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Abstract: This paper is motivated by the notion that coupling systems allows for mitigating the
failure of individual ones. We present a novel approach to determining asymptotic stability and
robustness of a network consisting of coupled dynamical systems, where individual system dynamics
are represented through polynomial or rational functions. The analysis relies on a local analysis;
thus, making it computationally implementable. We present an efficient computational method
that relies on semidefinite programming. Importantly, for cases where multiple equilibrium points
exist, we show how to determine regions around an asymptotically stable equilibrium point that
bounds solutions. These regions increase when systems are coupled as we observe when applying
the presented analysis framework to a mathematical model of a continuous stirred tank reactor.
Importantly, the presented work has implications to other fields as well.

Keywords: coupled nonlinear systems; stability; robustness; semidefinite programming; sum of
squares decomposition; continuous stirred tank reactor

1. Introduction

We are currently experiencing rapid digitalisation and automatisation in industry and society,
which are culminating in the notions of smart factories, smart cities, the industry of things, and the
internet of things. This makes networked systems and their control increasingly gaining in
importance [1–3]. Significantly, networked sensor and actuator systems are also already pervasive
in many traditional industries, for instance, the petroleum industry [4]. Additionally, networks of
coupled dynamical systems appear also in other areas such as modelling of the heart [5] and of flocking
behaviour [2]. An important question in network science, which links the dynamics of individual
nodes with the emergent properties of macroscopic networks [6], is how much failure a networked
system can tolerate. From the perspective of control engineering, a networked system can be viewed
as a system of coupled dynamical systems and the question can be formulated in terms of asymptotic
stability, the ability to return to a steady state, and robustness, the ability to withstand failures and
perturbations.

In recent years, tools have been developed to determine whether a given complex network,
consisting of connected systems, is robustly controllable, that is, whether any desired state can be
reached from any initial state for almost all values of network edge-weights. For linear systems,
conditions based on structural controllability, which identifies the minimal number of inputs
or controllable nodes for system controllability of a complex network, were developed in [7,8].
For nonlinear systems, an equivalent approach based on feedback vertex set control, which is an
attractor-based control method and requires thorough system knowledge, has been presented in [9].
However, these works and the majority of related ones rather consider systems that do not represent
dynamical processes, as highlighted in [10], where the authors studied networks with node behaviour,
which better represents dynamical behaviour that is typical for many systems, and examined how
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this influences the properties of the network. Using their analysis framework, they generated more
realistic, albeit still simplified, results.

In this work, we provide certificates for asymptotic stability and robustness of complex networked
systems consisting of coupled realistic system models through local analysis, which makes the
approach computationally implementable and does not require simplifying the individual node
dynamics. For this, we use so-called barrier certificates [11] and semidefinite programming [12,13].
For dynamical systems, the authors of [11] introduced a safety verification method that relies on state
functions termed barrier certificates. Such functions form contour levels and, thus, create different
regions in the state space. For a given set of initial conditions, the zero-level set of a barrier certificate
bounds corresponding system trajectories and, by doing so, separates safe from unsafe regions.
This means that one obtains certificates or proofs of system safety without the need to compute system
behaviour explicitly. The use of different types of barrier certificates is popular in fields as diverse
as biological model-testing, using the noise inherent in such systems [14], and avoiding collisions in
multi-robot systems [15]. For our results, barrier certificates provide means to assess the set of initial
conditions that will converge towards a desired operating point.

Related work has been presented in [16], where global stability for coupled differential equations
was investigated assuming a Lyapunov function [17] of the form V(x) = x − x∗ ln x, where x∗ is a
positive equilibrium point. This approach was later extended to coupled systems with time-varying
coupling [18]. As a novelty, the approach presented in this paper provides not only means to search
for a Lyapunov function that guarantees asymptotic stability of the coupled system, for systems with
multiple equilibria, it also uses Lyapunov theory to provide regions of attraction, even when model
parameters are uncertain (robustness).

In many areas of research, realistic dynamical system models are based on ordinary differential
equations described by polynomial or rational functions. Assuming such models, in Sections 2.1 and 2.2,
we provide results on testing for asymptotic stability and robustness of a networked system through
a local analysis of the system. Locality makes the analysis feasible and allows for its computational
implementation, as we show in Section 2.3. Meanwhile, for simplicity, we first assume all-to-all
coupling, in Section 2.4, we extend the results to arbitrary coupling topologies. Section 3 provides an
application to process engineering, where we analyse the stability and robustness of a high biomass
concentration steady state for connected continuous stirred tank reactors. Finally, we discuss our
results and conclude the paper in Section 4.

