
systems

Article

Modeling for Rapid Systems Prototyping: Hospital Situational
Awareness System Design †

Avi Shaked

����������
�������

Citation: Shaked, A. Modeling for

Rapid Systems Prototyping: Hospital

Situational Awareness System Design.

Systems 2021, 9, 12. https://

doi.org/10.3390/systems9010012

Received: 16 December 2020

Accepted: 27 January 2021

Published: 1 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Israel Aerospace Industries ELTA Systems, Ashdod 7710202, Israel; avishakedse@gmail.com
† This paper includes a significant elaboration of the work “Shaked, A. On the Road to Hospital Digital

Transformation: Using Conceptual Modeling to Express Domain Ontology”. In Proceedings of the 12th
International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K 2020), Online, 2–4 November 2020.

Abstract: The COVID-19 pandemic caught hospitals unprepared. The need to treat patients remotely
and with limited resources led hospitals to identify a gap in their operational situational awareness.
During the pandemic, Israeli Aerospace Industries helped hospitals to address the gap by designing a
system to support their effective operation, management and decision making. In this paper, we report
on the development of a functional, working prototype of the system using model-based engineering
approach and tools. Our approach relies on domain-specific modeling, incorporating metamodeling
and domain-specific representations based on the problem domain’s ontology. The tools practiced
are those embedded into the Eclipse Modeling Framework—specifically, Ecore Tools and Sirius.
While these technological tools are typically used to create dedicated, engineering-related modeling
tools, in this work, we use them to create a functional system prototype. We discuss the advantages
of our approach as well as the challenges with respect to the existing tools and their underlying
technology. Based on the reported experience, we encourage practitioners to adopt model-based
engineering as an effective way to develop systems. Furthermore, we call researchers and tool
developers to improve the state-of-the-art as well as the existing implementations of pertinent tools
to support model-based rapid prototyping.

Keywords: model-based engineering; rapid prototype development; domain-specific models; digital
twin; Eclipse modeling

1. Introduction
1.1. Operational Motivation and Case Study Background

COVID-19 caught hospitals unprepared. Healthcare services—hospitals included—
have been faced with the need to treat patients in isolation and remotely. In Israel, for exam-
ple, hospitals opened dedicated departments for treating COVID-19 patients. Accordingly,
hospitals sought effective means to manage their operations and resources and ultimately
provide better service to their customers (i.e., their patients). Hospital operation can be
viewed as a product–service system of the result-oriented type [1], as hospitals need to
service patients with the goal of treating them as the functional result and by using appro-
priate means (resources and products) to do so [2]. Hospitals in Israel are faced with the
need to manage their operations and resources more efficiently [3]. This has increased due
to the COVID-19 pandemic, with the need to treat isolated patients with limited means.
Israel Aerospace Industries (IAI) engaged with a few hospitals to utilize its technological
and engineering proficiency to develop systems that may assist hospitals to operate better.

Specifically, one of the required solutions was a hospital situational awareness (SA)
system. SA systems extensively rely on information to establish the perception, compre-
hension and status of objects and events. Such systems are considered to be a solution that
addresses the aforementioned needs in support of the effective management of operations

Systems 2021, 9, 12. https://doi.org/10.3390/systems9010012 https://www.mdpi.com/journal/systems

https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0001-7976-1942
https://doi.org/10.3390/systems9010012
https://doi.org/10.3390/systems9010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/systems9010012
https://www.mdpi.com/journal/systems
https://www.mdpi.com/2079-8954/9/1/12?type=check_update&version=2

Systems 2021, 9, 12 2 of 16

and resources [4–6]. These systems need to structure and process information as well as
to effectively communicate the information and its analysis to different stakeholders who
are prospective system users [7,8], and in healthcare—as in other domains—to external
stakeholders that are responsible for governance [4,9]. Information Technology (IT) sys-
tems are an enabler of modern healthcare [10,11]. In order to effectively communicate the
information with various stakeholders, to produce insights with respect to the information
and to support information-based collaborative work, the information should be well
structured and clear, preferably standardized [12–14]. An information-driven SA system
can be designed as a digital twin of a product–service system and may therefore provide
the desired—but challenging to obtain—service context for healthcare product–service
system development [15–17]. Furthermore, having an SA system which reflects the design
of the hospital and its services as well as their up-to-date situation is well aligned with
two dominant roles of product–service systems in healthcare: a design tool (e.g., a tool for
designing hospital services and business) and a systems thinking decision-support tool [2].

1.2. System Development Concerns

SA systems are designed to communicate information in support of decision-making
via representations [18,19]. The use of ontologies in designing the information embedded
in such systems is essential to establishing explicit, sharable, reusable and interoper-
able knowledge representations [14,20–22], and it enhances context-aware capabilities
in product–service systems [17]. Research efforts have produced a multitude of health-
care related ontologies, such as an ontology for healthcare technology innovation [13],
ontologies describing a ubiquitous computing environment for healthcare [23,24], ontol-
ogy for healthcare networks [25] and breast cancer imaging ontology [26]. While crucial
for the organization of knowledge, research-derived ontologies often remain theoretical.
For example, a pertinent ontology for medical services [27], which was designated to be
used by IT systems, has only been checked with respect to its theoretical consistency and
has not been validated for practical usability.

The not-for-profit organization Health Level Seven International (HL7) leads the “Fast
Healthcare Interoperability Resources” (FHIR) specification in an attempt to standardize
healthcare data from a system development practitioner perspective [28]. While FHIR
includes some ontology-related concepts, these are presented from a technical implemen-
tation viewpoint and thus require significant effort to analyze and review for conceptual
modeling usage; therefore, this approach was deemed inappropriate for our SA system
development effort. As an illustration, in FHIR, a patient’s relation to a doctor is not
directly expressed; instead, it is represented by a relation between a patient and a more
generic entity of the “general practitioner,” which includes a relation to a “practitioner role”
entity that may be assigned a specific value code to indicate that this practitioner is a doctor.
This relation is directional, from the patient to the practitioner, meaning that a stakeholder
who wishes to explore the ontological concepts of a doctor as a practitioner cannot identify
this relation to a patient without exploring the underlying resource model from a patient
perspective (i.e., the doctor and patient relation is not accessible from the doctor perspec-
tive). Furthermore, the relations are not shown as a cohesive visual representation, and this
hinders the communicability of the ontological concepts.

Model-based development is an approach to engage with large amounts of data and
complex information by applying appropriate formal models to domains of interest, thereby
enabling rigorous, information-driven interpersonal communication, marketing research,
decision analysis and impact analysis [21,29]. Practitioners state several model-based
system development benefits that are pertinent to our hospital SA case, including better
communication and improved system understanding [30]. Furthermore, the approach is
considered an enabler for digital twin representations that can be used to validate systems
with respect to real world data, provide decision support and alerts to users, predict
changes in the physical system over time and discover new application opportunities and
revenue streams [31,32]. All of these relate to the aforementioned operational challenge of

Systems 2021, 9, 12 3 of 16

effectively managing the hospital operations and resources. For example, the real-world
allocation of resources (e.g., doctors, monitoring devices) and of patients to departments—
captured in an information model—can be used to validate the hospital model of operation,
provide decision support for the acquisition of additional resources and/or placement of
new patients, alert relevant stakeholders once an overcapacity condition is detected and
examine how new operating paradigms can be used to improve the hospital operations
and—consequently—its profits.

