. Cost-effective slack allocation for lifetime improvement in NoC-based MPSoCs. In
Proceedings of the Design, Automation Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 8–12 March 2010;
pp. 1596–1601. [CrossRef]

32. Meyer, B.H.; Hartman, A.S.; Thomas, D.E. Cost-Effective Lifetime and Yield Optimization for NoC-Based MPSoCs. ACM Trans.
Des. Autom. Electron. Syst. 2014, 19. [CrossRef]

33. Ma, C.; Mahajan, A.; Meyer, B.H. Multi-armed bandits for efficient lifetime estimation in MPSoC design. In Proceedings of the
Design, Automation Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 1540–1545.
[CrossRef]

34. Xiang, Y.; Chantem, T.; Dick, R.P.; Hu, X.S.; Shang, L. System-level reliability modeling for MPSoCs. In Proceedings of the
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES), Scottsdale, AZ,
USA, 24–29 October 2010; pp. 297–306.

35. Das, A.; Kumar, A.; Veeravalli, B.; Bolchini, C.; Miele, A. Combined DVFS and Mapping Exploration for Lifetime and Soft-Error
Susceptibility Improvement in MPSoCs. In Proceedings of the Design, Automation Test in Europe Conference & Exhibition
(DATE), Dresden, Germany, 24–28 March 2014; European Design and Automation Association: Leuven, Belgium, 2014.

36. Das, A.; Kumar, A.; Veeravalli, B. Temperature aware energy-reliability trade-offs for mapping of throughput-constrained
applications on multimedia MPSoCs. In Proceedings of the Design, Automation Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, 24–28 March 2014; pp. 1–6. [CrossRef]

37. Sahoo, S.S.; Veeravalli, B.; Kumar, A. CL(R)Early: An Early-stage DSE Methodology for Cross-Layer Reliability-aware Heteroge-
neous Embedded Systems. In Proceedings of the Design Automation Conference (DAC), San Francisco, CA, USA, 19–22 July
2020; pp. 1–6. [CrossRef]

38. Kakoee, M.R.; Bertacco, V.; Benini, L. ReliNoC: A reliable network for priority-based on-chip communication. In Proceedings of
the Design, Automation Test in Europe Conference & Exhibition (DATE), Grenoble, France, 14–18 March 2011; pp. 1–6. [CrossRef]

39. Sahoo, S.S.; Kumar, A.; Veeravalli, B. Design and evaluation of reliability-oriented task re-mapping in MPSoCs using time-series
analysis of intermittent faults. In Proceedings of the Design, Automation Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, 14–18 March 2016; pp. 798–803.

40. Sahoo, S.S.; Veeravalli, B.; Kumar, A. A Hybrid Agent-Based Design Methodology for Dynamic Cross-Layer Reliability in
Heterogeneous Embedded Systems. In Proceedings of the Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June
2019; Association for Computing Machinery: New York, NY, USA, 2019. [CrossRef]

41. Hartman, A.S.; Thomas, D.E. Lifetime Improvement through Runtime Wear-Based Task Mapping. In Proceedings of the
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES), CODES + ISSS ’12,
Tampere, Finland, 7–12 October 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 13–22. [CrossRef]

42. Duque, L.A.R.; Diaz, J.M.M.; Yang, C. Improving MPSoC reliability through adapting runtime task schedule based on time-
correlated fault behavior. In Proceedings of the Design, Automation Test in Europe Conference & Exhibition (DATE), Grenoble,
France, 9–13 March 2015; pp. 818–823.

43. Rathore, V.; Chaturvedi, V.; Singh, A.K.; Srikanthan, T.; Shafique, M. Life Guard: A Reinforcement Learning-Based Task Mapping
Strategy for Performance-Centric Aging Management. In Proceedings of the Design Automation Conference (DAC), Las Vegas,
NA, USA, 2–6 June 2019; pp. 1–6.

44. Venkataraman, S.; Santos, R.; Kumar, A.; Kuijsten, J. Hardware task migration module for improved fault tolerance and
predictability. In Proceedings of the International Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), Samos, Greece, 19–23 July 2015; pp. 197–202. [CrossRef]

45. Wang, L.; Lv, P.; Liu, L.; Han, J.; Leung, H.; Wang, X.; Yin, S.; Wei, S.; Mak, T. A Lifetime Reliability-Constrained Runtime
Mapping for Throughput Optimization in Many-Core Systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2019,
38, 1771–1784. [CrossRef]

46. Haghbayan, M.; Miele, A.; Rahmani, A.M.; Liljeberg, P.; Tenhunen, H. A lifetime-aware runtime mapping approach for many-core
systems in the dark silicon era. In Proceedings of the Design, Automation Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, 14–18 March 2016; pp. 854–857.