2. Asymptotic Stability of Coupled Dynamical Systems

In this paper, we consider bidirectional coupling only. Furthermore, let us consider N dynamical
systems that are linearly all-to-all coupled. Then, we represent the i-th system through

ẋi = fi(xi) +
N

∑
j=1

kD(xj − xi), (1)

where fi : Rn → Rn describes the system’s dynamics for all i, i ∈ {1, 2, . . . , N}, x = [x1 · · · xN ]
T,

xi(t) ∈ Rn, and D ∈ Rn×n. Vector x is the state vector. Matrix D is the matrix that denotes the variables
that are used in the coupling; that is, D(k,l) 6= 0 if and only if states xi(k) and xj(l) are coupled, for all
i, j and i 6= j. Positive constant k corresponds to the coupling strength. Next, we provide results on
asymptotic stability of the coupled system based on Lyapunov theory.

2.1. Unique Equilibrium Point

First, let us assume that the networked system described by N coupled systems given by
Equation (1) has a unique global equilibrium point. Without loss of generality, let it be the origin;
otherwise, the equilibrium point can be shifted to the origin through a change of variables. Moreover,
we assume that ẋ1 = f1(x1) is asymptotically stable. We do this, because, without proof, the networked
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system can only be asymptotically stable if at least one individual system is asymptotically stable,
whose state we denote by x1, without loss of generality. If we consider all other systems to be
similar to this system but to possess a certain amount of bounded parameter uncertainty then
condition (4), which we derive in the following, guarantees that the coupled system is asymptotically
stable. This allows us to assess the robustness of a networked system.

Now, consider the following Lyapunov function,

V(x) =
N

∑
i=2

(
1
2

1
N − 1

xT
1 Mx1 + V̄(Xi)

)
=

N

∑
i=2

Ṽ(x1, Xi), (2)

where Xi = xi − x1, M = MT � 0, and Ṽ(x1, Xi) ≥ 0. Moreover, Ṽ(x1, Xi) > 0 if neither x1 = 0 nor
Xi = 0, for all i. Thus, V(x) > 0 unless x = 0. Then,

V̇(x) =
N

∑
i=2

(
1
2

1
N − 1

(
ẋT

1 Mx1 + xT
1 Mẋ1

)
+ ˙̄V(Xi)

)
=

N

∑
i=2

(
1

N − 1
xT

1 Mẋ1 +
˙̄V(Xi)

)

=
N

∑
i=2

(
1

N − 1
xT

1 M

(
f1(x1) + kD

N

∑
j=2

Xj

)
+

∂V̄(Xi)

∂Xi
( fi(xi)− f1(x1)− kNDXi)

)

=
N

∑
i=2

(
1

N − 1
xT

1 M f1(x1) + xT
1 kMDXi +

∂V̄(Xi)

∂Xi
( fi(xi)− f1(x1)− kNDXi)

)
. (3)

The second equality in the first line of Equation (3) follows from the symmetry of M. Thus, if

1
N − 1

xT
1 M f1(x1) + xT

1 kMDXi +
∂V̄(Xi)

∂Xi
( fi(xi)− f1(x1)− kNDXi) < 0 (4)

holds for all i unless x1 = 0 and Xi = 0 for all i, and, thus, unless x = 0, then V̇ < 0 unless
x = 0, which guarantees asymptotic stability of the coupled system. Finally, for all i, we consider the
differences in function fi(xi) to depend on r real parameters that are uncertain but whose values are
bounded. Let these parameters be elements of vector q ∈ Q ⊂ Rr. Then, we can rewrite condition (4)
by letting g(q1, x1) ≡ f1(x1) and g(qi, xi) ≡ fi(xi). In this case, if condition (4) holds, for all x1, xi ∈ Rn

and all q1, qi ∈ Q, then asymptotic stability of the coupled system is guaranteed.