However, model-based development requires high expertise and is typically cum-
bersome to implement [32,33]. Specifically, multiple views are required to detail the
composition and behavior of the developed systems, as regularly reported in modeling
research [34–36], and these are difficult to communicate with stakeholders of diverse back-
grounds (including nontechnical staff) [21]. A recent technical report on the maturity of
the related model-based systems engineering (MBSE) approach confirms that the maturity
of using models in technical processes and their management in industry is very low [30].
Specifically, the cost and time of using MBSE is primarily perceived as an obstacle (“Man-
aging the pressure between adopting and exploiting MBSE and its benefits versus the
pressure from project and program management to maintain schedule and deliver versus
time and cost”; “advocating for the additional cost and time of MBSE for smaller projects”).
Accordingly, companies often favor less accurate models and less disciplined trial and error
tactics for prototyping. Furthermore, the model-based development of software-intensive
systems is perceived as inflexible and restrictive. Using a model-based approach in rapid
development iteration scenarios (considered a key technique in prototyping [37])—which
involve both design and implementation—is not considered useful, and the applicability
of modeling in such cases is questioned by practitioners [33].

In this paper, we describe our experience using modeling to develop a prototype for
the above-mentioned hospital SA system. Our modeling approach relies on model-based
engineering approaches, specifically formal modeling using a metamodel and domain-
specific representations. All of these are, in fact, manifestations of conceptual modeling as
applied to the hospital in order to align the technical solution with the hospital operation.
First, in Section 2, we explain our development approach. Then, in Section 3, we introduce
the developed prototype, showcasing the approach in practice. Finally, in Section 4, we re-
flect on our experience developing the system prototype using modeling tools and suggest
how such tools and approaches may be widely used by practitioners for the agile develop-
ment of systems. We also discuss and demonstrate how modeling tools and underlying
technologies may be further improved.

2. Methods

Typically, the design of systems using modeling incorporates two aspects: system
structural composition and system behavior. For example, in SysML—a prominent, stan-
dardized modeling language for systems engineering applications [38]—the system compo-
sition aspect is addressed by the block definition diagram and the internal block diagram,
whereas system behavior is depicted using other types of diagrams, such as the activity
diagram and the sequence diagram.

We approached our system design effort more sparingly, explicitly emphasizing the
compositional aspect of the system via metamodeling, while allowing for the behavioral
aspect to be designed vicariously via graphical design elements. Our design approach is
illustrated in Figure 1.

Systems 2021, 9, 12 4 of 16

Systems 2021, 9, x FOR PEER REVIEW 4 of 16

standardized and straightforward framework for mapping metamodels to implementa-
tions with the goal of allowing “simple metamodels to be defined using simple concepts”
(originally in order to “lower the barrier to entry for model driven tool development and
tool integration”) [40]. Ecore implementations contribute to the quality of their underly-
ing models and specifically to the technical validation of the models [41,42].

We developed an initial metamodel for the system (the “develop metamodel” ac-
tivity in Figure 1). Developing this metamodel relied on a set of high-level requirements,
reflecting the problem domain’s ontology (i.e., concepts relating to the hospital opera-
tion). First, we derived the ontology for hospital operations primarily by examining the
requirements specification and identifying the relevant ontological entities and their re-
lationships that appeared in the specification. The requirements specification was a pre-
liminary set of requirements for a hospital SA system. While the requirements specifica-
tion is considered intellectual property—and therefore cannot be reproduced here—we
address the relevant aspects. The specification was in Hebrew and comprised three sec-
tions: a mission statement, describing the objectives; a graphical figure, illustrating the
operational scenario; and a list of high-level, natural language requirements, describing
both medical and technical needs. While some entities and relations were mentioned ex-
plicitly in the requirements specification, others were mentioned implicitly; e.g., by a
business process description. Furthermore, during the specification analysis, we identi-
fied some gaps, implying that some of the domain knowledge remained tacit (i.e., it was
not stated in the requirements). Whenever deemed critical, we filled in the gaps by sug-
gesting additional entities and relations.

Figure 1. Situational awareness system design process.

The aforementioned approach was a part of an overall rapid prototyping approach
taken due to the circumstances in question. Urgent hospital needs (due to the COVID-19
pandemic) and the low availability of relevant hospital personnel to provide us with
feedback drove us to communicate our understanding of the pertinent domain ontology
on the basis of a system prototype artifact: the formal Ecore metamodel.

Next, we defined a sample model (the “define sample model” activity in Figure 1),
utilizing and manifesting the concepts defined in the metamodel by means of concrete

Figure 1. Situational awareness system design process.

Our metamodeling effort relied on the Ecore metamodel, which is used within the
Eclipse Modeling Framework (EMF) for describing models [39]. The Ecore model is com-
pliant with the Essential Meta-Object Facility specification (EMOF), which serves as a
standardized and straightforward framework for mapping metamodels to implementa-
tions with the goal of allowing “simple metamodels to be defined using simple concepts”
(originally in order to “lower the barrier to entry for model driven tool development and
tool integration”) [40]. Ecore implementations contribute to the quality of their underlying
models and specifically to the technical validation of the models [41,42].

We developed an initial metamodel for the system (the “develop metamodel” activity
in Figure 1). Developing this metamodel relied on a set of high-level requirements, reflect-
ing the problem domain’s ontology (i.e., concepts relating to the hospital operation). First,
we derived the ontology for hospital operations primarily by examining the requirements
specification and identifying the relevant ontological entities and their relationships that
appeared in the specification. The requirements specification was a preliminary set of
requirements for a hospital SA system. While the requirements specification is consid-
ered intellectual property—and therefore cannot be reproduced here—we address the
relevant aspects. The specification was in Hebrew and comprised three sections: a mis-
sion statement, describing the objectives; a graphical figure, illustrating the operational
scenario; and a list of high-level, natural language requirements, describing both medical
and technical needs. While some entities and relations were mentioned explicitly in the
requirements specification, others were mentioned implicitly; e.g., by a business process
description. Furthermore, during the specification analysis, we identified some gaps, im-
plying that some of the domain knowledge remained tacit (i.e., it was not stated in the
requirements). Whenever deemed critical, we filled in the gaps by suggesting additional
entities and relations.

Systems 2021, 9, 12 5 of 16

The aforementioned approach was a part of an overall rapid prototyping approach
taken due to the circumstances in question. Urgent hospital needs (due to the COVID-
19 pandemic) and the low availability of relevant hospital personnel to provide us with
feedback drove us to communicate our understanding of the pertinent domain ontology
on the basis of a system prototype artifact: the formal Ecore metamodel.

Next, we defined a sample model (the “define sample model” activity in Figure 1),
utilizing and manifesting the concepts defined in the metamodel by means of concrete
instantiation. Once an Ecore metamodel is defined, the Eclipse integrated development
environment supports the automatic generation of the metamodel as code, making it im-
mediately available for constructing information models based on the defined metamodel.

Then, we used Sirius—another EMF component—to develop the first graphical rep-
resentation of the proposed system, using graphical design elements and data queries
(concerning the information captured using the underlying metamodel). Sirius is designed
to allow a user to create a dedicated graphical modeling workbench [43]; however, we used
Sirius in this context to create a functional application prototype. We chose to develop a
representation for a hospital department first (the “Develop department representation”
in Figure 1), as our analysis of the requirements established this as a minimum viable
product, incorporating both the data input to the system and a situational awareness view
of the data.

Figure 2 shows a representative example of a representation design specification
using Sirius, revealing some of our design (which is further discussed in the following
sections). Graphical elements were used to compose the representation in the Sirius
Specification Editor (top section). The properties window (bottom section) allowed us to
define each specific representation element, including by defining queries with respect
to the underlying metamodel. As an example, the figure shows the four representations
that are discussed in the next section of this paper: department patients (abbreviated
henceforth as “department”), hospital map, locations and locations tree. The department
representation is expanded to show its top-level representational container elements:
“department” (with its lower-level container “Patient Details”) and “doctorsContainer.”
An example of a query—starting with “aql:”—is shown in the properties window, according
to which the style of the “Patient Details” container element is determined (as “gradient
white to light_green” beneath the highlighted line in the Sirius specification editor window).

The designed department representation was applied to the sample model in a
trial and error approach until deemed satisfactory. This approach was enabled by Sir-
ius, which allows changes to the design of representations to be applied immediately to a
given model’s representation.