47. Haghbayan, M.; Miele, A.; Rahmani, A.M.; Liljeberg, P.; Tenhunen, H. Performance/Reliability-Aware Resource Management for
Many-Cores in Dark Silicon Era. IEEE Trans. Comput. 2017, 66, 1599–1612. [CrossRef]

48. Rathore, V.; Chaturvedi, V.; Singh, A.K.; Srikanthan, T.; Rohith, R.; Lam, S.; Shafique, M. HiMap: A hierarchical mapping
approach for enhancing lifetime reliability of dark silicon manycore systems. In Proceedings of the Design, Automation Test in
Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 991–996. [CrossRef]

49. Raparti, V.Y.; Kapadia, N.; Pasricha, S. ARTEMIS: An Aging-Aware Runtime Application Mapping Framework for 3D NoC-Based
Chip Multiprocessors. IEEE Trans. Multi-Scale Comput. Syst. 2017, 3, 72–85. [CrossRef]

50. Bauer, L.; Henkel, J.; Herkersdorf, A.; Kochte, M.A.; Kühn, J.M.; Rosenstiel, W.; Schweizer, T.; Wallentowitz, S.; Wenzel, V.; Wild,
T.; et al. Adaptive multi-layer techniques for increased system dependability. It-Inf. Technol. 2015, 57, 149–158. [CrossRef]

http://dx.doi.org/10.1145/1878961.1878987
http://dx.doi.org/10.1109/DATE.2010.5457065
http://dx.doi.org/10.1145/2535575
http://dx.doi.org/10.23919/DATE.2017.7927235
http://dx.doi.org/10.7873/DATE.2014.115
http://dx.doi.org/10.1109/DAC18072.2020.9218747
http://dx.doi.org/10.1109/DATE.2011.5763112
http://dx.doi.org/10.1145/3316781.3317746
http://dx.doi.org/10.1145/2380445.2380455
http://dx.doi.org/10.1109/SAMOS.2015.7363676
http://dx.doi.org/10.1109/TCAD.2018.2855168
http://dx.doi.org/10.1109/TC.2017.2691009
http://dx.doi.org/10.23919/DATE.2018.8342153
http://dx.doi.org/10.1109/TMSCS.2017.2686856
http://dx.doi.org/10.1515/itit-2014-1082

J. Low Power Electron. Appl. 2021, 11, 7 34 of 37

51. Das, A.; Kumar, A.; Veeravalli, B. Reliability-driven task mapping for lifetime extension of networks-on-chip based multiprocessor
systems. In Proceedings of the Design, Automation Test in Europe Conference & Exhibition (DATE), Grenoble, France, 18–22
March 2013; pp. 689–694. [CrossRef]

52. Das, A.; Kumar, A.; Veeravalli, B. Reliability and Energy-Aware Mapping and Scheduling of Multimedia Applications on
Multiprocessor Systems. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 869–884. [CrossRef]

53. Das, A.; Kumar, A.; Veeravalli, B. Communication and migration energy aware design space exploration for multicore systems
with intermittent faults. In Proceedings of the Design, Automation Test in Europe Conference & Exhibition (DATE), Grenoble,
France, 18–22 March 2013; pp. 1631–1636. [CrossRef]

54. Bolchini, C.; Carminati, M.; Miele, A.; Das, A.; Kumar, A.; Veeravalli, B. Run-time mapping for reliable many-cores based on
energy/performance trade-offs. In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFTS), New York, NY, USA, 2–4 October 2013; pp. 58–64. [CrossRef]

55. Namazi, A.; Safari, S.; Mohammadi, S.; Abdollahi, M. SORT: Semi Online Reliable Task Mapping for Embedded Multi-Core
Systems. ACM Trans. Model. Perform. Eval. Comput. Syst. 2019, 4. [CrossRef]

56. Kriebel, F.; Rehman, S.; Shafique, M.; Henkel, J. AgeOpt-RMT: Compiler-Driven Variation-Aware Aging Optimization for
Redundant Multithreading. In Proceedings of the Design Automation Conference (DAC), DAC ’16, Austin, TX, USA, 5–9 June
2016; Association for Computing Machinery: New York, NY, USA, 2016. [CrossRef]