2.2. Multiple Equilibrium Points

Second, if the networked system possesses multiple equilibrium points, then inequality (4) can
only hold in a certain region of the state space. In order to estimate this region, we assume, again,
that the equilibrium point, whose stability properties we wish to investigate, is the origin. Then,
if inequality (4) holds for Ṽ(x1, Xi) < c, c ∈ R, c > 0, and all i then Ṽ(x1, Xi) decreases with time for all
i and, thus, so does V(x), which means that the origin is asymptotically stable in the region bounded
by V(x) = c. As we will show in Section 3, in addition to above robustness analysis, determining this
region allows us to assess how far a system can deviate from a particular steady state and still remain
attracted by the latter.
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2.3. Computational Implementation

2.3.1. Coupled Linear Systems

Consider N coupled linear dynamical systems of the form ẋ1 = Ax and ẋi = Bx for all i > 1,
where A, B ∈ Rn×n, matrix A is stable, and matrix B is a matrix that is similar to A, however, with some
uncertain but bounded entries. Then, for V̄(Xi) = XT

i PXi, where P = PT � 0, inequality (4) becomes

xT
1

(
M
(

1
N − 1

A− kD
)
+ P(A− kND)

)
x1

+xT
1 (kMD + P(kND− B)) xi + xT

i P(kND− A)x1 + xT
i P(B− kND)xi < 0. (5)

Given k, the problem of determining matrices M and P such that Equation (2) and inequality (5)
hold can be cast as a semidefinite programme of the following form

given A, B, D, N, k

search for M, P

subject to M = MT � 0, P = PT � 0, (5). (6)

Problem (6) is a classic case of linear matrix inequalities [19] that can be solved efficiently using,
for example, YALMIP, a free, third-party MATLAB toolbox [20], which can handle bounded uncertainties
in B [21] to obtain robustness certificates.

2.3.2. Coupled Nonlinear Systems

For nonlinear systems, we investigate those ones whose dynamics are modelled using polynomial
or rational functions. Consider the real-valued polynomial function F(x) of degree 2d, x ∈ Rn.
Testing for non-negativity is NP-hard [22]. However, a sufficient condition for F(x) to be nonnegative
is that it can be decomposed into a sum of squares (SOS) [23]:

F(x) = ∑
i

f 2
i (x) ≥ 0, (7)

where fi are polynomial functions. Now, F(x) is a SOS if and only if there exists a positive semidefinite
matrix R and

F(x) = ∑
i

f 2
i (x) = χTRχ, χ = [1, x(1), x(2), . . . , x(n), x(1)x(2), . . . , xd

(n)]. (8)

The entries of vector χ consist of all monomial combinations of the elements of vector x up to
degree d (including x0

(i) = 1) and, thus, its length is ` = (n+d
d ). Note that R is not necessarily unique.

However, Equation (8) poses certain constraints on R of the form trace(AjR) = cj, where Aj and cj are
appropriate matrices and constants respectively. As an illustration, in the following, we reproduce
Example 3.5 of [23].

Consider the following polynomial function, where z1 = x2
1, z2 = x2

2, z3 = x1x2:

F(x) = 2x4
1 + 2x3

1x2 − x2
1x2

2 + 5x4
2

=

 x2
1

x2
2

x1x2


T  q11 q12 q13

q12 q22 q23

q13 q23 q33


 x2

1
x2

2
x1x2


= q11x4

1 + q22x4
2 + (q33 + 2q12)x2

1x2
2 + 2q13x3

1x2 + 2q23x1x3
2.
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This leads to the following set of linear equalities:

q11 = 2, q22 = 5, q33 + 2q12 = −1, 2q13 = 2, 2q23 = 0.

Thus, j = 1, . . . , 5, and, for example, c1 = 2, c3 = −1,

A1 =

 1 0 0
0 0 0
0 0 0

 , and A3 =

 0 1 0
1 0 0
0 0 1

 .

In general, in order to find R, we solve the optimisation problem associated with the following
semidefinite program:

minimise trace(A0R)

subject to trace(AjR) = cj, j = 1, . . . , m

R = RT � 0. (9)

In this paper, to solve SOS programmes, we use SOSTOOLS [24], a free, third-party MATLAB toolbox.
For instance, the problem of determining Lyapunov function Ṽ(x1, Xi), given by Equation (2), such that
(4) holds can be cast as follows

given f1(x1), fi(xi), D, N, k

search for Ṽ(x1, Xi)

subject to −ε(xT
1 x1 + xT

i xi) + Ṽ(x1, Xi) is SOS,

−ε(xT
1 x1 + xT

i xi)− ˙̃V(x1, Xi) is SOS, 0 < ε� 1. (10)

Here, some additional remarks:

• Consider a rational function F(x), F(x) = f (x)
g(x) , where f (x) and g(x) are polynomial functions.