Repeated development iterations followed. Figure 1 depicts a single, representative
iteration (“development iteration”). Each iteration was based on the previously established
metamodel, representations and sample model, and yielded newer versions of these.
Additionally, each iteration was developed while considering the initial set of requirements
in order to keep the design aligned with the high-level objectives.

Developing a system is a creative process. The results discussed in this paper relate to a
specific implementation; i.e., a specific creative process that was used to develop the system
prototype. While alternative implementations would have yielded different system proto-
types, the focus of surveying the specific development process—as it occurred in reality—is
on demonstrating the applicability of the proposed model-based prototyping approach
and communicating the state of the art and related issues in such implementations.

Systems 2021, 9, 12 6 of 16
Systems 2021, 9, x FOR PEER REVIEW 6 of 16

Figure 2. The Sirius graphical representation design interface.

Developing a system is a creative process. The results discussed in this paper relate
to a specific implementation; i.e., a specific creative process that was used to develop the
system prototype. While alternative implementations would have yielded different sys-
tem prototypes, the focus of surveying the specific development process—as it occurred
in reality—is on demonstrating the applicability of the proposed model-based prototyp-
ing approach and communicating the state of the art and related issues in such imple-
mentations.

3. Results
In this section, we present the developed hospital SA system prototype. The proto-

type is primarily concerned with addressing the preliminary set of requirements, by
demonstrating the ability to manage hospital-related entities in an information model
and support its visualization for the management of patient care within departments and
of available resources. First, we introduce the metamodel which was used to organize the
information within the system. Then, we disclose several representations that formed
part of the system design and demonstrate how these relate to the metamodel.

3.1. Metamodel
The system’s metamodel is shown in Figure 3. This representation shows the onto-

logical entities as rectangular nodes (colored either yellow or grey) and their relations
using edges. Relations take various forms: a directed arrow with a diamond source marks
a composition relation (i.e., the source contains the target), a bi-directional arrow desig-
nates a bi-directional relation, and a hollow-headed arrow depicts a “type-of” relation-
ship, indicating that the source entity is a type of the target entity. For example, some
entities—individually—are a type of the general entity, which is used purely from a
modeling perspective to add generic features (e.g., the “name” attribute, contained

Figure 2. The Sirius graphical representation design interface.

3. Results

In this section, we present the developed hospital SA system prototype. The prototype
is primarily concerned with addressing the preliminary set of requirements, by demonstrat-
ing the ability to manage hospital-related entities in an information model and support
its visualization for the management of patient care within departments and of available
resources. First, we introduce the metamodel which was used to organize the information
within the system. Then, we disclose several representations that formed part of the system
design and demonstrate how these relate to the metamodel.

3.1. Metamodel

The system’s metamodel is shown in Figure 3. This representation shows the onto-
logical entities as rectangular nodes (colored either yellow or grey) and their relations
using edges. Relations take various forms: a directed arrow with a diamond source marks
a composition relation (i.e., the source contains the target), a bi-directional arrow desig-
nates a bi-directional relation, and a hollow-headed arrow depicts a “type-of” relationship,
indicating that the source entity is a type of the target entity. For example, some entities—
individually—are a type of the general entity, which is used purely from a modeling
perspective to add generic features (e.g., the “name” attribute, contained within the “Gen-
eralEntity” node). The cardinality of the relations is marked as a textual tag on the opposing
end of the relation edge (for example, the relations of a doctor to multiple patients are de-
noted as “[0..*] patient”; while the patient’s singular location is denoted as “[0..1] location”,
with the zero (0) option indicating that no location has been assigned).

Systems 2021, 9, 12 7 of 16

Systems 2021, 9, x FOR PEER REVIEW 7 of 16

within the “GeneralEntity” node). The cardinality of the relations is marked as a textual
tag on the opposing end of the relation edge (for example, the relations of a doctor to
multiple patients are denoted as “[0..*] patient”; while the patient’s singular location is
denoted as “[0..1] location”, with the zero (0) option indicating that no location has been
assigned).

The metamodel reflects the ontological concepts of the hospital situational aware-
ness domain (derived from the requirements set). A hospital entity is the top-level (root)
element of the metamodel and comprises the following entities: department (conceptual
entity), doctor (physical entity), location (physical entity) and patient (physical entity).

In the specific hospital scenario we were addressing (for the development of the SA
system), departments, doctors and locations were all considered direct resources of the
hospital. Accordingly, in our prototype implementation, the elements represented by
these entities serve to illustrate the possible organizational resources, with possible rela-
tions between these elements demonstrating their possible allocation and management.
Patients are organized in departments that are responsible for their treatment. Patients
exhibit health indicators, such as temperature (the only health indicator represented in
the version presented in Figure 3).

The relations (between entities) and their cardinalities were not as explicit in the
requirements specification as the entities, and specifying many of them involved inter-
preting the specification. The few exceptions are as follows: (1) temperature is mentioned
as a type of a health indicator; (2) location is explicitly mentioned in relation with the
patient and with the doctor (however, the nature of these relations remains implicit); (3)
location is explicitly mentioned as “inside the hospital,” which implicitly leads to a
composition relation (i.e., the hospital has locations); (4) doctors are mentioned in one
statement as “belonging to the hospital,” which implicitly leads to a composition rela-
tionship (i.e., the hospital has doctors); and (5) health indictors and patients are explicitly
mentioned as a construct state, suggesting a composition relation between them (i.e., a
patient has health indicators).

The aforementioned entities have various attributes and exhibit different character-
istics, and these appear either as modeling attributes (placed within an element contain-
er), such as the “healthStatus” (read: health status) of the patient and “availability” of the
doctor or as relations between the elements (marked as a textual tag with their cardinal-
ity, as previously mentioned).

Figure 3. System prototype metamodel (illustrated using Ecore Tools [44]). Figure 3. System prototype metamodel (illustrated using Ecore Tools [44]).

The metamodel reflects the ontological concepts of the hospital situational awareness
domain (derived from the requirements set). A hospital entity is the top-level (root) element
of the metamodel and comprises the following entities: department (conceptual entity),
doctor (physical entity), location (physical entity) and patient (physical entity).

In the specific hospital scenario we were addressing (for the development of the SA
system), departments, doctors and locations were all considered direct resources of the
hospital. Accordingly, in our prototype implementation, the elements represented by these
entities serve to illustrate the possible organizational resources, with possible relations
between these elements demonstrating their possible allocation and management. Patients
are organized in departments that are responsible for their treatment. Patients exhibit
health indicators, such as temperature (the only health indicator represented in the version
presented in Figure 3).

The relations (between entities) and their cardinalities were not as explicit in the re-
quirements specification as the entities, and specifying many of them involved interpreting
the specification. The few exceptions are as follows: (1) temperature is mentioned as a type
of a health indicator; (2) location is explicitly mentioned in relation with the patient and
with the doctor (however, the nature of these relations remains implicit); (3) location is ex-
plicitly mentioned as “inside the hospital,” which implicitly leads to a composition relation
(i.e., the hospital has locations); (4) doctors are mentioned in one statement as “belonging
to the hospital,” which implicitly leads to a composition relationship (i.e., the hospital has
doctors); and (5) health indictors and patients are explicitly mentioned as a construct state,
suggesting a composition relation between them (i.e., a patient has health indicators).

The aforementioned entities have various attributes and exhibit different characteris-
tics, and these appear either as modeling attributes (placed within an element container),
such as the “healthStatus” (read: health status) of the patient and “availability” of the
doctor or as relations between the elements (marked as a textual tag with their cardinality,
as previously mentioned).

3.2. Representations

In this subsection, we discuss three representations developed as part of the system
prototype design. All of these representations rely on a specific model instantiation of the

Systems 2021, 9, 12 8 of 16

aforementioned metamodel. This instantiation is our sample model, and is henceforth
referred to as “the model.”