57. Nahar, B.; Meyer, B.H. RotR: Rotational redundant task mapping for fail-operational MPSoCs. In Proceedings of the IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS), Amherst, MA, USA,
12–14 October 2015; pp. 21–28. [CrossRef]

58. Axer, P.; Sebastian, M.; Ernst, R. Reliability Analysis for MPSoCs with Mixed-Critical, Hard Real-Time Constraints. In Proceedings
of the IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES), Taipei
Taiwan, 9–14 October 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 149–158. [CrossRef]

59. Pathan, R.M. Real-time scheduling algorithm for safety-critical systems on faulty multicore environments. Real Time Syst. 2017,
53, 45–81. [CrossRef]

60. Safari, S.; Hessabi, S.; Ershadi, G. LESS-MICS: A Low Energy Standby-Sparing Scheme for Mixed-Criticality Systems. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2020, 39, 4601–4610. [CrossRef]

61. Saraswat, P.K.; Pop, P.; Madsen, J. Task Migration for Fault-Tolerance in Mixed-Criticality Embedded Systems. SIGBED Rev.
2009, 6. [CrossRef]

62. Liu, G.; Lu, Y.; Wang, S. An Efficient Fault Recovery Algorithm in Multiprocessor Mixed-Criticality Systems. In Proceedings of the
IEEE International Conference on High Performance Computing and Communications (HPCC)/ IEEE International Conference
on Embedded and Ubiquitous Computing (EUC), Zhangjiajie, China, 13–15 November 2013; pp. 2006–2013.

63. Ranjbar, B.; Nguyen, T.D.A.; Ejlali, A.; Kumar, A. Online Peak Power and Maximum Temperature Management in Multi-core
Mixed-Criticality Embedded Systems. In Proceedings of the Euromicro Conference on Digital System Design (DSD), Chalkidiki,
Greece, 28–30 August 2019; pp. 546–553.

64. Iacovelli, S.; Kirner, R.; Menon, C. ATMP: An Adaptive Tolerance-based Mixed-criticality Protocol for Multi-core Systems. In
Proceedings of the International Symposium on Industrial Embedded Systems (SIES), Graz, Austria, 6–8 June 2018; pp. 1–9.

65. Al-bayati, Z.; Meyer, B.H.; Zeng, H. Fault-tolerant scheduling of multicore mixed-criticality systems under permanent failures.
In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
Storrs, CT, USA, 19–20 September 2016; pp. 57–62.

66. O’Connor, P.P.; Kleyner, A. Practical Reliability Engineering, 5th ed.; Wiley Publishing: Hoboken, NJ, USA, 2012.
67. Esmaeilzadeh, H.; Blem, E.; Amant, R.S.; Sankaralingam, K.; Burger, D. Dark silicon and the end of multicore scaling. In

Proceedings of the 2011 38th Annual International Symposium on Computer Architecture (ISCA), San Jose, CA, USA, 4–8 June
2011; Association for Computing Machinery: New York, NY, USA, 2011.

68. Buttazzo, G.C. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2011; Volume 24.

69. Ranjbar, B.; Nguyen, T.D.A.; Ejlali, A.; Kumar, A. Power-Aware Run-Time Scheduler for Mixed-Criticality Systems on Multi-Core
Platform. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2020. [CrossRef]

70. Sahoo, S.S.; Veeravalli, B.; Kumar, A. Markov Chain-based Modeling and Analysis of Checkpointing with Rollback Recovery for
Efficient DSE in Soft Real-time Systems. In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), Frascati, Italy, 19–21 October 2020; pp. 1–6. [CrossRef]

71. Manolache, S.; Eles, P.; Peng, Z. Task Mapping and Priority Assignment for Soft Real-Time Applications under Deadline Miss
Ratio Constraints. ACM Trans. Embed. Comput. Syst. 2008, 7. [CrossRef]

72. Cheng, E.; Mirkhani, S.; Szafaryn, L.G.; Cher, C.Y.; Cho, H.; Skadron, K.; Stan, M.R.; Lilja, K.; Abraham, J.A.; Bose, P.; et al. CLEAR:
Cross-Layer Exploration for Architecting Resilience - Combining Hardware and Software Techniques to Tolerate Soft Errors in
Processor Cores. In Proceedings of the Design Automation Conference (DAC), Austin, TX, USA, 5–9 June 2016; Association for
Computing Machinery: New York, NY, USA, 2016. [CrossRef]