Then, F(x) ≥ 0 if (9) is feasible with χTRχ = F(x)g2(x) or with χTRχ = F(x)g(x) if g(x) > 0.
• If

F(x) + p(x)h(x) = ∑
i

g2
i (x) ≥ 0, p(x) ≥ 0,

h(x) =

{
≤ 0 if ai ≤ x(i) ≤ bi ∀i
> 0 otherwise

,

then F(x) ≥ 0 if ai ≤ x(i) ≤ bi for all i, where ai, bi are constants. This can be used to show that
F(x) is nonnegative in a specific region of the state and/or parameter space.

• Finally, the computational time necessary to solve SOS decomposition problems scales badly with
the size of the problem, as the length of vector is ` = (n+d

d ).

2.4. Different Coupling Configurations

The presented results can be extended to any symmetric linear coupling topology with
corresponding Laplacian matrix −C by letting V̄(Xi) = XT

i PXi, for all i, in Equation (2), where P =

PT � 0. To show this, first, we define the Laplacian matrix of the completely connected graph given by
−U ∈ RN×N through

−U = NIN − E � 0, E = eeT, e = [1 . . . 1]T. (11)

Note that the eigenvalues of −U are λ1 = 0 and λi = N for all i > 1. Then, the following lemma
establishes a relation between C and U.
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Lemma 1. Let U, C ∈ RN×N , where −U is the Laplacian matrix of the completely connected graph defined in
Equation (11) and −C is a symmetric Laplacian matrix of rank (N − 1). Then, for all y ∈ RN ,

yTCy ≤ λmin(−C)
N

yTUy, (12)

where λmin(−C) denotes the smallest positive eigenvalue of the matrix −C.

Proof. First, note that C(i,j 6=i) ≥ 0. Now, UE = 0 and CE = 0. Hence, UU = −NU and CU = −NC.
By the Spectral Theorem, there exists a unitary matrix S such that S−1 = ST and −SCST = Λ−C,
where Λ−C is the diagonal matrix containing the eigenvalues of −C and, without loss of generality,
its first entry is 0. Moreover,

SCUST = SCSTSUST = −SCSTN = SCSTΛU

implies that SUST = ΛU , where ΛU is the diagonal matrix containing the eigenvalues of U, which are
−N but for the first one, which is 0. Now, for all y ∈ RN and ΛC being the diagonal matrix containing
the eigenvalues of C,

yTCy = yTSTΛCSy = vTΛCv ≤ λmin(−C)
N

vTΛUv =
λmin(−C)

N
yTSTΛUSy =

λmin(−C)
N

yTUy,

which completes the proof.

Consider, again, difference Xi ≡ xi − x1, where Xi ∈ Rn and X1 = 0 [25]. Let matrix F ∈ RN×N

be defined as follows,

F =


0 0 0 . . . 0
−1 1 0 . . . 0
−1 0 1 . . . 0

...
...

...
. . .

...
−1 0 0 . . . 1

 . (13)

Then,
X = (F⊗ In)x, X, x ∈ RNn, (14)

and
Ẋ = (F⊗ In)ẋ. (15)

Moreover, note that for symmetric coupling determined by Laplacian matrix −C, C = CF and
FU = −NF. Let f̃ (x) = [ f1(x1) . . . fN(xN)]

T. Then,
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N

∑
j=2

˙̄V(Xi) = XT(IN ⊗ P)Ẋ = XT(F⊗ P)ẋ

= XT(F⊗ P)( f̃ (x) + k(C⊗ D)x)

= XT(F⊗ P)( f̃ (x) + k(CF⊗ D)x)

= XT(F⊗ P)( f̃ (x) + k(C⊗ D)X)

≤ XT(F⊗ P)( f̃ (x) + αk(U ⊗ D)X)

=
N

∑
i=2

XT
i P( fi(xi)− f1(x1)) + αkXT(FU ⊗ PD)X

=
N

∑
i=2

XT
i P( fi(xi)− f1(x1))− αNkXT(F⊗ PD)X

=
N

∑
i=2

XT
i P( fi(xi)− f1(x1)− αkNDXi),

where the inequality follows from Lemma 1, αN = λmin(−(FC)gL), and (FC)gL is the matrix obtained
by deleting the first row and the first column of FC. It is the so-called grounded Laplacian [26,27],
where the deleted row and deleted column correspond to the grounded variable—in our case it is x1.
A grounded Laplacian matrix is a principal sub-matrix of the Laplacian matrix. The fact that, for square
matrices A, B, eig(AB) = eig(BA), has been proven in [28] and, thus, eig(FC) = eig(CF) = eig(C).
Since the first row of matrix FC is zero, it follows that λmin(−(FC)gL) = λmin(−C). For illustration,
we provide examples of λmin(−C) of different unweighted coupling configurations.