3.2.1. Department Representation

This representation, which is based on the Sirius Diagram Description mechanism,
is regarded as the principal representation. It is designed to depict the operational sta-
tus of a hospital department (Figure 4). Specifically, it shows the hospitalized patients
using a dynamic representational structure—the aforementioned patient details container—
reflecting information about each department’s patients. Several attributes are mentioned
explicitly: name; location, based on the location resource assigned to the patient; treating
doctor, based on the doctor resource assigned to the patient; and temperature, based on
the reported temperature health indicator of the patient. The number in the header of
the department container (value 5 in Figure 4) is dynamically updated according to the
number of patient elements associated with the specific department in the underlying
model. Another container in the representation shows a list of the doctors allocated to the
specific department in the model.

Systems 2021, 9, x FOR PEER REVIEW 8 of 16

3.2. Representations
In this subsection, we discuss three representations developed as part of the system

prototype design. All of these representations rely on a specific model instantiation of the
aforementioned metamodel. This instantiation is our sample model, and is henceforth
referred to as “the model.”

3.2.1. Department Representation
This representation, which is based on the Sirius Diagram Description mechanism, is

regarded as the principal representation. It is designed to depict the operational status of
a hospital department (Figure 4). Specifically, it shows the hospitalized patients using a
dynamic representational structure—the aforementioned patient details contain-
er—reflecting information about each department’s patients. Several attributes are men-
tioned explicitly: name; location, based on the location resource assigned to the patient;
treating doctor, based on the doctor resource assigned to the patient; and temperature,
based on the reported temperature health indicator of the patient. The number in the
header of the department container (value 5 in Figure 4) is dynamically updated ac-
cording to the number of patient elements associated with the specific department in the
underlying model. Another container in the representation shows a list of the doctors
allocated to the specific department in the model.

Additional notation is used to communicate the main aspects of a patient’s treat-
ment. Specifically, in the prototype, the coloring code of the temperature symbol indi-
cates if the temperature is above a critical temperature (red if above 38 degree Celsius,
which has been defined as an indicator of COVID-19 patient illness; green otherwise),
exemplifying the ability to reflect information-based insights in real-time. Another pa-
tient attribute—healthStatus—is depicted by using a coloring scheme applied to the pa-
tient details container: grey for SUSPECTED_SICK, red for DIAGNOSED_SICK and
green for HEALTHY (all values are defined as enumerations in the metamodel, as shown
in Figure 3). Similarly, the availability of the treating doctor is indicated by either a red or
green doctor symbol, referring to the doctor being unavailable or available, respectively.

Figure 4. Department representation.

Another aspect of the department representation is the incorporation of various
tools into the representation (via the same Sirius design interface depicted in Figure 2).

Figure 4. Department representation.

Additional notation is used to communicate the main aspects of a patient’s treatment.
Specifically, in the prototype, the coloring code of the temperature symbol indicates if the
temperature is above a critical temperature (red if above 38 degree Celsius, which has
been defined as an indicator of COVID-19 patient illness; green otherwise), exemplifying
the ability to reflect information-based insights in real-time. Another patient attribute—
healthStatus—is depicted by using a coloring scheme applied to the patient details con-
tainer: grey for SUSPECTED_SICK, red for DIAGNOSED_SICK and green for HEALTHY
(all values are defined as enumerations in the metamodel, as shown in Figure 3). Similarly,
the availability of the treating doctor is indicated by either a red or green doctor symbol,
referring to the doctor being unavailable or available, respectively.

Another aspect of the department representation is the incorporation of various
tools into the representation (via the same Sirius design interface depicted in Figure 2).
Tools may be in the form of an explicit visual tool, placed in a toolbox and providing a
graphical user interface capability for adding and/or editing the model, or in the form of
a mechanism associated with the representation of model elements, such as dragging or
clicking on elements. In our prototype, the “Add patient” tool demonstrates the former and

Systems 2021, 9, 12 9 of 16

is placed on the representation’s toolbox (right section of Figure 4). Specifically, the tool in
question is designed to allow the department operational staff to check in a new patient.
When this tool is used, a new form opens (Figure 5). This form functions as a manifestation
of the desired patient check-in operational process (e.g., entering relevant data for any
hospitalized patient, such as the patient’s temperature, and assigning a doctor from the
available doctors). Upon completion and confirmation (by clicking the “OK” button),
the tool is designed to create a new patient element under the department element in
the model, set its attributes (such as the name) and create additional model elements
(such as the temperature indicator, created and associated as a sub-element of the patient).
Collectively, this tool and its application demonstrate a dynamic behavior of the system as
it implements a specific process design (which is a part of the service design). This process
design is embedded into the representational tool design (in the Sirius specification of the
design, as mentioned in the previous section and shown in Figure 2). For our prototype,
the temperature indication is included in the form in order to demonstrate support for a
defined check-in procedure that requires the measurement of a patient’s body temperature
upon arrival.

Systems 2021, 9, x FOR PEER REVIEW 9 of 16

Tools may be in the form of an explicit visual tool, placed in a toolbox and providing a
graphical user interface capability for adding and/or editing the model, or in the form of a
mechanism associated with the representation of model elements, such as dragging or
clicking on elements. In our prototype, the “Add patient” tool demonstrates the former
and is placed on the representation’s toolbox (right section of Figure 4). Specifically, the
tool in question is designed to allow the department operational staff to check in a new
patient. When this tool is used, a new form opens (Figure 5). This form functions as a
manifestation of the desired patient check-in operational process (e.g., entering relevant
data for any hospitalized patient, such as the patient’s temperature, and assigning a
doctor from the available doctors). Upon completion and confirmation (by clicking the
“OK” button), the tool is designed to create a new patient element under the department
element in the model, set its attributes (such as the name) and create additional model
elements (such as the temperature indicator, created and associated as a sub-element of
the patient). Collectively, this tool and its application demonstrate a dynamic behavior of
the system as it implements a specific process design (which is a part of the service de-
sign). This process design is embedded into the representational tool design (in the Sirius
specification of the design, as mentioned in the previous section and shown in Figure 2).
For our prototype, the temperature indication is included in the form in order to
demonstrate support for a defined check-in procedure that requires the measurement of
a patient’s body temperature upon arrival.

Another tool available in the department representation is a double-click tool ap-
plied to the patient’s location. The double-click tool is a built-in Sirius feature that allows
a mouse double-click on a diagram object to be captured. We used this tool to initiate a
dedicated function—our only extension to the Sirius modeling infrastructure—that
opens a web browser with the address specified in the location’s “link” model attribute.
This Java function is fairly simple, featuring two instructions: it stores the location’s link
content (extracted from the respective model element) as a variable that holds the desired
address and then opens this web address using an external web browser.

Figure 5. Department representation with the add new patient form.

An additional double-click tool is applied to the patient details container and pro-
vides a “Patient Details” form. This form is shown in Figure 6, and while it currently re-
sembles the “Add new patient to department” form (Figure 5), it is a different form. Us-
ing this form, a system user can only view patient details (and not change them).

Figure 5. Department representation with the add new patient form.

Another tool available in the department representation is a double-click tool applied
to the patient’s location. The double-click tool is a built-in Sirius feature that allows a
mouse double-click on a diagram object to be captured. We used this tool to initiate a
dedicated function—our only extension to the Sirius modeling infrastructure—that opens
a web browser with the address specified in the location’s “link” model attribute. This Java
function is fairly simple, featuring two instructions: it stores the location’s link content
(extracted from the respective model element) as a variable that holds the desired address
and then opens this web address using an external web browser.

An additional double-click tool is applied to the patient details container and provides
a “Patient Details” form. This form is shown in Figure 6, and while it currently resembles
the “Add new patient to department” form (Figure 5), it is a different form. Using this
form, a system user can only view patient details (and not change them).