73. Henkel, J.; Bauer, L.; Zhang, H.; Rehman, S.; Shafique, M. Multi-Layer Dependability: From Microarchitecture to Application
Level. In Proceedings of the Design Automation Conference (DAC), San Francisco, CA, USA, 1–5 June 2014; Association for
Computing Machinery: New York, NY, USA, 2014; pp. 1–6. [CrossRef]

http://dx.doi.org/10.7873/DATE.2013.149
http://dx.doi.org/10.1109/TPDS.2015.2412137
http://dx.doi.org/10.7873/DATE.2013.331
http://dx.doi.org/10.1109/DFT.2013.6653583
http://dx.doi.org/10.1145/3322899
http://dx.doi.org/10.1145/2897937.2897980
http://dx.doi.org/10.1109/DFT.2015.7315130
http://dx.doi.org/10.1145/2039370.2039396
http://dx.doi.org/10.1007/s11241-016-9258-z
http://dx.doi.org/10.1109/TCAD.2020.2977063
http://dx.doi.org/10.1145/1851340.1851348
http://dx.doi.org/10.1109/TCAD.2020.3033374
http://dx.doi.org/10.1109/DFT50435.2020.9250892
http://dx.doi.org/10.1145/1331331.1331343
http://dx.doi.org/10.1145/2897937.2897996
http://dx.doi.org/10.1145/2593069.2596683

J. Low Power Electron. Appl. 2021, 11, 7 35 of 37

74. Frantz, A.P.; Cassel, M.; Kastensmidt, F.L.; Cota, E.; Carro, L. Crosstalk- and SEU-Aware Networks on Chips. IEEE Des. Test 2007,
24, 340–350. [CrossRef]

75. Lehtonen, T.; Liljeberg, P.; Plosila, J. Online Reconfigurable Self-Timed Links for Fault Tolerant NoC. Available online: https:
//www.hindawi.com/journals/vlsi/2007/094676/ (accessed on 12 December 2020).

76. Vitkovskiy, A.; Soteriou, V.; Nicopoulos, C. A fine-grained link-level fault-tolerant mechanism for networks-on-chip. In
Proceedings of the IEEE International Conference on Computer Design, Amsterdam, The Netherlands, 3–6 October 2010;
pp. 447–454. [CrossRef]

77. Wells, P.M.; Chakraborty, K.; Sohi, G.S. Adapting to Intermittent Faults in Multicore Systems. SIGOPS Oper. Syst. Rev. 2008,
42, 255–264. [CrossRef]

78. Lehtonen, T.; Wolpert, D.; Liljeberg, P.; Plosila, J.; Ampadu, P. Self-Adaptive System for Addressing Permanent Errors in On-Chip
Interconnects. IEEE Trans. Very Large Scale Integr. Syst. 2010, 18, 527–540. [CrossRef]

79. Yu, Q.; Ampadu, P. Transient and Permanent Error Co-management Method for Reliable Networks-on-Chip. In Proceedings of
the ACM/IEEE International Symposium on Networks-on-Chip, Grenoble, France, 3–6 May 2010; pp. 145–154. [CrossRef]

80. Rehman, S.; Chen, K.; Kriebel, F.; Toma, A.; Shafique, M.; Chen, J.; Henkel, J. Cross-Layer Software Dependability on Unreliable
Hardware. IEEE Trans. Comput. 2016, 65, 80–94. [CrossRef]

81. Weichslgartner, A.; Wildermann, S.; Gangadharan, D.; Glaß, M.; Teich, J. A Design-Time/Run-Time Application Mapping
Methodology for Predictable Execution Time in MPSoCs. ACM Trans. Embed. Comput. Syst. 2018, 17. [CrossRef]

82. Pourmohseni, B.; Wildermann, S.; Glaß, M.; Teich, J. Hard Real-Time Application Mapping Reconfiguration for NoC-Based
Many-Core Systems. Real Time Syst. 2019, 55, 433–469. [CrossRef]

83. Safari, S.; Ansari, M.; Ershadi, G.; Hessabi, S. On the Scheduling of Energy-Aware Fault-Tolerant Mixed-Criticality Multicore
Systems with Service Guarantee Exploration. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 2338–2354. [CrossRef]