(a) All-to-all coupling (C = U): λmin(−C) = N.
(b) Star-configuration: λmin(−C) = 1.
(c) Ring of diffusively coupled systems: λmin(−C) = 4 sin2 π

N .
(d) Ring of 2k-nearest neighbour coupled systems [29]: λmin(−C) ' 2π2k(k + 1)(2k + 1)/3N2 if

k� N.

The different coupling configurations are illustrated in Figure 1.

   a)  b)  

 

 

 

 c)  d)  

 

 

 

 

 

Figure 1. Four different coupling configurations. Here, N = 10 in (a,c,d), N = 11 in (b), and k = 2
in (d).
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3. Coupled Continuous Stirred Tank Reactors

Consider a continuous stirred tank reactor for biomass production held at a constant
temperature [30]. Concentrations of feed or substrate are denoted by s and those of the product
by x (Figure 2). The reaction describing the inflow and outflow of substrate and outflow/harvesting of
product is given by x → ∅ � s. The reaction describing the growth of product by consuming substrate

is given by xs k→ 2x, where reaction constant k is described below.

𝑥𝑠 → 2𝑥

𝑢

𝑥, 𝑠

Figure 2. Schematic view of a continuous stirred tank reactor.

The corresponding mathematical model based on ordinary differential equations is given by

ẋ =
2xs

(s + 1)2 − 0.4x,

ṡ = u− 2xs
(s + 1)2 − 0.4s, (16)

where we denote the input rate of substrate by u. Moreover, we assume an outflow rate of 0.4 (unitless)
and a reaction rate of kxs, where k = 2

(s+1)2 implies inhibition for high concentrations of substrate
(poisoning). We denote equilibrium points by x∗ and s∗. Figure 3 shows the phase plot with the vector
field for u = 2, which depicts the behaviour of the system, determined through the direction set by
the vector arrows, in dependence of its state. For u = 2, there are three equilibrium points, which are
clearly visible. The equilibrium point that corresponds to higher concentrations of product is given by
x∗ = 4.618 and s∗ = 0.382. Note that the system described by Equation (16) is a nonnegative system
such that for nonnegative initial conditions, solutions remain in the nonnegative orthant [31]. To obtain
a set that bounds solutions, we let x̄ = x + x∗ and s̄ = s + s∗, first, solve the following problem

given Equation (16), u = 2, β ∈ R
search for M

subject to p1(x̄, s̄), p2(x̄, s̄), p3(x̄, s̄) are SOS functions of degree 4,

−0.001(x̄2 + s̄2) + V1 is SOS, V1 =
1
2

[
x̄
s̄

]T

M

[
x̄
s̄

]
,

−0.001(x̄2 + s̄2)− V̇1 · (s + 1)2 + p1(x̄, s̄)(x̄2 + s̄2 − β)− p2(x̄, s̄)x− p3(x̄, s̄)s is SOS,

(17)

for different values of β, and, then, solve

given V1

minimise −γ, γ ∈ R
subject to p1(x̄, s̄), p2(x̄, s̄), p3(x̄, s̄) are SOS functions of degree 2,

V1 − γ− p1(x̄, s̄)(x̄2 + s̄2 − β)− p2(x̄, s̄)x− p3(x̄, s̄)s is SOS. (18)

The boundary of the set is given by V1 = γ. Figure 3 depicts the sets defined by β = 7 and
β = 9.95. Their boundaries are given by the dashed red lines. For β > 9.95, programme (17) is
infeasible and remains so even after increasing the degree of polynomials p1, p2, and p3. Note that
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outside the regions, whose boundaries are given by the dashed red line in Figure 3, one might risk
washout or depletion of product by being attracted to the equilibrium point given by x∗ = 0 and
s∗ = 5.

0 1 2 3 4 5 6

 x

0

1

2

3

4

5

6

 s

 u=2

Figure 3. Phase plot with vector field and corresponding contour lines, for the system described by
Equation (16), and regions that bound solutions (red dashed lines). For coupling of a few such systems
as in Equation (1) and for N > 1, solutions are bounded by the black solid lines.