Systems 2021, 9, 12 10 of 16Systems 2021, 9, x FOR PEER REVIEW 10 of 16

Figure 6. Department representation with the patient details form.

3.2.2. Location Representation
The location representation was developed in order to concretize the concept of lo-

cation as a resource. The prototype includes two alternative designs of this representa-
tion.

The first design relies on the Sirius Tree Description mechanism and is shown in
Figure 7. This design shows all of the location resources—available in the underlying
model—in a hierarchical structure. This representation allows a system user to navigate
the resources, whose hierarchical relations depict their physical whereabouts in the hos-
pital. For example, in Figure 7, Room 201 is depicted as located on the second floor (Floor
2) of Building A. Furthermore, the representation places each patient element under its
assigned location (e.g., Nancy Simple is located in Room 201), and this demonstrates the
ability to create a hierarchical viewpoint that is different from the hierarchy used in the
metamodel (we note that in our design—as shown in Figure 3—patients relate to a loca-
tion by a bi-directional reference and not by a composition relation).

Figure 7. Location representation—tree design.

Figure 6. Department representation with the patient details form.

3.2.2. Location Representation

The location representation was developed in order to concretize the concept of
location as a resource. The prototype includes two alternative designs of this representation.

The first design relies on the Sirius Tree Description mechanism and is shown in
Figure 7. This design shows all of the location resources—available in the underlying
model—in a hierarchical structure. This representation allows a system user to navigate the
resources, whose hierarchical relations depict their physical whereabouts in the hospital.
For example, in Figure 7, Room 201 is depicted as located on the second floor (Floor 2) of
Building A. Furthermore, the representation places each patient element under its assigned
location (e.g., Nancy Simple is located in Room 201), and this demonstrates the ability to
create a hierarchical viewpoint that is different from the hierarchy used in the metamodel
(we note that in our design—as shown in Figure 3—patients relate to a location by a
bi-directional reference and not by a composition relation).

Systems 2021, 9, x FOR PEER REVIEW 10 of 16

Figure 6. Department representation with the patient details form.

3.2.2. Location Representation
The location representation was developed in order to concretize the concept of lo-

cation as a resource. The prototype includes two alternative designs of this representa-
tion.

The first design relies on the Sirius Tree Description mechanism and is shown in
Figure 7. This design shows all of the location resources—available in the underlying
model—in a hierarchical structure. This representation allows a system user to navigate
the resources, whose hierarchical relations depict their physical whereabouts in the hos-
pital. For example, in Figure 7, Room 201 is depicted as located on the second floor (Floor
2) of Building A. Furthermore, the representation places each patient element under its
assigned location (e.g., Nancy Simple is located in Room 201), and this demonstrates the
ability to create a hierarchical viewpoint that is different from the hierarchy used in the
metamodel (we note that in our design—as shown in Figure 3—patients relate to a loca-
tion by a bi-directional reference and not by a composition relation).

Figure 7. Location representation—tree design. Figure 7. Location representation—tree design.

The second design relies on the Sirius Diagram Description mechanism and therefore
visually resembles the department representation. This representation—as illustrated in
Figure 8—shows the location hierarchy by using a top-level location resource as a container

Systems 2021, 9, 12 11 of 16

for the lower level resources. A double-click tool—identical to the one previously used in
the department representation—is applied to the location representational elements; and it
allows an external resource—specified in the model—to be opened (e.g., the web camera
feed of the location).

Systems 2021, 9, x FOR PEER REVIEW 11 of 16

The second design relies on the Sirius Diagram Description mechanism and there-
fore visually resembles the department representation. This representation—as illus-
trated in Figure 8—shows the location hierarchy by using a top-level location resource as
a container for the lower level resources. A double-click tool—identical to the one pre-
viously used in the department representation—is applied to the location representa-
tional elements; and it allows an external resource—specified in the model—to be opened
(e.g., the web camera feed of the location).

Figure 8. Location representation—diagram design.

3.2.3. Hospital Map Representation
The hospital map representation is another implementation of the Sirius Diagram

Description mechanism that is used to exemplify a high-level, managerial view on the
entire hospital’s operation (Figure 9). This representation aggregates all of the hospital
departments—as defined in the model—and reflects each of them using the same de-
partment container of the department representation. The comparison of the numbers at
the top of each department container (presented in Section 3.2.1) can be used by hospital
management to assess the workload of the departments (which was identified as an es-
sential function of a hospital SA system [5]).

This representation does not include the “Add patient” tool, as hospital manage-
ment is not responsible for checking-in new patients. The represented information is al-
ways up to date; and changes in the departments (including new patients) are automat-
ically reflected in the representation thanks to the model-based implementation (i.e., re-
lying on a common, underlying information model).

Figure 9. Hospital map representation.

4. Discussion
Model-based development of software-intensive systems is perceived as complex,

inflexible and restrictive, often requiring users to specify multiple structural and behav-
ioral descriptions. It is therefore not popularly used for the iterative development of
prototypes. In this paper, we demonstrated that a model-based approach can be used to
prototype systems by using model-based development with a twist: (a) detailing the
structure for the system’s information model using a formal metamodel, (b) designing

Figure 8. Location representation—diagram design.

3.2.3. Hospital Map Representation

The hospital map representation is another implementation of the Sirius Diagram
Description mechanism that is used to exemplify a high-level, managerial view on the
entire hospital’s operation (Figure 9). This representation aggregates all of the hospital
departments—as defined in the model—and reflects each of them using the same depart-
ment container of the department representation. The comparison of the numbers at the
top of each department container (presented in Section 3.2.1) can be used by hospital man-
agement to assess the workload of the departments (which was identified as an essential
function of a hospital SA system [5]).

Systems 2021, 9, x FOR PEER REVIEW 11 of 16

The second design relies on the Sirius Diagram Description mechanism and there-
fore visually resembles the department representation. This representation—as illus-
trated in Figure 8—shows the location hierarchy by using a top-level location resource as
a container for the lower level resources. A double-click tool—identical to the one pre-
viously used in the department representation—is applied to the location representa-
tional elements; and it allows an external resource—specified in the model—to be opened
(e.g., the web camera feed of the location).

Figure 8. Location representation—diagram design.

3.2.3. Hospital Map Representation
The hospital map representation is another implementation of the Sirius Diagram

Description mechanism that is used to exemplify a high-level, managerial view on the
entire hospital’s operation (Figure 9). This representation aggregates all of the hospital
departments—as defined in the model—and reflects each of them using the same de-
partment container of the department representation. The comparison of the numbers at
the top of each department container (presented in Section 3.2.1) can be used by hospital
management to assess the workload of the departments (which was identified as an es-
sential function of a hospital SA system [5]).

This representation does not include the “Add patient” tool, as hospital manage-
ment is not responsible for checking-in new patients. The represented information is al-
ways up to date; and changes in the departments (including new patients) are automat-
ically reflected in the representation thanks to the model-based implementation (i.e., re-
lying on a common, underlying information model).

Figure 9. Hospital map representation.

4. Discussion
Model-based development of software-intensive systems is perceived as complex,

inflexible and restrictive, often requiring users to specify multiple structural and behav-
ioral descriptions. It is therefore not popularly used for the iterative development of
prototypes. In this paper, we demonstrated that a model-based approach can be used to
prototype systems by using model-based development with a twist: (a) detailing the
structure for the system’s information model using a formal metamodel, (b) designing

Figure 9. Hospital map representation.

This representation does not include the “Add patient” tool, as hospital management
is not responsible for checking-in new patients. The represented information is always
up to date; and changes in the departments (including new patients) are automatically
reflected in the representation thanks to the model-based implementation (i.e., relying on a
common, underlying information model).