84. Rambo, E.A.; Ernst, R. Replica-Aware Co-Scheduling for Mixed-Criticality. In Proceedings of the Euromicro Conference on Real-Time
Systems (ECRTS); Leibniz International Proceedings in Informatics (LIPIcs); Bertogna, M., Ed.; Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik: Dagstuhl, Germany, 2017; Volume 76, pp. 20:1–20:20. [CrossRef]

85. Bolchini, C.; Miele, A. Reliability-Driven System-Level Synthesis for Mixed-Critical Embedded Systems. IEEE Trans. Comput.
2013, 62, 2489–2502. [CrossRef]

86. Kang, S.; Yang, H.; Kim, S.; Bacivarov, I.; Ha, S.; Thiele, L. Reliability-aware mapping optimization of multi-core systems with
mixed-criticality. In Proceedings of the Design, Automation Test in Europe Conference & Exhibition (DATE), Dresden, Germany,
24–28 March 2014; pp. 1–4.

87. Kang, S.h.; Yang, H.; Kim, S.; Bacivarov, I.; Ha, S.; Thiele, L. Static Mapping of Mixed-Critical Applications for Fault-Tolerant
MPSoCs. In Proceedings of the Design Automation Conference (DAC), San Francisco, CA, USA, 1–5 June 2014; Association for
Computing Machinery: New York, NY, USA, 2014; pp. 1–6. [CrossRef]

88. Choi, J.; Yang, H.; Ha, S. Optimization of Fault-Tolerant Mixed-Criticality Multi-Core Systems with Enhanced WCRT Analysis.
ACM Trans. Des. Autom. Electron. Syst. 2018, 24. [CrossRef]

89. Jiang, W.; Hu, H.; Zhan, J.; Jiang, K. Work-in-Progress: Design of Security-Critical Distributed Real-Time Applications with
Fault-Tolerant Constraint. In Proceedings of the International Conference on Embedded Software (EMSOFT), Torino, Italy, 30
September–5 October 2018; pp. 1–2.

90. Zeng, L.; Huang, P.; Thiele, L. Towards the Design of Fault-Tolerant Mixed-Criticality Systems on Multicores. In Proceedings of
the International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES), Pittsburgh, PA, USA,
2–7 October 2016; Association for Computing Machinery: New York, NY, USA, 2016. [CrossRef]

91. Caplan, J.; Al-bayati, Z.; Zeng, H.; Meyer, B.H. Mapping and Scheduling Mixed-Criticality Systems with On-Demand Redundancy.
IEEE Trans. Comput. 2018, 67, 582–588. [CrossRef]

92. Saraswat, P.K.; Pop, P.; Madsen, J. Task Mapping and Bandwidth Reservation for Mixed Hard/Soft Fault-Tolerant Embedded
Systems. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Stockholm,
Sweden, 12–15 April 2010; pp. 89–98.

93. Bagheri, M.; Jervan, G. Fault-Tolerant Scheduling of Mixed-Critical Applications on Multi-processor Platforms. In Proceedings of
the IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Milano, Italy, 25–29 August 2014; pp. 25–32.

94. Kajmakovic, A.; Diwold, K.; Kajtazovic, N.; Zupanc, R.; Macher, G. Flexible Soft Error Mitigation Strategy for Memories in
Mixed-Critical Systems. In Proceedings of the IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), Berlin, Germany, 28–31 October 2019; pp. 440–445.

95. Liu, Y.; Xie, G.; Tang, Y.; Li, R. Improving Real-Time Performance Under Reliability Requirement Assurance in Automotive
Electronic Systems. IEEE Access 2019, 7, 140875–140888. [CrossRef]

96. Thekkilakattil, A.; Dobrin, R.; Punnekkat, S. Mixed criticality scheduling in fault-tolerant distributed real-time systems. In
Proceedings of the International Conference on Embedded Systems (ICES), Coimbatore, India, 3–5 July 2014; pp. 92–97.