Now, by interconnecting reactors as in Equation (1), we can mitigate the danger of washout that
might result, for example, from disturbances. Note that in our modelling, we assume full control over
all flow rates, that is, in all inlets, where we let u = 2, and between all reactors, where k = 5. For N > 1,
we solve the following problem, which is analogous to problem (17),

given Equation (16), Equation (1), u = 2, k = 5, D = I2, N > 1, β ∈ R
search for Ṽ(x̄1, s̄1, x̄i, s̄i)

subject to pj(x̄1, s̄1, x̄i, s̄i) are SOS functions of degree 4, j ∈ {1, . . . , 5},

Ṽ =
1
2

1
N − 1

xT
1 Mx1 + V̄(Xi) is a SOS function of degree 2,

−0.001(x̄2
1 + s̄2

1 + x̄2
i + s̄2

i ) + Ṽ is SOS,

−0.001(x̄2
1 + s̄2

1 + x̄2
i + s̄2

i )− ˙̃V · (s̄1 + 1)2(s̄i + 1)2

+p1 · (x̄2
1 + s̄2

1 + x̄2
i + s̄2

i − β)− p2 · x1 − p3 · s1 − p4 · xi − p5 · si is SOS. (19)

By, first, solving a problem analogous to problem (18), with V1 = 1
2

1
N−1

[
x̄1

s̄1

]T

M

[
x̄1

s̄1

]
,

for β = 12 and β = 17.5, for different N > 1, and, then, assuming that all systems are at equilibrium
but the first one, we find that solutions remain bounded and return to equilibrium if x1 and s1 are
initially within the regions bounded by the black solid lines in Figure 3. Finally, for investigating
the robustness of our previous results, we repeat above computation with additional free variables
that account for uncertainty in model parameters and corresponding constraints. For instance, for an
uncertain input, such as 2 ≤ u ≤ 2.153, which translates to 4.618 ≤ x∗ ≤ 5, x∗ becomes an additional
free variable. We add the additional constraints to the last line of programme (19). They have the
following form

+p6 · (x∗1 − 4.168)(x∗1 − 5) + p7 · (x∗i − 4.168)(x∗i − 5),
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where p6(x̄1, s̄1, x̄i, s̄i) and p7(x̄1, s̄1, x̄i, s̄i) are SOS functions of degree 4. We, again, observe that the
regions that bound solutions are given by the black solid lines.

4. Discussion and Conclusions

In this paper, we presented a novel approach for determining asymptotic stability and robustness
of a network consisting of coupled dynamical systems, where individual system dynamics are
represented through polynomial or rational functions. The analysis framework relies on local analysis;
thus, making it computationally implementable. With respect to the latter, we presented an efficient
method that relies on semidefinite programming. Importantly, for cases, where multiple equilibrium
points exist, we show how to determine regions around an asymptotically stable equilibrium point
that bounds solutions. The novelty of the presented research lies in the analysis of complex networks
that consist of realistic nonlinear systems, which are of relevance to science and industry, by employing
barrier certificates to provide guarantees for asymptotic stability and robustness, as opposed to
previous research, which does rather not consider realistic dynamical systems as network nodes.

For example, for biomass production in continuous stirred tank reactors, on the one hand,
one wishes to increase yield by providing large concentrations of substrate; on the other hand, too much
of it can lead to a decrease or even washout of product. Intuitively, coupling a few reactors should
allow for greater deviations of individual reactors from the optimal operating point without risking
washout. Using a model of such a networked system, we showed how to determine just how much
deviation is (surely) safe. Importantly, assuming all reactors at the optimal operating point but one,
we showed that deviations deemed unsafe for a single reactor are now still within the safe zone. Finally,
wind farms, the industrial internet of things, and the spread of epidemics, have all in common complex
dynamical behaviour because of the interconnectedness of an increasingly large number of individual
systems or individuals. However, the fact that they consist of complex networks makes achieving
the goal of robustly controlling such systems particularly challenging. The research presented in this
paper provides an approach to overcoming this challenge.
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Notation

R, Rm×n real numbers, m× n real matrices
A(i,j) (i, j)th entry of matrix A ∈ Rm×n

In the identity matrix, In ∈ Rn×n

AT transpose of matrix A ∈ Rm×n

ẋ derivative of x with respect to time variable t
A � 0, B � 0 matrix A is positive definite, matrix B is positive semidefinite
A ≺ 0, B � 0 matrix A is negative definite, matrix B is negative semidefinite

A⊗ B, A ∈ Rm×n, B ∈ Rp×q The Kronecker product:


A(1,1)B · · · A(1,n)B
A(2,1)B · · · A(2,n)B

...
. . .

...
A(m,1)B · · · A(m,n)B


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