4. Discussion

Model-based development of software-intensive systems is perceived as complex,
inflexible and restrictive, often requiring users to specify multiple structural and behavioral
descriptions. It is therefore not popularly used for the iterative development of prototypes.
In this paper, we demonstrated that a model-based approach can be used to prototype
systems by using model-based development with a twist: (a) detailing the structure
for the system’s information model using a formal metamodel, (b) designing system
representations that capture and introduce behavioral aspects implicitly by implementing
model-based tools that dynamically act on the formally structured information model,

Systems 2021, 9, 12 12 of 16

and (c) demonstrating the prototyped system by using the representations to communicate
and manipulate a sample information model.

Using a metamodel to structure the hospital SA system contributed to formalizing
pertinent knowledge. Conceptual entities were clearly identified, relations between entities
were concretized from somewhat implicit definitions, and their cardinality was explicitly
stated, forming an ontology for hospital operations. By formally modeling the ontology,
we were able to improve some relation-related definitions. While this reflects design deci-
sions and is therefore subjective, it promotes ontology-related discussion with stakeholders,
specifically with respect to the review, refinement and/or reconsideration of the system
design. As our derivation of the ontology was based on specifications and not on existing
ontologies, a critique may be raised claiming that our somewhat bottom-up approach can
lead to an inflation of domain-specific ontologies. While existing ontologies may be used
as a stepping stone for identifying a domain-specific ontology, a full investigation and/or
implementation of existing ontologies can be a hurdle in practice, especially when proto-
typing a system. However, this should not be a barrier for ontology-based engineering [26],
and introducing a grass roots ontology [45]—as we demonstrated—is a legitimate trade-off
when prototyping.

The standardized implementation of the metamodel (using the EMOF-compliant
Ecore) forms a basis for rigorous systems prototyping and specifically for creating func-
tional, model-based representations. With previous research concerning Ecore-based sys-
tems implementation focusing primarily on metamodeling aspects [41,42,46], our approach
offers a more holistic view of model-based systems prototyping. Our approach corre-
sponds with a previously suggested model-based user-interface prototyping approach [47],
as both rely on using a graphical language to compose representations on top of an
Ecore metamodel. However, whereas the previous publication discusses prototyping
only with respect to the model-based generation of a web user-interface, which remains
static (post generation), our implementation is fully functional, providing users with a real
model-based system experience that features dynamically updated representations and
information models.

Employing a model-based design approach allowed us to explore the domain of hos-
pital situational awareness as a hospital design challenge. Our model-based prototyping
facilitates receiving timely feedback during development, which is considered highly desir-
able but is also extremely challenging to achieve [21]. Additionally, our approach allows for
the creation of narratives, which Luokkala and Virrantaus considered essential to SA with-
out providing a technical solution [19]. Specifically, the ability to instantiate the metamodel
into concrete situations (e.g., our sample model) and demonstrate them to stakeholders
using functional representations provides a possible technical solution. Characterizing the
model and the representations raised multiple questions, with the intention of receiving
feedback with respect to users’ concepts and preferences (e.g., regarding user interfaces) as
well as to the developers’ understanding and suggestions. Some design-related questions
were raised in the form of tangible, prototyped alternatives (e.g., the two alternative loca-
tion representations). Furthermore, by incorporating tools such as the “Add patient” tool,
we are able to concretize behavioral aspects of the system and of the hospital operation
and communicate service design with relevant stakeholders while eliciting their take on
the desirable behavior.

Our working prototype also allows us to demonstrate, suggest and explore further
possibilities of using and extending the SA system. In the COVID-19 departments, pa-
tients were often placed in isolated environments and were knowingly monitored remotely
using surveillance cameras. While trivial to implement, our double-click extension tool
for viewing a video feed (used in several representations) was considered essential for
demonstrating the ability of our SA system to interact with other systems and specifically
web applications and devices. This specific demonstration allows us to show how an exist-
ing array of network-connected cameras—deployed to monitor individual patients—can
be linked with the SA information system, allowing a nurse or a doctor to gain quick

Systems 2021, 9, 12 13 of 16

access to the patient’s live video feed. We are also able to demonstrate collaborative work
using the system, specifically showing how changes are immediately reflected in various
representations. Additionally, new features were suggested based on the location tree
representation (Figure 7): the representation can be extended to accommodate patients who
have not yet been assigned a location, indicating an operational problem (e.g., overcapacity,
lack of resources), and the representation can also reflect the availability of unoccupied
locations (and perhaps hospital beds as an additional resource), addressing the well-known
operational problem of allocating rooms to patients (see, for example, [6]). The commu-
nication of our design decisions with stakeholders forms a basis not only for the system
specification but also for understanding and possibly even improving operations. For ex-
ample, our metamodel depicts a scenario in which the hospital manages its doctors as a
common resource (expressed by compositional relation of the hospital in Figure 3) and
assigns them (dynamically) to hospital departments (the bi-directional relation between
“department” and “doctor” in Figure 3). This centralized approach can be contrasted with
an alternative approach in which doctors are a dedicated resource of each department.
The developed SA system prototype may also be further developed as a digital twin of the
hospital, supporting the established roles of decision-support tools and design tools that
are attributed to healthcare product–service systems [2].

In comparison with formal modeling languages—which are considered less suitable
for communication with users as they are typically aimed for developers [48]—the above
discussion demonstrates how our prototyping method facilitates the communication be-
tween systems designers and various stakeholders (mainly, our prospective users) using a
familiar user-oriented terminology. The implementation also suggests that using a working
prototype is an effective mechanism for product-service systems modeling and that it may
be used for the advancement of crucial related aspects, such as business model develop-
ment, enterprise transformation and the alignment between information technologies and
business [45].

With respect to technical aspects, the design of our representations implicitly captures
behavioral design. This is another tradeoff (in our model-based prototyping method) be-
tween being strict and being agile. Referring to the ability to reverse-engineer the prototype
(for example, in order to develop a fully operational system), we consider the graphical
design interface of Sirius preferable to source code. We suggest future research to exam-
ine executable graphical representations—such as Sirius—as a means to extract implicit
design knowledge and perhaps even standardize a graphical notation for this purpose.
We provide a manual reverse engineering example in Figure 10, demonstrating how the
implicit behavior specified in the Sirius-based “Add patient” tool can be transformed into
an explicit behavioral design in the form of a SysML sequence diagram. The sequence
diagram is not executable by a potential user by itself and is therefore less appropriate as
a system prototype (compared with our Sirius-based specification). Still, automatically
generating a standardized design artifact—such as a sequence diagram—can facilitate the
communication and documentation of the prototype design.

Concerning the tools used, we found both Ecore Tools and Sirius to be mature enough
for prototyping. Specifically, we found the ability to immediately apply changes to the
model-based representations to be very effective in prototyping. The prototype was de-
veloped by a single systems engineer in half the time it took another team of systems
engineers and software engineers—working in parallel—to develop a similar prototype
using a non-model-based development approach. However, since Sirius was not originally
designed for prototyping systems, it lacks attractive representational elements. We suggest
that additional model-based representational elements—such as gauges and indicators
reflecting scales, quantitative measurements, categories, etc.—be incorporated into Sirius
in order to promote its use for prototyping and, consequently, promote the adoption of
model-based development by practitioners.

Systems 2021, 9, 12 14 of 16Systems 2021, 9, x FOR PEER REVIEW 14 of 16

(a) (b)

Figure 10. A sequence diagram can be extracted from a Sirius specification. (a) An excerpt from the Sirius specification,
showing the graphical nodes for creating the “Add patient” tool; (b) a suggested sequence diagram that captures the
“Add patient” design. Numbers in curly brackets are used to correlate between the Sirius specification and the derived
sequence diagram.