97. Koc, H.; Karanam, V.K.; Sonnier, M. Latency Constrained Task Mapping to Improve Reliability of High Critical Tasks in
Mixed Criticality Systems. In Proceedings of the IEEE Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), British Columbia, VA, Canada, 17–19 October 2019; pp. 0320–0324.

http://dx.doi.org/10.1109/MDT.2007.128
https://www.hindawi.com/journals/vlsi/2007/094676/
https://www.hindawi.com/journals/vlsi/2007/094676/
http://dx.doi.org/10.1109/ICCD.2010.5647663
http://dx.doi.org/10.1145/1353535.1346314
http://dx.doi.org/10.1109/TVLSI.2009.2013711
http://dx.doi.org/10.1109/NOCS.2010.24
http://dx.doi.org/10.1109/TC.2015.2417554
http://dx.doi.org/10.1145/3274665
http://dx.doi.org/10.1007/s11241-019-09326-y
http://dx.doi.org/10.1109/TPDS.2019.2907846
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.20
http://dx.doi.org/10.1109/TC.2012.226
http://dx.doi.org/10.1145/2593069.2593221
http://dx.doi.org/10.1145/3275154
http://dx.doi.org/10.1145/2968455.2968515
http://dx.doi.org/10.1109/TC.2017.2762293
http://dx.doi.org/10.1109/ACCESS.2019.2944204

J. Low Power Electron. Appl. 2021, 11, 7 36 of 37

98. Rambo, E.A.; Donyanavard, B.; Seo, M.; Maurer, F.; Kadeed, T.M.; De Melo, C.B.; Maity, B.; Surhonne, A.; Herkersdorf, A.;
Kurdahi, F.; et al. The Self-Aware Information Processing Factory Paradigm for Mixed-Critical Multiprocessing. IEEE Trans.
Emerg. Top. Comput. 2020. [CrossRef]

99. LogiCORE IP. Soft Error Mitigation Controller v3. 4. Available online: https://www.xilinx.com/support/answers/54733.html
(accessed on 12 December 2020).

100. Santos, R.; Venkataraman, S.; Kumar, A. Scrubbing Mechanism for Heterogeneous Applications in Reconfigurable Devices. ACM
Trans. Des. Autom. Electron. Syst. 2017, 22. [CrossRef]

101. Koch, D.; Haubelt, C.; Teich, J. Efficient Hardware Checkpointing: Concepts, Overhead Analysis, and Implementation. In
Proceedings of the International Symposium on Field Programmable Gate Arrays (FPGA), Monterey, CA, USA, 18–20 February
2007.

102. Lee, G.; Agiakatsikas, D.; Wu, T.; Cetin, E.; Diessel, O. TLegUp: A TMR code generation tool for SRAM-based FPGA applications
using HLS. In Proceedings of the International Symposium on Field-Programmable Custom Computing Machines (FCCM),
Napa, CA, USA, 30 April–2 May 2017; pp. 129–132.

103. Srinivasan, S.; Krishnan, R.; Mangalagiri, P.; Xie, Y.; Narayanan, V.; Irwin, M.J.; Sarpatwari, K. Toward Increasing FPGA Lifetime.
IEEE Trans. Dependable Secur. Comput. 2008, 5, 115–127. [CrossRef]

104. Stott, E.; Cheung, P.Y.K. Improving FPGA Reliability with Wear-Levelling. In Proceedings of the International Conference on
Field Programmable Logic and Applications (FPL), Chania, Crete, Greece, 5–7 September 2011; pp. 323–328. [CrossRef]

105. Angermeier, J.; Ziener, D.; Glaß, M.; Teich, J. Stress-Aware Module Placement on Reconfigurable Devices. In Proceedings of
the International Conference on Field Programmable Logic and Applications (FPL), Chania, Crete, Greece, 5–7 September 2011;
pp. 277–281. [CrossRef]

106. Zhang, H.; Bauer, L.; Kochte, M.A.; Schneider, E.; Braun, C.; Imhof, M.E.; Wunderlich, H.; Henkel, J. Module diversification: Fault
tolerance and aging mitigation for runtime reconfigurable architectures. In Proceedings of the IEEE International Test Conference
(ITC), Anaheim, CA, USA, 6–13 September 2013; pp. 1–10. [CrossRef]

107. Zhang, H.; Kochte, M.A.; Schneider, E.; Bauer, L.; Wunderlich, H.; Henkel, J. STRAP: Stress-aware placement for aging mitigation
in runtime reconfigurable architectures. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Austin, TX, USA, 2–6 November 2015; pp. 38–45. [CrossRef]