5. Conclusions
In this paper, we presented and reflected on a real-world system prototype developed

using a model-based prototyping approach. Our approach included the development of a
metamodel—exhibiting a formal ontology derived from a set of requirements—and a set of
model-based representations applied to an instantiated model. Our approach relies on ex-
isting, open-source tools to address the reported challenges of creating domain-specific
models and using them productively [32]. Additionally, in the case of Sirius, we use the
tool beyond its original, intended usage scenario (designing modeling workbenches) to
prototype a functional SA information system. The implementation supported the demon-
stration of system functionality and facilitated communication with stakeholders regarding
both the underlying ontology of the information system (e.g., centralized vs. decentralized
resource allocation), the graphical design (e.g., feedback regarding the proposed location
representation alternatives) and the operational process definitions (e.g., patient check-in).
Thereby, it addresses the identified challenges of creating narratives for situational
awareness [19] and of conducting a meaningful and timely discourse with nonexpert
stakeholders in model-based development in order to receive feedback [21]. The imple-
mentation attests to the validity of our approach and specifically to its practical nature.

Our model-based prototyping approach alleviates some of the difficulties attributed
to model-based development and, specifically, allows behavioral aspects to be captured
implicitly via the rigorous, model-based graphical design of representations. Reflecting
on our hospital SA system prototype implementation, we proposed further research
which may improve and extend the use of model-based graphical design tools to im-
prove the state of the art of model-based design.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Figure 10. A sequence diagram can be extracted from a Sirius specification. (a) An excerpt from the Sirius specification,
showing the graphical nodes for creating the “Add patient” tool; (b) a suggested sequence diagram that captures the
“Add patient” design. Numbers in curly brackets are used to correlate between the Sirius specification and the derived
sequence diagram.

5. Conclusions

In this paper, we presented and reflected on a real-world system prototype developed
using a model-based prototyping approach. Our approach included the development of a
metamodel—exhibiting a formal ontology derived from a set of requirements—and a set
of model-based representations applied to an instantiated model. Our approach relies on
existing, open-source tools to address the reported challenges of creating domain-specific
models and using them productively [32]. Additionally, in the case of Sirius, we use the
tool beyond its original, intended usage scenario (designing modeling workbenches) to
prototype a functional SA information system. The implementation supported the demon-
stration of system functionality and facilitated communication with stakeholders regarding
both the underlying ontology of the information system (e.g., centralized vs. decentralized
resource allocation), the graphical design (e.g., feedback regarding the proposed location
representation alternatives) and the operational process definitions (e.g., patient check-in).
Thereby, it addresses the identified challenges of creating narratives for situational aware-
ness [19] and of conducting a meaningful and timely discourse with nonexpert stakeholders
in model-based development in order to receive feedback [21]. The implementation attests
to the validity of our approach and specifically to its practical nature.

Our model-based prototyping approach alleviates some of the difficulties attributed
to model-based development and, specifically, allows behavioral aspects to be captured
implicitly via the rigorous, model-based graphical design of representations. Reflecting on
our hospital SA system prototype implementation, we proposed further research which
may improve and extend the use of model-based graphical design tools to improve the
state of the art of model-based design.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Systems 2021, 9, 12 15 of 16

Acknowledgments: We wish to thank Obeo for providing us with an evaluation license of Obeo
Designer Team—a commercial release of the Eclipse tools used in this work (which includes an
additional, proprietary collaborative work capability).

Conflicts of Interest: The author declares no conflict of interest.

References
1. Tukker, A. Eight types of product–service system: Eight ways to sustainability? Experiences from SusProNet. Bus. Strat. Environ.

2004, 13, 246–260. [CrossRef]
2. Xing, K.; Rapaccini, M.; Visintin, F. PSS in healthcare: An under-explored field. Proc. CIRP 2017, 64, 241–246. [CrossRef]
3. Chernichovsky, D.; Kfir, R. The State of the Acute Care Hospitalization System in Israel: The Current Situation; Taub Center: Jerusalem,

Israel, 2019.
4. Toner, E.S. Creating situational awareness: A systems approach. In Medical Surge Capacity: Workshop Summary; National

Academies Press: Washington, DC, USA, 2009.
5. Moore, P.; Thomas, A.; Tadros, G.; Barolli, L.; Pham, H.V. Situational Awareness for Enhanced Patient Management. In Proceedings

of the 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems, Taichung, Taiwan,
3–5 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 493–498.

6. Landman, A.; Teich, J.M.; Pruitt, P.; Moore, S.E.; Theriault, J.; Dorisca, E.; Harris, S.; Crim, H.; Lurie, N.; Goralnick, E. The Boston
Marathon bombings mass casualty incident: One emergency department’s information systems challenges and opportunities.
Ann. Emerg. Med. 2015, 66, 51–59. [CrossRef]

7. Franke, U.; Brynielsson, J. Cyber situational awareness–a systematic review of the literature. Comp. Secur. 2014, 46, 18–31.
[CrossRef]

8. Muccini, H.; Sharaf, M. Caps: Architecture Description of Situational Aware Cyber Physical Systems. In Proceedings of the 2017
IEEE International Conference on Software Architecture (ICSA), Gothenburg, Sweden, 3–7 April 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 211–220.

9. Bunker, D. Who do you trust? The digital destruction of shared situational awareness and the COVID-19 infodemic. Int. J.
Inf. Manag. 2020, 55, 102201. [CrossRef]

10. Meydan, C.; Haklai, Z.; Gordon, B.; Mendlovic, J.; Afek, A. Managing the increasing shortage of acute care hospital beds in Israel.
J. Eval. Clin. Pract. 2015, 21, 79–84. [CrossRef]

11. Topaz, M.; Bar-Bachar, O.; Admi, H.; Denekamp, Y.; Zimlichman, E. Patient-centered care via health information technology:
A qualitative study with experts from Israel and the US. Inf. Health Soc. Care 2020, 45, 217–228. [CrossRef]

12. Schulz, S.; Stegwee, R.; Chronaki, C. Standards in healthcare data. In Fundamentals of Clinical Data Science; Springer: Cham,
Switzerland, 2019; pp. 19–36.

13. Moreno-Conde, A.; Parra-Calderón, C.L.; Sánchez-Seda, S.; Escobar-Rodríguez, G.A.; López-Otero, M.; Cussó, L.; del-Cerro-
García, R.; Segura-Sánchez, M.; Herrero-Urigüen, L.; Martí-Ras, N.; et al. ITEMAS ontology for healthcare technology innovation.
Health Res. Policy Syst. 2019, 17, 47. [CrossRef]

14. Husáková, M.; Bureš, V. Formal Ontologies in Information Systems Development: A Systematic Review. Information 2020, 11, 66.
[CrossRef]

15. Yip, M.H.; Phaal, R.; Probert, D.R. Characterising product-service systems in the healthcare industry. Technol. Soc. 2015, 43,
129–143. [CrossRef]

16. Li, X.; Chen, C.H.; Zheng, P.; Wang, Z.; Jiang, Z.; Jiang, Z. A Knowledge Graph-Aided Concept–Knowledge Approach for
Evolutionary Smart Product–Service System Development. J. Mech. Des. 2020, 142. [CrossRef]

17. Lim, K.Y.H.; Zheng, P.; Chen, C.H.; Huang, L. A digital twin-enhanced system for engineering product family design and
optimization. J. Manuf. Syst. 2020, 57, 82–93. [CrossRef]

18. Endsley, M.R. Theoretical underpinnings of situation awareness: A critical review. In Situation Awareness Analysis and Measurement;
Endsley, M.R., Garland, D.J., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2000.