108. Ghaderi, Z.; Bozorgzadeh, E. Aging-aware high-level physical planning for reconfigurable systems. In Proceedings of the Asia
and South Pacific Design Automation Conference (ASP-DAC), Macao, China, 25–28 January 2016; pp. 631–636. [CrossRef]

109. Dumitriu, V.; Kirischian, L.; Kirischian, V. Run-Time Recovery Mechanism for Transient and Permanent Hardware Faults Based
on Distributed, Self-Organized Dynamic Partially Reconfigurable Systems. IEEE Trans. Comput. 2016, 65, 2835–2847. [CrossRef]

110. Sahoo, S.S.; Nguyen, T.D.A.; Veeravalli, B.; Kumar, A. Lifetime-aware design methodology for dynamic partially reconfigurable
systems. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju Island , Korea, 22–25
January 2018; pp. 393–398.

111. Sahoo, S.; Nguyen, T.; Veeravalli, B.; Kumar, A. Multi-objective design space exploration for system partitioning of FPGA-based
Dynamic Partially Reconfigurable Systems. Integration 2019, 67, 95–107. [CrossRef]

112. Santos, R.; Venkataraman, S.; Das, A.; Kumar, A. Criticality-aware scrubbing mechanism for SRAM-based FPGAs. In Proceedings
of the International Conference on Field Programmable Logic and Applications (FPL), Munich, Germany, 2–4 September 2014;
pp. 1–8.

113. Santos, R.; Venkataraman, S.; Kumar, A. Dynamically adaptive scrubbing mechanism for improved reliability in reconfigurable
embedded systems. In Proceedings of the Design Automation Conference (DAC), San Francisco, CA, USA, 7–11 June 2015;
pp. 1–6.

114. Ahmadian, H.; Nekouei, F.; Obermaisser, R. Fault recovery and adaptation in time-triggered Networks-on-Chips for mixed-
criticality systems. In Proceedings of the International Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), Madrid, Spain, 12–17 July 2017; pp. 1–8.

115. Guha, K.; Majumder, A.; Saha, D.; Chakrabarti, A. Reliability Driven Mixed Critical Tasks Processing on FPGAs Against
Hardware Trojan Attacks. In Proceedings of the Euromicro Conference on Digital System Design (DSD), Prague, Czech Republic,
29–31 August 2018; pp. 537–544.

116. Mandal, S.; Sarkar, S.; Ming, W.M.; Chattopadhyay, A.; Chakrabarti, A. Criticality Aware Soft Error Mitigation in the Configuration
Memory of SRAM Based FPGA. In Proceedings of the International Conference on VLSI Design and International Conference on
Embedded Systems (VLSID), Delhi, India, 5–9 January 2019; pp. 257–262.

117. Heiner, J.; Sellers, B.; Wirthlin, M.; Kalb, J. FPGA partial reconfiguration via configuration scrubbing. In Proceedings of the
International Conference on Field Programmable Logic and Applications (FPL), Prague, Czech Republic, 31 August–2 September
2009; pp. 99–104. [CrossRef]

118. Sahoo, S.S.; Veeravalli, B.; Kumar, A. Cross-layer fault-tolerant design of real-time systems. In Proceedings of the IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Storrs, CT, USA, 19–20
September 2016; pp. 63–68. [CrossRef]

119. Carter, N.P.; Naeimi, H.; Gardner, D.S. Design techniques for cross-layer resilience. In Proceedings of the Design, Automation
Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 8–12 March 2010; pp. 1023–1028. [CrossRef]

http://dx.doi.org/10.1109/TETC.2020.3011663
https://www.xilinx.com/support/answers/54733.html
http://dx.doi.org/10.1145/2997646
http://dx.doi.org/10.1109/TDSC.2007.70235
http://dx.doi.org/10.1109/FPL.2011.65
http://dx.doi.org/10.1109/FPL.2011.56
http://dx.doi.org/10.1109/TEST.2013.6651926
http://dx.doi.org/10.1109/ICCAD.2015.7372547
http://dx.doi.org/10.1109/ASPDAC.2016.7428082
http://dx.doi.org/10.1109/TC.2015.2506558
http://dx.doi.org/10.1016/j.vlsi.2018.10.006
http://dx.doi.org/10.1109/FPL.2009.5272543
http://dx.doi.org/10.1109/DFT.2016.7684071
http://dx.doi.org/10.1109/DATE.2010.5456960

J. Low Power Electron. Appl. 2021, 11, 7 37 of 37

120. Santini, T.; Rech, P.; Sartor, A.; Corrêa, U.B.; Carro, L.; Wagner, F.R. Evaluation of Failures Masking Across the Software
Stack. Available online: http://www.median-project.eu/wp-content/uploads/12_II-1_median2015.pdf (accessed on 12
December 2020).