19. Luokkala, P.; Virrantaus, K. Developing information systems to support situational awareness and interaction in time-pressuring
crisis situations. Saf. Sci. 2014, 63, 191–203. [CrossRef]

20. Seppänen, H.; Virrantaus, K. Shared situational awareness and information quality in disaster management. Saf. Sci. 2015, 77,
112–122. [CrossRef]

21. Madni, A.M.; Sievers, M. Model-based systems engineering: Motivation, current status, and research opportunities. Syst. Eng.
2018, 21, 172–190. [CrossRef]

22. Yang, L.; Cormican, K.; Yu, M. Ontology-based systems engineering: A state-of-the-art review. Comp. Ind. 2019, 111, 148–171.
[CrossRef]

23. Ko, E.J.; Lee, H.J.; Lee, J.W. Ontology-based context modeling and reasoning for u-healthcare. IEICE Trans. Inf. Syst. 2007, 90,
1262–1270. [CrossRef]

24. Kim, J.; Kim, J.; Lee, D.; Chung, K.Y. Ontology driven interactive healthcare with wearable sensors. Multimedia Tools Appl. 2014,
71, 827–841. [CrossRef]

25. Dieng-Kuntz, R.; Minier, D.; Růžička, M.; Corby, F.; Corby, O.; Alamarguy, L. Building and using a medical ontology for
knowledge management and cooperative work in a health care network. Comp. Biol. Med. 2006, 36, 871–892. [CrossRef]

http://doi.org/10.1002/bse.414
http://doi.org/10.1016/j.procir.2017.03.068
http://doi.org/10.1016/j.annemergmed.2014.06.009
http://doi.org/10.1016/j.cose.2014.06.008
http://doi.org/10.1016/j.ijinfomgt.2020.102201
http://doi.org/10.1111/jep.12246
http://doi.org/10.1080/17538157.2019.1582055
http://doi.org/10.1186/s12961-019-0453-y
http://doi.org/10.3390/info11020066
http://doi.org/10.1016/j.techsoc.2015.05.014
http://doi.org/10.1115/1.4046807
http://doi.org/10.1016/j.jmsy.2020.08.011
http://doi.org/10.1016/j.ssci.2013.11.014
http://doi.org/10.1016/j.ssci.2015.03.018
http://doi.org/10.1002/sys.21438
http://doi.org/10.1016/j.compind.2019.05.003
http://doi.org/10.1093/ietisy/e90-d.8.1262
http://doi.org/10.1007/s11042-012-1195-9
http://doi.org/10.1016/j.compbiomed.2005.04.015

Systems 2021, 9, 12 16 of 16

26. Hu, B.; Dasmahapatra, S.; Dupplaw, D.; Lewis, P.; Shadbolt, N. Reflections on a medical ontology. Int. J. Human-Comp. Stud. 2007,
65, 569–582. [CrossRef]

27. Zeshan, F.; Mohamad, R. Medical ontology in the dynamic healthcare environment. Proc. Comp. Sci. 2012, 10, 340–348. [CrossRef]
28. HL7 FHIR. Available online: http://hl7.org/fhir/toc.html (accessed on 6 December 2020).
29. Ramos, A.L.; Ferreira, J.V.; Barceló, J. Model-based systems engineering: An emerging approach for modern systems. IEEE Trans.

Syst. Man Cybernet. Part C Appl. Rev. 2011, 42, 101–111. [CrossRef]
30. McDermott, T.A.; Hutchison, N.; Clifford, M.; Van Aken, E.; Salado, A.; Henderson, K. Benchmarking the Benefits and Current

Maturity of Model-Based Systems Engineering across the Enterprise; Technical Report SERC-2020-SR-001; Stevens Institute of
Technology, Systems Engineering Research Center: Hoboken, NJ, USA, 2020.

31. Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging digital twin technology in model-based systems engineering. Systems 2019,
7, 7. [CrossRef]

32. Hölldobler, K.; Michael, J.; Ringert, J.O.; Rumpe, B.; Wortmann, A. Innovations in model-based software and systems engineering.
J. Object Technol. 2019, 18, 1–60. [CrossRef]

33. Jongeling, R.; Carlson, J.; Cicchetti, A. Impediments to Introducing Continuous Integration for Model-Based Development in
Industry. In Proceedings of the 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
Kallithea, Greece, 28–30 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 434–441.

34. Liles, D.H.; Presley, A.R. Enterprise modeling within an enterprise engineering framework. In Proceedings of the 28th Conference
on Winter Simulation, Coronado, CA, USA, 8–11 December 1996; pp. 993–999.

35. Torchiano, M.; Bruno, G. Enterprise modeling by means of UML instance models. ACM SIGSOFT Softw. Eng. Notes 2003, 28, 12.
[CrossRef]

36. Vernadat, F. Enterprise Modeling in the context of Enterprise Engineering: State of the art and outlook. Int. J. Prod. Manag. Eng.
2014, 2, 57–73. [CrossRef]

37. Camburn, B.; Viswanathan, V.; Linsey, J.; Anderson, D.; Jensen, D.; Crawford, R.; Wood, K. Design prototyping methods: State of
the art in strategies, techniques, and guidelines. Des. Sci. 2017, 3. [CrossRef]

38. Object Management Group. System Modeling Language Formal Specification, Version 1.6; Object Management Group: Milford, MA,
USA, 2019.

39. Eclipse Foundation. ECORE. Available online: https://wiki.eclipse.org/Ecore (accessed on 6 December 2020).
40. Object Management Group. Meta Object Facility Formal Specification, Version 2.5.1; Object Management Group: Milford, MA,

USA, 2016.
41. Bánfai, B.; Ulrich, B.; Török, Z.; Natarajan, R.; Ireland, T. Implementing an HL7 version 3 modeling tool from an Ecore model.

In Medical Informatics in a United and Healthy Europe; IOS Press: Amsterdam, The Netherlands, 2009; Volume 150, pp. 157–161.
42. García-Holgado, A.; García-Peñalvo, F.J. Validation of the learning ecosystem metamodel using transformation rules. Future Generat.

Comp. Syst. 2019, 91, 300–310. [CrossRef]
43. Eclipse Sirius. Available online: https://www.eclipse.org/sirius/overview.html (accessed on 6 December 2020).
44. Ecore Tools. Available online: https://www.eclipse.org/ecoretools/ (accessed on 29 January 2021).
45. Sandkuhl, K.; Fill, H.-G.; Hoppenbrouwers, S.; Krogstie, J.; Matthes, F.; Opdahl, A.; Schwabe, G.; Uludag, Ö.; Winter, R.

From expert discipline to common practice: A vision and research agenda for extending the reach of enterprise modeling. Bus. Inf.
Syst. Eng. 2018, 60, 69–80. [CrossRef]

46. Schätz, B. Formalization and rule-based transformation of EMF Ecore-based models. In Proceedings of the International
Conference on Software Language Engineering, Toulouse, France, 29–30 September 2008; Springer: Berlin/Heidelberg, Germany,
2008; pp. 227–244.

47. Machado, M.; Couto, R.; Campos, J.C. MODUS: Model-based user interfaces prototyping. In Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, Lisbon, Portugal, 26–29 June 2017; pp. 111–116.

48. Jørgensen, H.D. Interactive Process Models. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim,
Norway, 2004.

http://doi.org/10.1016/j.ijhcs.2007.02.005
http://doi.org/10.1016/j.procs.2012.06.045
http://hl7.org/fhir/toc.html
http://doi.org/10.1109/TSMCC.2011.2106495
http://doi.org/10.3390/systems7010007
http://doi.org/10.5381/jot.2019.18.1.r1
http://doi.org/10.1145/638750.638784
http://doi.org/10.4995/ijpme.2014.2326
http://doi.org/10.1017/dsj.2017.10
https://wiki.eclipse.org/Ecore
http://doi.org/10.1016/j.future.2018.09.011
https://www.eclipse.org/sirius/overview.html
https://www.eclipse.org/ecoretools/
http://doi.org/10.1007/s12599-017-0516-y

	Introduction
	Operational Motivation and Case Study Background
	System Development Concerns

	Methods
	Results
	Metamodel
	Representations
	Department Representation
	Location Representation
	Hospital Map Representation

	Discussion
	Conclusions
	References