121. Sahoo, S.S.; Nguyen, T.D.A.; Veeravalli, B.; Kumar, A. QoS-Aware Cross-Layer Reliability-Integrated FPGA-Based Dynamic
Partially Reconfigurable System Partitioning. In Proceedings of the International Conference on Field-Programmable Technology
(FPT), Naha, Japan, 11–15 December 2018; pp. 230–233.

122. Götzinger, M.; Rahmani, A.M.; Pongratz, M.; Liljeberg, P.; Jantsch, A.; Tenhunen, H. The Role of Self-Awareness and Hierarchical
Agents in Resource Management for Many-Core Systems. In Proceedings of the IEEE International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSOC), Hanoi, Vietnam, 12–14 September 2018; pp. 53–60. [CrossRef]

123. Rambo, E.A.; Kadeed, T.; Ernst, R.; Seo, M.; Kurdahi, F.; Donyanavard, B.; de Melo, C.B.; Maity, B.; Moazzemi, K.; Stewart, K.; et al.
The Information Processing Factory: A Paradigm for Life Cycle Management of Dependable Systems. In Proceedings of the
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES), New York, NY,
USA, 13–18 October 2019; pp. 1–10.

124. Burns, A.; Davis, R.I. A Survey of Research into Mixed Criticality Systems. ACM Comput. Surv. 2017, 50. [CrossRef]
125. Mittal, S. A Survey of Techniques for Approximate Computing. ACM Comput. Surv. 2016, 48. [CrossRef]
126. Das, A.; Shafik, R.A.; Merrett, G.V.; Al-Hashimi, B.M.; Kumar, A.; Veeravalli, B. Reinforcement Learning-Based Inter- and Intra-

Application Thermal Optimization for Lifetime Improvement of Multicore Systems. In Proceedings of the Design Automation
Conference (DAC), San Francisco, CA, USA, 1–5 June 2014; Association for Computing Machinery: New York, NY, USA, 2014;
pp. 1–6. [CrossRef]

127. Zhang, J.; Sadiqbatcha, S.; Gao, Y.; O’Dea, M.; Yu, N.; Tan, S.X.D. HAT-DRL: Hotspot-Aware Task Mapping for Lifetime
Improvement of Multicore System Using Deep Reinforcement Learning. In Proceedings of the ACM/IEEE Workshop on Machine
Learning for CAD, Virtual Event, Iceland, 16–20 November 2020; Association for Computing Machinery: New York, NY, USA,
2020; pp. 77–82.

http://www.median-project.eu/wp-content/uploads/12_II-1_median2015.pdf
http://dx.doi.org/10.1109/MCSoC.2016.57
http://dx.doi.org/10.1145/3131347
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1145/2593069.2593199

	Introduction
	Need of Reliability in Multi/Many-Core Systems
	Reliability-Aware Resource Management in Multi-/Many-Core Systems

	Background and Taxonomy for Reliability Management Methodologies
	Reliability in Electronic Systems
	Lifetime Reliability
	Timing Reliability
	Functional Reliability

	Fault Model
	Soft-Errors
	Aging

	System Model
	Architecture Model
	Computation
	Communication
	Memory

	Application Model
	Task Dependencies
	Application/Tasks' Periodicity
	Application/Tasks' Criticality

	Reliability Management in Multi/Many-Core Systems
	Problem Statement
	Classification of Solution Approaches

	Lifetime Reliability Management in Multi/Many-Core Processors
	Design-Time Strategies
	Run-Time Strategies
	Hybrid Strategies
	Critique and Perspectives

	Timing and Functional Reliability Management in Multi/Many-Core Processors
	Design-Time Strategies
	Multi-Core Platform Used for Spatial and Temporal Redundancy
	Timing Redundancy with Check-Pointing and Rollback Recovery
	Information Redundancy, Mitigating Soft Errors by Using Parity
	Task Reliability-Aware Mapping

	Run-Time Strategies
	Hybrid Strategies
	Critique and Perspectives

	Reliability Management in Reconfigurable Architectures
	Upcoming Trends and Open Challenges
	Conclusions
	References

